JPH0415003B2 - - Google Patents

Info

Publication number
JPH0415003B2
JPH0415003B2 JP61310511A JP31051186A JPH0415003B2 JP H0415003 B2 JPH0415003 B2 JP H0415003B2 JP 61310511 A JP61310511 A JP 61310511A JP 31051186 A JP31051186 A JP 31051186A JP H0415003 B2 JPH0415003 B2 JP H0415003B2
Authority
JP
Japan
Prior art keywords
filter cloth
hygroscopic
woven fabric
fibers
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61310511A
Other languages
Japanese (ja)
Other versions
JPS63166410A (en
Inventor
Yasuhiko Mizushima
Hiroshi Koshida
Shigeo Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP31051186A priority Critical patent/JPS63166410A/en
Publication of JPS63166410A publication Critical patent/JPS63166410A/en
Publication of JPH0415003B2 publication Critical patent/JPH0415003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、ハードフエライト磁石材料、ソフ
トフエライト磁石材料などのスラリー化した磁性
材料粉末を濾過圧縮して所要形状に成形する湿式
成形装置に用いる濾過布の改良に係り、濾過紙を
併用することなく、成形後の成形体との離脱性に
すぐれ、かつ成形体密度の均一化を計り、ひび割
れの低減等の生産性向上効果を有する湿式成形用
濾過布に関する。 従来の技術 一般に、フエライト磁石を湿式成形法にて製造
する場合、第4図に示す如き成形装置を用い、ダ
イス1と下パンチ2によつて形成される成形空間
内にスラリー化した磁性材料粉末、すなわちスラ
リー状原料3を充填し、このスラリー状原料3と
上パンチ4との間に、濾過紙5と濾過布6とを配
置し、その後所要圧力にて圧縮し、水分を濾過排
出して所要形状の成形体を得る。 なお、異方性フエライト磁石の製造では、圧縮
時の少なくとも成形空間内に所要方向の磁界を形
成する。 このスラリー状原料3の圧縮行程における水分
は、濾過紙5及び濾過布6を通過し、上パンチ4
に設けられた抜水孔7より、外部へ抜水される。 従つて、濾過紙5及び濾過布6は、前記水分の
抜水時に均一かつ充分な抜水が可能で、原料粉末
を流出させないことが必須条件となり、これまで
成形体密度の均一化、ひび割れ等の防止を目的
に、濾過紙5及び濾過布6の構成等に種々の検討
が加えられている。 従来の濾過布としては、天然あるいは合成繊維
からなる織布、あるいは短繊維の合成繊維からな
る所謂織布等が用いられてきた。 また、不織布の機械的強度を向上させる目的か
ら第5図に示す如く、合成繊維のマルチフイラメ
ント糸にて織つた基布11の両面に、短繊維の合
成繊維をニードリングにて結合一体化して不織布
層12,13を設けた構成からなる濾過布10が
提案されている。 発明が解決しようとする課題 前記のいずれの濾過布も成形装置において、直
接スラリー状原料に接触させて濾過圧縮すると、
原料中の水分とともに原料粉末が流出し易く、早
期に目詰りするため、抜水効果と得られる成形体
の密度の均一化を考慮すると、数回の圧縮工程に
使用したのち交換する必要があり、また、成形体
との離脱性が悪い問題があつた。 このため、濾過布の長寿命化を計り、成形体と
の離脱性を向上させるため、濾過紙を介在させて
いた。 しかし、濾過紙は機械的強度が低く破損しやす
いため、一回の圧縮工程毎に交換されており、工
業的生産では、交換作業の増加による生産性の低
下と、多量の濾過紙を使用廃棄する経済性の問題
があり、また、成形体への噛み込み等による歩留
の低下の要因ともなつていた。 また、複数回の使用に耐えるよう濾過紙自体の
強度を向上させるため、例えば、化学繊維を混入
したり、異材質の複数層構成等とすると、濾過布
と同様の構成となり、コストと成形体との離脱性
に難を生じていた。 一方、濾過紙を全く使用しない濾過布として、
濾過布のスラリー状原料との当接面に、けば焼き
処理やカレンダー処理などを施した構成も提案さ
れているが、濾過紙を併用する濾過布の場合と比
較して、やはり目詰りを招来し易く、抜水効果と
得られる成形体の密度の均一化を考慮すると、使
用回数の延長にも限度があつた。 上述の如く、湿式成形法における成形体の抜水
率とその均一度は、成形体の密度に大きな影響を
及ぼし、成形体密度の不均一は、得られるフエラ
イト磁石の磁石特性を不安定にし、また、成形体
及び焼結体にひび割れなどを発生させる要因とな
るため、量産経済性を考慮して初期性能が多数回
の圧縮工程でも維持される濾過布が切望されてい
る。 この発明は、かかる現状に鑑み、湿式成形法に
おいて、濾過紙を併用することなく、成形体との
離脱性にすぐれ、かつ抜水性にすぐれ均一な成形
体密度を維持でき、成形体、焼結体のひび割れ防
止効果を有する濾過布を目的とし、また、かかる
初期性能を維持して従来と同等以上の使用回数に
耐え、濾過紙の交換作業をなくして工業生産性を
向上させた濾過布を目的とする。 課題を解決するための手段 この発明は、湿式成形法において、濾過紙を併
用することなく、成形体との離脱性にすぐれ、か
つ抜水性にすぐれ均一な成形体密度を維持できる
濾過布を目的に、種々検討した結果、不織布から
なる濾過布内のスラリー状原料粉末当接面側(被
成形体側)に、マルチフイラメントからなる吸湿
性繊維糸を経糸および/または緯糸に用いた吸湿
性織布を配設することにより、濾過紙を併用する
従来の濾過布と同等以上の寿命並びに濾過布とし
ての所要性能を有し、量産経済性にすぐれた濾過
布が得られることを知見したものである。 すなわち、この発明は、 軽経、緯糸の少なくとも一方がマルチフイラメ
ント糸からなる吸湿性繊維糸である少なくとも1
枚の吸湿性織布を被成形体側に配置して短繊維の
化学繊維とニードリングにより絡合一体化した構
成からなることを特徴とする湿式成形用濾過布で
ある。 作 用 この発明において、吸湿性織布とは、マルチフ
イラメントからなる吸湿性繊維糸を経糸および/
または緯糸に用いて吸湿性を持たせた織布をい
う。吸湿性繊維糸には、ポリアミド等の合成繊
維、人絹等の再生繊維等の吸湿性化学繊維、木綿
などの吸湿性天然繊維、その他公知の吸湿性繊維
糸を用いることがてきる。 また、発明者の実験によれば、吸湿性繊維糸の
公定水分率が8.0%〜12.0%のものが好ましい特
性を示した。 また、織布の組織としては、経緯のいずれに吸
湿性繊維糸を用いるか、あるいは糸種、スラリー
状原料粉末の性状、濾過圧縮条件等を考慮し、平
織、綾織、朱子織のいずれの種類の織も適用で
き、織り方にも、経緯に糸番手、デニールを変化
させるなどの種々の工夫を加えることもできる。 上記の吸湿性織布にニードリングにより絡合一
体化する短繊維の化学繊維としては、ポリエステ
ル、ポリプロピレン等の合成繊維、再生繊維、半
合成繊維等の公知繊維が利用でき、繊維太さ、繊
維長等も濾過成形条件に応じて適宜選定すること
が望ましく、また、必ずしも同種繊維あるいは同
長繊維のみを用いる必要はない。なお、短繊維の
化学繊維としては、公知の繊維太さが0.5〜3デ
ニール、繊維長さが50〜80mmのものが利用でき
る。 ニードリング条件は特に限定しないが、後述す
る如く、結合による一体化に際して、濾過布の断
面構成、すなわち、吸湿性織布枚数とその配置位
置あるいは非吸湿性織布の併設などに応じて、短
繊維の化学繊維量やニードリング量、その順序等
を適宜選定するとよい。 吸湿性織布は、少なくとも1枚が濾過布内のス
ラリー状原料当接面近傍に配置されれば、複数枚
であつてもよく、また、濾過布における積層位置
も任意に選定できる。さらに、濾過布厚みの中央
部に吸湿性を有する織布を配置することも可能で
あり、この場合も濾過紙を併用する必要がなくな
る。 この発明による濾過布は、少なくとも1枚の吸
湿性織布とこれにニードリングにより絡合一体化
した不織布層とからなり、該吸湿性織布が基布と
なり、必要な機械的強度を有するが、さらに、機
械的強度を向上させるために、他の非吸湿性織布
を配設することができる。 非吸湿性の織布としては、ポリエチレン、ポリ
エステル等の公知繊維のモノフイラメント糸、マ
ルチフイラメント糸、スパン糸等からなる織布が
適用可能であり、スラリー状原料粉末の性状、濾
過圧縮条件等に応じて適宜選定されるが、機械的
強度、経済性を考慮し、ポリエチレンモノフイラ
メント糸を用いた織布が望ましい。 この発明において、非吸湿性の織布を配置する
場合は、スラリー状原料当接面近傍に吸湿性の織
布を配置し、中央部または上パンチ側に非吸湿性
の織布を配置することになるが、非吸湿性織布の
組織は、吸湿性織布の組織より粗である方が、濾
過布としての特性が向上する。 また、濾過布の各表面に、スラリー状原料粉末
の性状、濾過圧縮条件等に応じて、けば焼き処
理、カレンダー処理等の表面処理を施すことが望
ましい。 さらに、この発明による濾過布の厚みは、公定
水分率、機械的強度、成形空間のシール性を考慮
し、1mm〜2mm程度が好ましく、また通気度は、
3〜6c.c./cm2/sec程度が望ましい。 発明の図面に基づく開示 第1図から第3図はこの発明による濾過布の断
面説明図である。 第1図に示す濾過布20は、ポリアミド製マル
チフイラメント糸からなる吸湿性繊維糸を用いた
吸湿性織布21に、所要量のポリエステル製短繊
維22を載せて、所要のニードリングにより絡合
一体化して1枚の濾過布20となしたもので、吸
湿性織布21側の表面23がスラリー状原料との
当接面となり、該表面にはカレンダー処理が施さ
れている。 第2図に示す濾過布30は、ポリアミド製マル
チフイラメント糸からなる吸湿性繊維糸を用いた
吸湿性織布31に、所要量のポリエステル製短繊
維32を載せて、所要のニードリングを施し、さ
らに、同様の吸湿性織布33と少量のポリエステ
ル製短繊維32を載せてニードリングし、1枚の
濾過布30となしたもので、最外側の吸湿性織布
31側の表面34がスラリー状原料との当接面と
なり、該表面にはカレンダー処理が施されてい
る。 第3図に示す濾過布40は、ポリアミド製マル
チフイラメント糸からなる吸湿性繊維糸を用いた
吸湿性織布41に、所要量のポリエステル製短繊
維42を載せて、所要のニードリングを施し、さ
らに、ポリエチレン製モノフイラメント糸からな
る非吸湿性繊維糸を用いた非吸湿性織布43と所
要量のポリエステル製短繊維42を載せてニード
リングし、1枚の濾過布40となしたもので、機
械的強度の向上のために配置する非吸湿性織布4
3が断面の略中央部に位置し、最外側の吸湿性織
布41側の表面44がスラリー状原料との当接面
となり、該表面にはカレンダー処理が施されてい
る。 なお、濾過布の積層構造及び絡合方法は上述の
方法に限定されるものでなく、公知の方法が適宜
選定できる。 実施例 非吸湿性の基布の両面に短繊維をニードリング
した従来濾過布(第5図相当、濾過布No.1)と、
スラリー状原料粉末当接面側に吸湿性織布を配置
したこの発明による濾過布(第1図相当、濾過布
No.2)及びスラリー状原料粉末当接面側に吸湿性
織布、中央部に非吸湿性の基布を配置したこの発
明による濾過布(第3図相当、濾過布No.3)の3
種の濾過布を、第1表に示す性状の織布とポリエ
ステル繊維の短繊維(繊維太さ1.5デニール、繊
維長さ76mm)を用いて製造した。各濾過布のスラ
リー状原料当接面にはカレンダー処理が施してあ
る。各濾過布の性状を第1表に示す。 かかる3種の濾過布を用いて、平均粒度0.7μm
〜0.8μmのスラリー状原料粉末を磁場中成形し
て、弓型状の成形体を複数ロツトで多数個得た。 圧縮成形時、成形体密度のばらつきが、成形体
単重の5.0%以上となり始めるまで、各濾過布を
使用し、その時までの使用回数(成形回数)、並
びに得られた成形体のひび割れ発生率を測定し、
観察した成形体との離脱性とともに第2表に示
す。 第2表より明らかなように、この発明による濾
過布は、濾過紙を併用する従来の濾過布に比較し
て、同等以上の使用回数においても、成形体密度
が安定し、かつひび割れ等の不良が大幅に低減さ
れていることが分る。
INDUSTRIAL APPLICATION FIELD This invention relates to the improvement of a filter cloth used in a wet molding device that filters and compresses slurry-formed magnetic material powder such as hard ferrite magnet material or soft ferrite magnet material and molds it into a desired shape. The present invention relates to a filter cloth for wet molding which has excellent releasability from a molded body after molding, uniformizes the density of the molded body, and has the effect of improving productivity such as reducing cracking, without using in combination with a filter cloth. BACKGROUND ART Generally, when manufacturing ferrite magnets by a wet molding method, a molding apparatus as shown in FIG. 4 is used, and magnetic material powder is slurried in a molding space formed by a die 1 and a lower punch 2. That is, a slurry-like raw material 3 is filled, a filter paper 5 and a filter cloth 6 are arranged between the slurry-like raw material 3 and the upper punch 4, and then compressed with a required pressure and water is filtered and discharged. Obtain a molded body of the desired shape. In the production of anisotropic ferrite magnets, a magnetic field in a desired direction is formed at least within the molding space during compression. Moisture in the compression process of this slurry raw material 3 passes through the filter paper 5 and the filter cloth 6, and the upper punch 4
Water is drained to the outside through a drain hole 7 provided in the drain hole 7 . Therefore, it is essential for the filter paper 5 and the filter cloth 6 to be able to remove water uniformly and sufficiently during the water removal process, and to prevent the raw material powder from flowing out. In order to prevent this, various studies have been made on the structure of the filter paper 5 and the filter cloth 6, etc. As conventional filter cloths, woven fabrics made of natural or synthetic fibers, or so-called woven fabrics made of short synthetic fibers, etc. have been used. In addition, for the purpose of improving the mechanical strength of the nonwoven fabric, short synthetic fibers are bonded and integrated by needling on both sides of the base fabric 11 woven from synthetic multifilament yarns, as shown in FIG. A filter cloth 10 having a configuration in which nonwoven fabric layers 12 and 13 are provided has been proposed. Problems to be Solved by the Invention When any of the above-mentioned filter cloths is brought into direct contact with the slurry raw material in a molding device and filtered and compressed,
The raw material powder tends to flow out along with the moisture in the raw material, leading to early clogging, so it is necessary to replace it after using it for several compression processes, considering the water removal effect and uniform density of the resulting compact. In addition, there was a problem of poor detachability from the molded body. For this reason, in order to extend the life of the filter cloth and improve the ease with which it can be separated from the molded body, a filter paper has been interposed. However, filter paper has low mechanical strength and is easily damaged, so it is replaced after each compression process.In industrial production, the increased replacement work reduces productivity and a large amount of filter paper is used and discarded. There is an economical problem with this, and it is also a factor in reducing the yield due to biting into the molded body. In addition, in order to improve the strength of the filter paper itself so that it can withstand multiple uses, for example, by mixing chemical fibers or creating a multi-layer structure made of different materials, the structure becomes similar to that of filter cloth, which reduces the cost and the molded product. This caused difficulty in separating from the system. On the other hand, as a filter cloth that does not use filter paper at all,
A structure in which the surface of the filter cloth that comes into contact with the slurry raw material is subjected to a frizz treatment or a calender treatment has also been proposed, but compared to the case of a filter cloth that also uses filter paper, it is still less likely to clog. Considering the water removal effect and uniform density of the resulting molded product, there was a limit to the number of times it could be used. As mentioned above, the water removal rate and its uniformity of the molded body in the wet molding method have a large effect on the density of the molded body, and non-uniformity of the density of the molded body makes the magnetic properties of the obtained ferrite magnet unstable. In addition, since this can cause cracks in molded bodies and sintered bodies, there is a strong need for a filter cloth whose initial performance can be maintained even after many compression steps in consideration of the economic efficiency of mass production. In view of the current situation, this invention is capable of maintaining a uniform density of a molded body with excellent detachability from a molded body and excellent water drainage without using a filter paper in a wet molding method, and a molded body and a sintered body. The aim is to create a filter cloth that has the effect of preventing body cracks, and also maintains this initial performance, withstands the same number of uses as before, and improves industrial productivity by eliminating the need to replace filter paper. purpose. Means for Solving the Problems The present invention aims to provide a filter cloth that has excellent detachability from a molded article, excellent water drainage ability, and can maintain a uniform density of a molded article in a wet molding method without using a filter paper in combination. As a result of various studies, we have developed a hygroscopic woven fabric in which hygroscopic fiber yarns made of multifilament are used as the warp and/or weft on the side of the filter cloth made of nonwoven fabric that comes into contact with the slurry raw material powder (the side of the molded object). It was discovered that by providing filter cloth, it is possible to obtain a filter cloth that has a lifespan equal to or longer than conventional filter cloth that uses filter paper, has the required performance as a filter cloth, and is highly economical in mass production. . That is, the present invention provides at least one hygroscopic fiber yarn in which at least one of the light warp and weft yarns is a multifilament yarn.
This filter cloth for wet molding is characterized in that a sheet of hygroscopic woven cloth is placed on the side of the object to be molded and is entangled and integrated with short chemical fibers by needling. Function In this invention, a hygroscopic woven fabric refers to hygroscopic fiber yarns made of multifilaments as warp and/or
Or, it refers to a woven fabric that is made hygroscopic by using the weft. As the hygroscopic fiber yarn, synthetic fibers such as polyamide, hygroscopic chemical fibers such as regenerated fibers such as human silk, hygroscopic natural fibers such as cotton, and other known hygroscopic fiber yarns can be used. Further, according to the inventor's experiments, hygroscopic fiber yarns having an official moisture content of 8.0% to 12.0% exhibited preferable characteristics. In addition, the structure of the woven fabric should be selected from plain weave, twill weave, and satin weave, depending on which type of hygroscopic fiber yarn is used in the weave, the yarn type, the properties of the slurry-like raw material powder, the filtration and compression conditions, etc. Weaving can also be applied, and various innovations can be added to the weaving method, such as changing the thread count and denier. As short chemical fibers to be entangled and integrated into the above-mentioned hygroscopic woven fabric by needling, known fibers such as synthetic fibers such as polyester and polypropylene, recycled fibers, and semi-synthetic fibers can be used. It is desirable that the length etc. be appropriately selected depending on the filtration molding conditions, and it is not always necessary to use only the same type of fibers or the same length fibers. As short chemical fibers, known fibers having a fiber thickness of 0.5 to 3 deniers and a fiber length of 50 to 80 mm can be used. The needling conditions are not particularly limited, but as will be described later, when integrating by bonding, the needling conditions may be short or short depending on the cross-sectional configuration of the filter cloth, that is, the number and position of hygroscopic woven fabrics, or the juxtaposition of non-hygroscopic woven fabrics. The amount of chemical fibers in the fibers, the amount of needling, and the order thereof may be appropriately selected. A plurality of hygroscopic woven fabrics may be used as long as at least one woven fabric is disposed near the surface of the filter cloth that comes into contact with the slurry-like raw material, and the stacking position in the filter cloth can also be arbitrarily selected. Furthermore, it is also possible to arrange a hygroscopic woven fabric in the center of the thickness of the filter cloth, and in this case as well, there is no need to use a filter paper in combination. The filter cloth according to the present invention is composed of at least one hygroscopic woven fabric and a nonwoven fabric layer intertwined with this by needling, and the hygroscopic woven fabric serves as a base fabric and has the necessary mechanical strength. Additionally, other non-hygroscopic fabrics can be provided to improve mechanical strength. As non-hygroscopic woven fabrics, woven fabrics made of monofilament yarns, multifilament yarns, spun yarns, etc. of known fibers such as polyethylene and polyester can be used, depending on the properties of the slurry raw material powder, filtration and compression conditions, etc. The material may be selected as appropriate, but in consideration of mechanical strength and economic efficiency, a woven fabric using polyethylene monofilament yarn is preferable. In this invention, when a non-hygroscopic woven fabric is arranged, the hygroscopic woven fabric is arranged near the slurry raw material contact surface, and the non-hygroscopic woven fabric is arranged at the center or on the upper punch side. However, if the texture of the non-hygroscopic fabric is coarser than that of the hygroscopic fabric, its properties as a filter fabric will improve. Further, it is desirable to subject each surface of the filter cloth to a surface treatment such as a fuzzy treatment or a calender treatment depending on the properties of the slurry-like raw material powder, filtration compression conditions, etc. Further, the thickness of the filter cloth according to the present invention is preferably about 1 mm to 2 mm, considering the official moisture content, mechanical strength, and sealing performance of the molding space, and the air permeability is
Approximately 3 to 6 c.c./cm 2 /sec is desirable. Disclosure of the Invention Based on Drawings FIGS. 1 to 3 are cross-sectional explanatory views of a filter cloth according to the present invention. The filter cloth 20 shown in FIG. 1 is made by placing a required amount of polyester short fibers 22 on a hygroscopic woven fabric 21 using hygroscopic fiber yarns made of polyamide multifilament yarns, and entangling them by required needling. It is integrated into one filter cloth 20, and the surface 23 on the side of the hygroscopic woven cloth 21 becomes the contact surface with the slurry raw material, and the surface is calendered. The filter cloth 30 shown in FIG. 2 is produced by placing a required amount of polyester short fibers 32 on a hygroscopic woven fabric 31 using hygroscopic fiber yarn made of polyamide multifilament yarn, and subjecting it to required needling. Furthermore, a similar hygroscopic woven fabric 33 and a small amount of short polyester fibers 32 are placed and needled to form a single filter cloth 30, and the surface 34 on the outermost hygroscopic woven fabric 31 side becomes slurry. This is the surface that comes into contact with the shaped raw material, and the surface is calendered. The filter cloth 40 shown in FIG. 3 is produced by placing a required amount of polyester short fibers 42 on a hygroscopic woven fabric 41 using hygroscopic fiber yarn made of polyamide multifilament yarn, and subjecting it to the required needling. Furthermore, a non-hygroscopic woven fabric 43 using a non-hygroscopic fiber yarn made of polyethylene monofilament yarn and a required amount of polyester short fibers 42 are placed and needled to form one filter cloth 40. , non-hygroscopic woven fabric 4 arranged to improve mechanical strength
3 is located approximately at the center of the cross section, and the surface 44 on the outermost hygroscopic fabric 41 side is the contact surface with the slurry raw material, and this surface is calendered. Note that the layered structure of the filter cloth and the entangling method are not limited to the above-mentioned methods, and any known method can be selected as appropriate. Example A conventional filter cloth (corresponding to Fig. 5, filter cloth No. 1) in which short fibers were needled on both sides of a non-hygroscopic base cloth,
A filter cloth according to the present invention in which a hygroscopic woven fabric is arranged on the surface that comes into contact with the slurry-like raw material powder (corresponding to Fig. 1, filter cloth
No. 2) and 3 of the filter cloth according to the present invention (corresponding to Fig. 3, filter cloth No. 3) in which a hygroscopic woven fabric is arranged on the surface in contact with the slurry-like raw material powder and a non-hygroscopic base fabric is arranged in the center.
A seed filter cloth was manufactured using a woven cloth having the properties shown in Table 1 and short polyester fibers (fiber thickness: 1.5 denier, fiber length: 76 mm). The surface of each filter cloth that comes into contact with the slurry raw material is calendered. Table 1 shows the properties of each filter cloth. Using these three types of filter cloth, the average particle size was 0.7 μm.
A slurry-like raw material powder of ~0.8 μm was molded in a magnetic field to obtain a large number of bow-shaped molded bodies in multiple lots. During compression molding, each filter cloth was used until the variation in density of the compact began to exceed 5.0% of the unit weight of the compact, and the number of times it was used (number of moldings) up to that point, as well as the crack occurrence rate of the obtained compact measure,
The results are shown in Table 2 along with the observed detachability from the molded body. As is clear from Table 2, the filter cloth according to the present invention has a stable density of the molded product even after being used for the same number of times as compared to the conventional filter cloth that uses filter paper in combination, and is free from defects such as cracks. It can be seen that this has been significantly reduced.

【表】【table】

【表】 発明の効果 この発明による濾過布は、不織布からなる濾過
布内のスラリー状原料側(被成形体側)当接面
に、マルチフイラメントからなる吸湿性繊維糸を
経糸および/または緯糸に用いた吸湿性織布を配
設した構成により、湿式成形法において、濾過紙
を併用することなく、成形体との離脱性にすぐ
れ、かつ抜水性にすぐれ均一な成形体密度を維持
でき、成形体、焼結体のひび割れ防止効果を有
し、また、かかる初期性能を維持して従来と同等
以上の使用回数に耐え、濾過紙の交換作業をなく
して工業生産性を向上させることができる利点を
有する。 濾過紙を使用しないことにより、経済性ととも
にその交換作業がなくなることによる生産性向上
のメリツトの他、濾過紙に比べて通気性を安定し
て得られることから、成形ごとの通気度のばらつ
きを小さくでき、成形体密度の均一安定化に有利
となり、成形体及び焼結体のひび割れ防止効果が
得られる。 また、濾過紙に比べて、高圧縮下でのシール性
が向上し、スラリー状原料粉末のはみだしが防止
され、成形体状態でのばり発生が低減し、焼結体
の加工歩留の向上効果が得られる。 また、成形体との離脱性にすぐれ、従来の如き
濾過紙の噛み込みがなくなり、前記ひび割れ防止
効果と相挨つて歩留の向上効果を有する。 さらに、吸湿性織布を複数枚用いる構成や、非
吸湿性織布を併配する構成では、濾過布の機械的
強度を大幅に向上させることができ、きわめて経
済性の高い濾過布を得ることができる。
[Table] Effects of the Invention The filter cloth according to the present invention uses hygroscopic fiber yarns made of multifilament as the warp and/or weft on the contact surface on the slurry raw material side (to-be-molded object side) of the filter cloth made of nonwoven fabric. Due to the structure in which the hygroscopic woven fabric is arranged, it is possible to maintain a uniform density of the molded product with excellent detachability from the molded product and excellent water removal property without using filter paper in the wet molding method. , it has the effect of preventing cracks in the sintered body, maintains the initial performance, can withstand the same number of uses as before, and has the advantage of being able to improve industrial productivity by eliminating the need to replace filter paper. have By not using filter paper, it is economical and has the advantage of improving productivity by eliminating the need to replace it, as well as providing more stable air permeability compared to filter paper, which reduces the variation in air permeability between moldings. It can be made small, which is advantageous in stabilizing the compact density uniformly, and the effect of preventing cracks in the compact and sintered compact can be obtained. In addition, compared to filter paper, the sealing performance under high compression is improved, the protrusion of slurry-like raw material powder is prevented, and the occurrence of burrs in the compact state is reduced, which improves the processing yield of sintered compacts. is obtained. In addition, it has excellent releasability from the molded body, eliminates the filter paper getting caught in the filter paper as in the conventional case, and has the effect of improving the yield in combination with the above-mentioned crack prevention effect. Furthermore, in configurations using multiple hygroscopic woven fabrics or in combination with non-hygroscopic woven fabrics, the mechanical strength of the filter cloth can be greatly improved, making it possible to obtain extremely economical filtration cloths. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図はこの発明による濾過布の断
面説明図である。第4図は湿式成形装置の要部説
明図である。第5図は従来の濾過布の断面説明図
である。 20,30,40……濾過布、21,31,3
3,41……吸湿性織布、22,32,42……
短繊維、43……非吸湿性基布、23,34,4
4……表面。
1 to 3 are cross-sectional explanatory views of the filter cloth according to the present invention. FIG. 4 is an explanatory diagram of the main parts of the wet molding apparatus. FIG. 5 is an explanatory cross-sectional view of a conventional filter cloth. 20,30,40...filter cloth, 21,31,3
3, 41... Hygroscopic woven fabric, 22, 32, 42...
Short fiber, 43...Non-hygroscopic base fabric, 23, 34, 4
4...Surface.

Claims (1)

【特許請求の範囲】[Claims] 1 軽経、緯糸の少なくとも一方がマルチフイラ
メント糸からなる吸湿性繊維糸である少なくとも
1枚の吸湿性織布を被成形体側に配置して短繊維
の化学繊維とニードリングにより絡合一体化した
構成からなることを特徴とする湿式成形用濾過
布。
1. At least one hygroscopic woven fabric, in which at least one of the light warp and weft yarns is a hygroscopic fiber yarn made of multifilament yarn, is placed on the side of the molded object and entangled and integrated with short chemical fibers by needling. A filter cloth for wet molding characterized by comprising:
JP31051186A 1986-12-27 1986-12-27 Filter cloth for wet molding Granted JPS63166410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31051186A JPS63166410A (en) 1986-12-27 1986-12-27 Filter cloth for wet molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31051186A JPS63166410A (en) 1986-12-27 1986-12-27 Filter cloth for wet molding

Publications (2)

Publication Number Publication Date
JPS63166410A JPS63166410A (en) 1988-07-09
JPH0415003B2 true JPH0415003B2 (en) 1992-03-16

Family

ID=18006104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31051186A Granted JPS63166410A (en) 1986-12-27 1986-12-27 Filter cloth for wet molding

Country Status (1)

Country Link
JP (1) JPS63166410A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611921B2 (en) * 2006-03-27 2011-01-12 中尾フイルター工業株式会社 Filter cloth for wet forming of inorganic powder and method for producing the same
JP2008279339A (en) * 2007-05-09 2008-11-20 Jfe Engineering Kk Solid/liquid separation apparatus
KR100824214B1 (en) * 2007-06-25 2008-04-24 이동걸 Filtrate media for high- tension modling
GB2586650A (en) * 2019-09-02 2021-03-03 Thomas Haimes & Company Ltd Wet press mould filter and filter assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725690U (en) * 1980-07-18 1982-02-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725690U (en) * 1980-07-18 1982-02-10

Also Published As

Publication number Publication date
JPS63166410A (en) 1988-07-09

Similar Documents

Publication Publication Date Title
US5318831A (en) Dust collecting filter cloth
US3276597A (en) Filter media
US5130134A (en) Polyimide composite filter fabrics
JPH0377316B2 (en)
GB2028229A (en) Filter cloth made of needle felt for bag filter type dust collector
KR20100093680A (en) Anti-static nonwoven felt for air dust filtering
KR100824214B1 (en) Filtrate media for high- tension modling
JP4611921B2 (en) Filter cloth for wet forming of inorganic powder and method for producing the same
CN113750648B (en) Filter cloth for vertical filter press and preparation method thereof
JPH0415003B2 (en)
WO2006011453A1 (en) Three-dimensional knit fabric, interlining material and complex fabric
JPH0510890Y2 (en)
JP3283946B2 (en) Felt filter media for wet filtration molding of magnetic powder materials
JPS60143811A (en) Felt filter cloth for belt press type dehydrator
JP3540937B2 (en) Press dewatering equipment
JP3184095B2 (en) Filter cloth
CN219462796U (en) High-precision hydrophilic filter felt
JPH0871336A (en) Filter cloth using hollow monofilament fiber
KR20070031414A (en) Three-Dimensional Knit Fabric, Interlining Material and Complex Fabric
JP2606503Y2 (en) Filter cloth
GB2172020A (en) Improvements in and relating to filters
SU1274733A1 (en) Method of producing filter material
JPH09253429A (en) Filter medium
JPS5814972Y2 (en) "Ro" cloth for filter press
JPS60239204A (en) Wet type molding method of ferrite powder

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term