JPH0510890Y2 - - Google Patents

Info

Publication number
JPH0510890Y2
JPH0510890Y2 JP1986202121U JP20212186U JPH0510890Y2 JP H0510890 Y2 JPH0510890 Y2 JP H0510890Y2 JP 1986202121 U JP1986202121 U JP 1986202121U JP 20212186 U JP20212186 U JP 20212186U JP H0510890 Y2 JPH0510890 Y2 JP H0510890Y2
Authority
JP
Japan
Prior art keywords
filter cloth
filter
fibers
woven fabric
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986202121U
Other languages
Japanese (ja)
Other versions
JPS63107714U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986202121U priority Critical patent/JPH0510890Y2/ja
Publication of JPS63107714U publication Critical patent/JPS63107714U/ja
Application granted granted Critical
Publication of JPH0510890Y2 publication Critical patent/JPH0510890Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 この考案は、ハードフエライト磁石材料、ソフ
トフエライト磁石材料などのスラリー化した磁性
材料粉末を濾過圧縮して所要形状に成形する湿式
成形装置に用いる濾過布の改良に係り、機械的強
度が向上し、抜水性にすぐれ成形体密度の均一化
を計り、ひび割れの低減等の生産性並びに品質向
上効果を有する湿式成形用濾過布に関する。 従来の技術 一般に、フエライト磁石を湿式成形法にて製造
する場合、第3図に示す如き成形装置を用い、ダ
イス1と下パンチ2によつて形成される成形空間
内にスラリー化した磁性材料粉末、すなわちスラ
リー状原料3を充填し、このスラリー状原料3と
上パンチ4との間に、濾過紙5と濾過布6とを配
置し、その後所要圧力にて圧縮し、水分を濾過排
出して所要形状の成形体を得る。 なお、異法性フエライト磁石の製造では、圧縮
時の少なくとも成形空間内に所要方向の磁界を形
成する。 このスラリー状原料3の圧縮行程における水分
は濾過紙5及び濾過布6を通過し、上パンチ4に
設けられた抜水孔7より外部へ抜水される。 従つて、濾過紙5及び濾過布6は、前記水分の
抜水時に均一かつ充分な抜水が可能で、原料粉末
を流出させないことが必須条件となり、これまで
成形体密度の均一化、ひび割れ等の防止を目的
に、濾過紙5及び濾過布6の構成等に種々の検討
が加えられるている。 従来の濾過布としては、天然あるいは合成繊維
からなる織布、あるいは短繊維の合成繊維からな
る所謂不織布等が用いられてきた。 また、不織布の機械的強度を向上させる目的か
ら第4図に示す如く、合成繊維のマルチフイラメ
ント糸にて織つた基布11の両面に、短繊維の合
成繊維をニードリングにて絡合一体化して不織布
層12,13を設けた構成からなる濾過布10が
提案されている。 考案が解決しようとする課題 前記のいずれの濾過布も、成形装置において、
直接スラリー状原料に接触させて濾過圧縮する
と、原料中の水分とともに原料粉末が流出し易
く、早期に目詰りするため、抜水効果と得られる
成形体の密度の均一化を考慮すると、数回の圧縮
工程に使用したのちに交換する必要があり、ま
た、成形体との離脱性が悪い問題があつた。 このため、濾過布の長寿命化を計り、成形体と
の離脱性を向上させるため、濾過紙を介在させて
いた。 上述の如く、湿式成形法における成形体の抜水
率とその均一度は、成形体の密度に大きな影響を
及ぼし、成形体密度の不均一は得られるフエライ
ト磁石の磁石特性を不安定にし、また、成形体及
び焼結体にひび割れなどを発生させる要因となる
ため、量産経済性を考慮して初期性能が多数回の
圧縮工程でも維持される濾過布が切望されてい
る。 この考案は、かかる現状に鑑み、湿式成形法に
おいて、抜水性にすぐれ均一な成形体密度を維持
でき、成形体、焼結体のひび割れ防止効果を有す
る濾過布を目的とし、また、かかる初期性能を維
持して多数回の使用に耐え、濾過布の交換回数を
少なくし工業生産性を向上させ得る濾過布を目的
とする。 課題を解決するため手段 この考案は、湿式成形法において、抜水性にす
ぐれ均一な成形体密度を維持できる濾過布を目的
に、種々検討した結果、不織布からなる濾過布内
のスラリー状原料粉末当接面側(被成形体側)
に、ポリエチレン製モノフイラメント糸を経糸お
よび緯糸に用いた織布を配設することにより、従
来の濾過布に比べ機械的強度が向上しすぐれた抜
水性を有し、かつ長寿命の濾過布が得られること
を知見したものである。 すなわち、この考案は、 少なくとも1枚の300〜700デニールのポリエチレ
ン製モノフイラメント糸からなり、組織密度が20
〜50目(30.3mm当りの本数)の平織織布を被成形
体側に配置して短繊維の化学繊維とニードリング
により絡合一体化した構成からなることを特徴と
する湿式成形用濾過布である。 考案の好ましい実施態様 この考案において、織布の糸種や組織は特に、
機械的強度、経済性の観点から、ポリエチレン製
モノフイラメント糸を用いた平織の織布とし、濾
過布の断面における位置、スラリー状原料粉末の
性状、濾過圧縮条件等に応じて、糸は300〜700デ
ニール、織布の組織密度は20〜50目の範囲で適宜
選定する。組織密度の好ましい範囲は30目であ
る。ただし組織密度の単位(目)は30.3mm(1
寸)当りの経糸、緯糸の各々本数にて表わす。 上記のポリエチレン製モノフイラメント糸から
なる織布にニードリングにて絡合一体化する短繊
維の化学繊維としては、ポリエステル、ポリプロ
ピレン等の合成繊維、再生繊維、半合成繊維等の
公知繊維が利用でき、繊維太さ、繊維長等も濾過
成形条件に応じて適宜選定することが望ましく、
また、必ずしも同種繊維あるいは同長繊維のみを
用いる必要はない。なお、短繊維の化学繊維とし
ては、公知の繊維太さが0.5〜3デニール、繊維
長さが50〜80mmのものが利用できる。 かかる織布に短繊維の化学繊維を絡合一体化さ
せるニードリング条件は特に限定しないが、後述
する如く、絡合による一体化に際して、濾過布の
断面構成、すなわち、モノフイラメント糸織布の
枚数とその配置位置などに応じて、短繊維の化学
繊維量やニードリング量、その順序等が適宜選定
される。 ポリエチレン製モノフイラメント糸からなる織
布は、必ずしもスラリー状原料当接面に配置させ
る必要はなく、少なくとも1枚が濾過布厚みの中
央部よりスラリー状原料当接面寄り、すなわち、
スラリー状原料当接面の近傍に配置されれば、複
数枚であつてもよく、また、濾過布における積層
位置も任意に選定できる。さらに、濾過布厚みの
中央部とスラリー状原料当接面に該織布を配置し
た構成とすることもできる。 また、この発明による濾過布の各表面に、スラ
リー状原料粉末の性状、濾過圧縮条件等に応じ
て、けば焼き処理、カレンダー処理等の表面処理
を施すことにより、濾過紙の使用を省略すること
ができる。 さらに、ポリエチレン製モノフイラメント糸か
らなる織布のスラリー状原料当接面側に、カレン
ダー処理等の表面処理を施すことにより、モノフ
イラメント糸と短繊維との絡合が進み濾過布の強
度が向上する。また、織布に絡合一体化する短繊
維の化学繊維中に、熱処理により接着性を発揮す
る繊維を均一あるいは織布寄りに混入し、熱処理
することにより、上記と同様に絡合が進み濾過布
の強度を向上させることができる。 さらに、この考案による濾過布の厚みは、公定
水分率、機械的強度、成形空間のシール性を考慮
し、1mm〜2mm程度が好ましく、また通気度は、
25〜35c.c./cm2/sec程度が望ましい。 考案の図面に基づく開示 第1図と第2図はこの考案による濾過布の断面
説明図である。 第1図に示す濾過布20は、ポリエチレン製モ
ノフイラメント糸からなる平織の織布21に、所
要量のポリエステル製短繊維22を載せて、所要
のニードリングにより絡合一体化して1枚の濾過
布20となしたもので、織布21側の表面23が
スラリー状原料との当接面となり、僅かに短繊維
22が該表面を覆う程度に絡合一体化してある。
また、前記表面23とは反対側の上パンチ当接側
表面にはカレンダー処理が施されている。 第2図に示す濾過布30は、ポリエチレン製モ
ノフイラメント糸からなる平織の織布31に、所
要量のポリエステル製短繊維32を載せて、所要
のニードリングし、さらに、同様の織布33と少
量のポリエステル製短繊維32を載せてニードリ
ングし、1枚の濾過布30となしたもので、最外
側の織布31側の表面34がスラリー状原料との
当接面となり、該表面34とは反対側の上パンチ
当接側表面にはカレンダー処理が施されている。 また、上パンチ側に位置する織布33は、スラ
リー状原料側の織布31より、組織密度が粗であ
り、濾過布30の機械的強度の向上を担つてい
る。 なお、濾過布の積層構造及び絡合方法は上述の
方法に限定されるものでなく、公知の方法が適宜
選定できる。 実施例 マルチフイラメント糸からなる基布の両面に短
繊維をニードリングした従来濾過布(第4図相
当、濾過布No.1)と、スラリー状原料粉末当接面
側にモノフイラメント糸からなる織布を配置した
この考案による濾過布(第1図相当、濾過布No.
2)2種の濾過布を、第1表に示す性状の織布と
ポリエステル繊維の短繊維(繊維太さ1.5デニー
ル、繊維長さ76mm)を用いて製造した。各濾過布
の上パンチ側当接面にはカレンダー処理が施して
ある。各濾過布の性状を第1表に示す。 かかる2種の濾過布を用いて、平均粒度0.7μm
〜0.8μmのスラリー状原料粉末を磁場中成形し
て、弓型状の成形体を5ロツトで多数個得た。 圧縮成形時、濾過紙を併用し成形体密度のばら
つきが、成形体単重の5.0%以上となり始めるま
で、各濾過布を使用し、その時までの使用回数
(成形回数)、並びに得られた成形体のひび割れ発
生率を測定し、その結果を第2表に示す。なお、
濾過紙は成形毎に取り替えた。 第2表より明らかなように、この考案による濾
過布は、従来の濾過布に比較して、同等のひび割
れ発生率において使用回数を大幅に延ばすことが
できることが分る。また、従来の濾過布と同様の
使用回数は、成形体密度が安定しひび割れ等の不
良が大幅に低減されていることが確認できた。
Industrial Application Field This invention relates to the improvement of a filter cloth used in a wet molding device that filters and compresses slurry magnetic material powder such as hard ferrite magnet material or soft ferrite magnet material and molds it into a desired shape. The present invention relates to a filter cloth for wet molding that has improved strength, excellent water drainage, uniform density of molded products, and has the effect of improving productivity and quality by reducing cracking. BACKGROUND ART Generally, when manufacturing ferrite magnets by wet molding, a molding apparatus as shown in FIG. 3 is used, and magnetic material powder is slurried in a molding space formed by a die 1 and a lower punch 2. That is, a slurry-like raw material 3 is filled, a filter paper 5 and a filter cloth 6 are arranged between the slurry-like raw material 3 and the upper punch 4, and then compressed with a required pressure and water is filtered and discharged. Obtain a molded body of the desired shape. In the production of heteromorphic ferrite magnets, a magnetic field in a predetermined direction is formed at least within the molding space during compression. Moisture in the compression process of the slurry raw material 3 passes through the filter paper 5 and the filter cloth 6, and is drained to the outside through the drain hole 7 provided in the upper punch 4. Therefore, it is essential for the filter paper 5 and the filter cloth 6 to be able to remove water uniformly and sufficiently during the water removal process, and to prevent the raw material powder from flowing out. In order to prevent this, various studies have been made on the structure of the filter paper 5 and the filter cloth 6, etc. As conventional filter cloths, woven fabrics made of natural or synthetic fibers, so-called non-woven fabrics made of short synthetic fibers, etc. have been used. In addition, for the purpose of improving the mechanical strength of the nonwoven fabric, short synthetic fibers are intertwined and integrated by needling on both sides of the base fabric 11 woven from synthetic multifilament yarns, as shown in Figure 4. A filter cloth 10 having a structure in which nonwoven fabric layers 12 and 13 are provided has been proposed. Problems to be solved by the invention In any of the above-mentioned filter cloths, in a molding device,
When filtering and compressing by directly contacting the slurry raw material, the raw material powder is likely to flow out together with the moisture in the raw material, leading to early clogging. It was necessary to replace it after using it in the compression process, and there was also the problem that it was difficult to separate from the molded body. For this reason, in order to extend the life of the filter cloth and improve the ease with which it can be separated from the molded body, a filter paper has been interposed. As mentioned above, the water removal rate and its uniformity of the molded body in the wet molding method have a large effect on the density of the molded body, and non-uniformity of the density of the molded body makes the magnetic properties of the obtained ferrite magnet unstable, and , which can cause cracks in molded bodies and sintered bodies, and therefore, in consideration of the economy of mass production, there is a strong desire for a filter cloth whose initial performance can be maintained even after many compression steps. In view of the current situation, this invention aims to provide a filter cloth that has excellent water removal properties, can maintain a uniform compact density, and has the effect of preventing cracks in compacts and sintered compacts in the wet forming method, and also has the initial performance. The purpose of the present invention is to provide a filter cloth that maintains the same properties and withstands repeated use, reduces the number of filter cloth replacements, and improves industrial productivity. Means to Solve the Problems This idea was developed as a result of various studies aimed at creating a filter cloth that has excellent water removal properties and can maintain a uniform compact density in wet molding methods. Contact side (molded object side)
By arranging a woven fabric using polyethylene monofilament yarns for the warp and weft, we have created a filter fabric with improved mechanical strength, superior water removal properties, and long service life compared to conventional filter fabrics. This is what I found out that it can be obtained. That is, this device consists of at least one 300-700 denier polyethylene monofilament yarn with a texture density of 20
A filter cloth for wet molding characterized by a structure in which ~50 stitches (number of pieces per 30.3 mm) of plain woven fabric are placed on the side of the object to be molded and are entangled and integrated with short chemical fibers by needling. be. Preferred embodiment of the invention In this invention, the yarn type and texture of the woven fabric are particularly
From the viewpoint of mechanical strength and economical efficiency, the fabric is a plain weave fabric using polyethylene monofilament yarn, and the yarn size is 300 to 300 mm depending on the position in the cross section of the filter cloth, the properties of the slurry-like raw material powder, the filtration compression conditions, etc. 700 denier, and the texture density of the woven fabric is appropriately selected in the range of 20 to 50 stitches. The preferred range of tissue density is 30 meshes. However, the unit of tissue density (mesh) is 30.3 mm (1
It is expressed by the number of warp and weft threads per length. Known fibers such as synthetic fibers such as polyester and polypropylene, recycled fibers, and semi-synthetic fibers can be used as short chemical fibers to be entangled and integrated with the above-mentioned polyethylene monofilament yarn woven fabric by needling. It is desirable to select the fiber thickness, fiber length, etc. appropriately according to the filtration molding conditions.
Furthermore, it is not always necessary to use only the same type of fibers or the same length fibers. As short chemical fibers, known fibers having a fiber thickness of 0.5 to 3 deniers and a fiber length of 50 to 80 mm can be used. The needling conditions for entangling and integrating short chemical fibers into such a woven fabric are not particularly limited, but as will be described later, when integrating by entangling, the cross-sectional configuration of the filter fabric, that is, the number of monofilament yarn woven fabrics, The amount of chemical fibers in the short fibers, the amount of needling, the order of needling, etc. are appropriately selected depending on the location and location of the short fibers. The woven fabric made of polyethylene monofilament yarn does not necessarily need to be placed on the slurry raw material contact surface, and at least one of the woven fabrics is placed closer to the slurry raw material contact surface than the center of the thickness of the filter cloth, that is,
There may be a plurality of filter cloths as long as they are arranged near the slurry raw material contact surface, and the stacking position on the filter cloth can be arbitrarily selected. Furthermore, it is also possible to arrange the woven fabric at the central part of the thickness of the filter fabric and the surface that contacts the slurry raw material. Furthermore, the use of filter paper can be omitted by subjecting each surface of the filter cloth according to the present invention to surface treatments such as frizz treatment and calender treatment, depending on the properties of the slurry-like raw material powder, filtration compression conditions, etc. be able to. Furthermore, by applying a surface treatment such as calendering to the surface of the woven fabric made of polyethylene monofilament yarn that comes in contact with the slurry raw material, the monofilament yarn and short fibers are entangled and the strength of the filter cloth is improved. do. In addition, fibers that exhibit adhesive properties when heat treated are mixed uniformly or close to the woven fabric into the short chemical fibers that are entangled and integrated with the woven fabric, and by heat treatment, entanglement progresses in the same way as above, and filtration is performed. It can improve the strength of cloth. Furthermore, the thickness of the filter cloth according to this invention is preferably about 1 mm to 2 mm, considering the official moisture content, mechanical strength, and sealing performance of the molding space, and the air permeability is
Approximately 25 to 35 c.c./cm 2 /sec is desirable. DISCLOSURE BASED ON DRAWINGS OF THE INVENTION FIGS. 1 and 2 are cross-sectional explanatory views of a filter cloth according to this invention. The filter cloth 20 shown in FIG. 1 is made by placing a required amount of polyester short fibers 22 on a plain-woven cloth 21 made of polyethylene monofilament yarn, entangling and integrating them by required needling to form a single filter cloth. The surface 23 on the woven fabric 21 side becomes the contact surface with the slurry raw material, and the short fibers 22 are entangled and integrated to such an extent that the surface is slightly covered.
Further, the surface on the upper punch contact side opposite to the surface 23 is calendered. The filter cloth 30 shown in FIG. 2 is made by placing a required amount of polyester staple fibers 32 on a plain weave cloth 31 made of polyethylene monofilament yarn, and then applying the required needling to the same woven cloth 33. A small amount of short polyester fibers 32 are placed and needled to form one filter cloth 30, and the surface 34 on the outermost woven cloth 31 side becomes the contact surface with the slurry raw material. The surface of the upper punch contact side opposite to the upper punch is calendered. Further, the woven fabric 33 located on the upper punch side has a coarser texture than the woven fabric 31 on the slurry raw material side, and is responsible for improving the mechanical strength of the filter fabric 30. Note that the layered structure and entangling method of the filter cloth are not limited to the above-mentioned methods, and any known method can be selected as appropriate. Example: A conventional filter cloth (corresponding to Fig. 4, filter cloth No. 1) in which short fibers are needled on both sides of a base cloth made of multifilament yarn, and a woven fabric made of monofilament yarn on the side in contact with the slurry raw material powder. A filter cloth based on this invention with cloth arranged (corresponding to Figure 1, filter cloth No.
2) Two types of filter cloths were manufactured using a woven cloth with the properties shown in Table 1 and short polyester fibers (fiber thickness: 1.5 denier, fiber length: 76 mm). The upper punch-side abutting surface of each filter cloth is calendered. Table 1 shows the properties of each filter cloth. Using these two types of filter cloth, the average particle size was 0.7 μm.
A slurry-like raw material powder of ~0.8 μm was molded in a magnetic field to obtain a large number of arch-shaped molded bodies in 5 lots. During compression molding, each filter cloth was used in combination with filter paper until the variation in density of the molded product started to become 5.0% or more of the unit weight of the molded product, and the number of times it was used (number of moldings) up to that point and the resulting molded material were measured. The incidence of cracks on the body was measured and the results are shown in Table 2. In addition,
The filter paper was replaced after each molding. As is clear from Table 2, it can be seen that the filter cloth according to this invention can be used for a significantly longer period of time than the conventional filter cloth at the same cracking rate. Furthermore, it was confirmed that when used the same number of times as the conventional filter cloth, the density of the compact was stable and defects such as cracks were significantly reduced.

【表】【table】

【表】 考案の効果 この考案による濾過布は、不織布からなる濾過
布内のスラリー状原料粉末当接面側(被成形体
側)に、ポリエチレン製モノフイラメント糸を用
いた最適メツシユの組織密度からなる織布を配設
した構成により、従来のマルチフイラメント糸を
用いた基布に比べて濾過布の機械的強度が向上
し、湿式成形法において、すぐれた抜水性を有
し、均一な成形体密度を維持でき、成形体、焼結
体のひび割れ防止効果を有し、また、かかる初期
性能を維持して従来以上の使用回数に耐え、濾過
布の交換回数を減らし生産性を向上させることが
できる。 すなわち、濾過布の機械的強度が向上し、使用
時の織布のオープニング寸法の変化を極力少なく
することで、抜水のばらつきを小さくでき、成形
体密度の均一安定化に有利となり、成形体及び焼
結体のひび割れ防止効果が得られる。 また、ポリエチレン製モノフイラメント糸を用
いた織布をスラリー状原料粉末当接面側に配置す
ることにより、機械的強度が向上し濾過布の損傷
を低減でき、不織布部分での水の流れを良くな
り、目詰まり低減効果と相まつて、抜水率が向上
する。
[Table] Effects of the invention The filter cloth according to this invention consists of an optimal mesh structure density using polyethylene monofilament yarn on the side of the slurry raw powder contacting surface (the side to be molded) of the filter cloth made of non-woven fabric. The structure in which the woven fabric is arranged improves the mechanical strength of the filter fabric compared to the conventional base fabric using multifilament yarn, and in wet molding, it has excellent water removal properties and a uniform density of the molded product. It has the effect of preventing cracks in molded bodies and sintered bodies, and can also maintain such initial performance and withstand a greater number of uses than before, reducing the number of filter cloth replacements and improving productivity. . In other words, the mechanical strength of the filter cloth is improved, and by minimizing changes in the opening dimensions of the woven cloth during use, variations in water drainage can be reduced, which is advantageous in stabilizing the density of the molded product, and improving the density of the molded product. And the effect of preventing cracks in the sintered body can be obtained. In addition, by placing a woven fabric using polyethylene monofilament yarn on the side that comes in contact with the slurry raw powder, mechanical strength is improved, damage to the filter fabric can be reduced, and water flow in the non-woven fabric area is improved. This, combined with the clogging reduction effect, improves the water removal rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図はこの考案による濾過布の断面
説明図である。第3図は湿式成形装置の要部説明
図である。第4図は従来の濾過布の断面説明図で
ある。 20,30……濾過布、21,31,33……
織布、22,32……短繊維、23,34……表
面。
1 and 2 are cross-sectional explanatory views of the filter cloth according to this invention. FIG. 3 is an explanatory diagram of the main parts of the wet molding apparatus. FIG. 4 is an explanatory cross-sectional view of a conventional filter cloth. 20, 30... filter cloth, 21, 31, 33...
Woven fabric, 22, 32... short fibers, 23, 34... surface.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 少なくとも1枚の300〜700デニールのポリエチ
レン製モノフイラメント糸からなり、組織密度が
20〜50目(30.3mm当たりの本数)の平織織布を被
成形体側に配置して短繊維の化学繊維とニードリ
ングにより絡合一体化した構成からなることを特
徴とする湿式成形用濾過布。
Consisting of at least one 300-700 denier polyethylene monofilament yarn with a texture density of
A filter cloth for wet molding characterized by having a structure in which 20 to 50 stitches (number of threads per 30.3 mm) of plain woven fabric are placed on the side of the object to be molded and intertwined and integrated with short chemical fibers by needling. .
JP1986202121U 1986-12-27 1986-12-27 Expired - Lifetime JPH0510890Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986202121U JPH0510890Y2 (en) 1986-12-27 1986-12-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986202121U JPH0510890Y2 (en) 1986-12-27 1986-12-27

Publications (2)

Publication Number Publication Date
JPS63107714U JPS63107714U (en) 1988-07-12
JPH0510890Y2 true JPH0510890Y2 (en) 1993-03-17

Family

ID=31166210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986202121U Expired - Lifetime JPH0510890Y2 (en) 1986-12-27 1986-12-27

Country Status (1)

Country Link
JP (1) JPH0510890Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725690U (en) * 1980-07-18 1982-02-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725690U (en) * 1980-07-18 1982-02-10

Also Published As

Publication number Publication date
JPS63107714U (en) 1988-07-12

Similar Documents

Publication Publication Date Title
EP0595899B1 (en) Blood filter
EP0426288A2 (en) Method for producing a high bulk paper web and product obtained thereby
EP0423619A1 (en) Wiping fabric and method of manufacture
US5130134A (en) Polyimide composite filter fabrics
JPH0731677A (en) Blood filter material
JPH0360712A (en) Filter cloth for collecting dust
GB2028229A (en) Filter cloth made of needle felt for bag filter type dust collector
JP4611921B2 (en) Filter cloth for wet forming of inorganic powder and method for producing the same
KR20100093680A (en) Anti-static nonwoven felt for air dust filtering
JPH0510890Y2 (en)
CN202220261U (en) Gauze product and water-jetting rotary drum device
JP2010531722A (en) High compression molding filter cloth
JPH0415003B2 (en)
CN104984593B (en) Production technology of composite filter felt
WO2006011453A1 (en) Three-dimensional knit fabric, interlining material and complex fabric
JP3293180B2 (en) Liquid filter
CN101472811B (en) Advanced battery paster belt
JP3283946B2 (en) Felt filter media for wet filtration molding of magnetic powder materials
EP1359241A1 (en) Method for the production of a multi-layer non-woven fabric material provided with at least one layer with areas having a different fibre density, non-woven fabric material produced with said method and moistened cloth prepared with this material, in particular for cleaning floors
JPS60143811A (en) Felt filter cloth for belt press type dehydrator
JPH07124427A (en) Needle punching felt for clarifying filtration
RU2820592C1 (en) Press fabric for textured product
CN219462796U (en) High-precision hydrophilic filter felt
JP2606503Y2 (en) Filter cloth
KR950001973B1 (en) Air cleaner filter for automobile and making method thereof