JPH04149412A - Rare earth element charged type optical waveguide - Google Patents

Rare earth element charged type optical waveguide

Info

Publication number
JPH04149412A
JPH04149412A JP27236990A JP27236990A JPH04149412A JP H04149412 A JPH04149412 A JP H04149412A JP 27236990 A JP27236990 A JP 27236990A JP 27236990 A JP27236990 A JP 27236990A JP H04149412 A JPH04149412 A JP H04149412A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
optical
waveguide
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27236990A
Other languages
Japanese (ja)
Inventor
Mitsuru Kihara
満 木原
Tadashi Haibara
灰原 正
Yoshiaki Miyajima
宮島 義昭
Masaharu Ohashi
正治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27236990A priority Critical patent/JPH04149412A/en
Publication of JPH04149412A publication Critical patent/JPH04149412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To miniaturize the optical waveguide and to attain high-efficiency optical amplification by forming a slit in the core center part of the optical transmission line of the waveguide in parallel to the optical axis and charging glass which contains a rare earth element therein. CONSTITUTION:This optical waveguide consists of a substrate 1, the core part 2 of the waveguide, a clad part 3 of SiO2, etc., and the glass part 4 doped with the rare earth element such as Er<3+>, etc. The slit is formed in the center part of the core of the optical transmission line of the waveguide in parallel to the optical axis and the glass which contains the rare earth element such as Er<3+> is charged therein. Therefore, the part wherein the rare earth element is charged is varied in width and length for the overall width and length of the core to increase or decrease the doping amount of the rare earth element in the core greatly. Consequently, the small-sized optical waveguide which is large in optional amplification quantity can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、通信用光ケーブルの伝送において、光伝送損
失や接続点での損失を補うための光増幅を行う部品に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a component that performs optical amplification to compensate for optical transmission loss and loss at connection points in the transmission of optical communication cables.

(従来の技術) 従来の光伝送方式における光増幅の技術は、ファイバ型
光増幅がほとんどである。ファイバ型光増幅器の特徴は
、光が伝送されるコアの部分にNd”Er”等の希土類
元素をドーピングし、当該元素イオンを励起光により励
起させ、信号光をトリガーとして、信号光と同一波長の
光を放出させることにより信号光の増幅を行う。このフ
ァイバ型光増幅器の技術では、以下に列挙する欠点があ
る。
(Prior Art) Most optical amplification techniques in conventional optical transmission systems are fiber type optical amplification. The characteristic of fiber-type optical amplifiers is that the core part through which light is transmitted is doped with a rare earth element such as Nd "Er", and the ions of the element are excited by excitation light, and the signal light is used as a trigger to generate the same wavelength as the signal light. The signal light is amplified by emitting the light. This fiber type optical amplifier technology has the following drawbacks.

(1)  ファイバ対ファイバで接続するために融通性
が悪い。これは、光伝送方式において、ファイバ型であ
ると伝送用と増幅用のファイバを1対1で接続しなけれ
ばならず、数千心という光フアイバケーブルの増幅器と
しては、現実的ではないことを意味する。
(1) Flexibility is poor due to fiber-to-fiber connection. This is due to the fact that in optical transmission systems, if the fiber type is used, the transmission and amplification fibers must be connected one-to-one, which is impractical as an amplifier for an optical fiber cable with several thousand fibers. means.

(2)希土類元素のドーピング量に限界がある。(2) There is a limit to the amount of rare earth element doping.

ファイバ型光増幅器の増幅量は、ドーピング量にほぼ比
例して増加する。従って、ドーピング量が多い程、単位
長当りの効率は増加する。
The amount of amplification of a fiber type optical amplifier increases approximately in proportion to the amount of doping. Therefore, the higher the doping amount, the higher the efficiency per unit length.

しかし、光ファイバのコアの部分に希土類元素をドーピ
ングする方法においては、ドーピング量が増加するにつ
れて、コア作成中に希土類元素の析出や、コア中のクラ
スター発生という現象が生じ、ある一定量以上のドーピ
ングが困難である。またそれらの現象を抑え、希土類元
素をドーピングしても、単位体積中におけるドーピング
量には限界がある。従って、増幅量を増すためには、距
離で補わなければならない。
However, in the method of doping the core of an optical fiber with a rare earth element, as the amount of doping increases, phenomena such as precipitation of the rare earth element and cluster generation in the core occur during core creation. Doping is difficult. Even if these phenomena are suppressed and rare earth elements are doped, there is a limit to the amount of doping in a unit volume. Therefore, in order to increase the amount of amplification, it must be compensated for by distance.

現在、5000 ppm程度のドーピング量で、20d
B程度の利得を得るためには、光ファイバ長は数十〜数
百−にも達する。ドーピング量を多くすれば、長さは短
くなるが、逆に上記の問題が生じてしまう。ファイバ型
の光増幅の技術の現状は以上である。
Currently, with a doping amount of about 5000 ppm, 20d
In order to obtain a gain of about B, the length of the optical fiber reaches several tens to several hundreds. If the amount of doping is increased, the length will be shortened, but the above problem will occur. This concludes the current state of fiber-type optical amplification technology.

一方、導波路型の光増幅技術は、十分に技術検討がなさ
れていない。現在の導波路の作成は、Siウェハーの基
板上にシリカガラスを加水分解により堆積させて、クラ
ッド層、コア層を形成し、イオンエツチング等の方法で
加工する方法のものである。この方法でコア層を形成す
る際に、希土類元素をドーピングすることは可能である
が、この方法を使用した場合、ファイバ型と同様に、希
土類元素析出やクラスター発生という現象が生じ、高密
度のドーピングが期待できない。
On the other hand, waveguide type optical amplification technology has not been sufficiently studied. Current waveguides are produced by depositing silica glass on a Si wafer substrate by hydrolysis, forming a cladding layer and a core layer, and processing the deposited layer by ion etching or the like. Although it is possible to dope rare earth elements when forming the core layer using this method, similar to the fiber type, phenomena such as rare earth element precipitation and cluster generation occur, and high-density Doping cannot be expected.

(発明が解決しようとする課題) 本発明は、前述の欠点を解決するためになされたもので
、従来のファイバ型増幅器よりも小型で高能率の光増幅
も可能な希土類元素充填型光導波路を提供することにあ
る。
(Problems to be Solved by the Invention) The present invention was made in order to solve the above-mentioned drawbacks, and provides a rare earth element-filled optical waveguide that is smaller than conventional fiber amplifiers and capable of high-efficiency optical amplification. It is about providing.

(課題を解決するための手段) 本発明の希土類元素充填型光導波路は、導波路の光伝送
路のコアの中央部に光軸と平行にスリットを設け、その
部分にEr”等の希土類元素を含有するガラスを充填す
る。
(Means for Solving the Problems) The rare earth element-filled optical waveguide of the present invention has a slit provided in the center of the core of the optical transmission path of the waveguide parallel to the optical axis, and a rare earth element such as Er Fill with glass containing.

(実施例) 以下図面により、本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の概略図であって、1は基板
、2は導波路のコア部分で、3は5i02等のクラッド
部分、4はEr”等の希土類元素をドーピングしたガラ
ス部分である。第2図(a)は本発明の一実施例の平面
図、第2図0))は第2図(a)のA−A′における断
面図である。
FIG. 1 is a schematic diagram of an embodiment of the present invention, in which 1 is a substrate, 2 is a core portion of a waveguide, 3 is a cladding portion such as 5i02, and 4 is a glass doped with a rare earth element such as Er''. 2(a) is a plan view of one embodiment of the present invention, and FIG. 2(0)) is a sectional view taken along line AA' in FIG. 2(a).

これを作成するには、Siウェハーの基板上にシリカガ
ラスを加水分解により堆積させて、クラッド層、コア層
を形成し、コア層をイオンエツチング等により、光導波
路の光軸と平行となるように、スリット状に加工する。
To create this, silica glass is deposited on a Si wafer substrate by hydrolysis to form a cladding layer and a core layer, and the core layer is etched by ion etching to make it parallel to the optical axis of the optical waveguide. Then, process it into a slit shape.

当菖亥スリットにゾルゲル法により、希土類元素をドー
ピングしたバルクガラスを充填する。
The iris slit is filled with bulk glass doped with rare earth elements by the sol-gel method.

ゾルゲル法を用いる利点は、溶液から出発するので、ス
リット中でのバルクガラス作成に適切であるためと、ゾ
ルゲル法の特徴である低温作成と均質性の利点を考慮し
たためである。
The advantage of using the sol-gel method is that since it starts from a solution, it is suitable for producing bulk glass in a slit, and also because it takes into account the advantages of low temperature production and homogeneity, which are characteristics of the sol-gel method.

このような構造になっているので、コアの全体の幅と長
さに対し希土類元素充填の部分の幅と長さを変化させる
ことにより、コア中の希土類元素のドーピング量を大幅
に増加減少させることが可能である。従って、任意の増
幅量の多い小型の導波路を形成することができる。
With this structure, by changing the width and length of the rare earth element filling part relative to the overall width and length of the core, the amount of rare earth element doping in the core can be significantly increased or decreased. Is possible. Therefore, it is possible to form a small waveguide with an arbitrary large amount of amplification.

また、そのドーピング量により導波路の奥行き長も作成
時に変化させることもできる。また、光増幅を導波路型
で行うと、光スィッチ、光分岐等の可能性も期待できる
Furthermore, the depth of the waveguide can also be changed during fabrication depending on the amount of doping. Furthermore, if optical amplification is performed using a waveguide type, the possibility of optical switches, optical branches, etc. can be expected.

(発明の効果) 以上説明したように、本発明は、光伝送の光増幅をスリ
ット型導波路で行うことにより、従来のファイバ型の希
土類元素のドーピング時の析出やクラスター発生を防ぐ
ことが可能であるので、希土類元素のドーピング量を増
加することができ、ひいては高能率の光増幅が可能な小
型の光導波路を実現できる。
(Effects of the Invention) As explained above, the present invention makes it possible to prevent precipitation and cluster generation during rare earth element doping in conventional fiber-type fibers by performing optical amplification for optical transmission using a slit-type waveguide. Therefore, the amount of rare earth element doping can be increased, and a small optical waveguide capable of highly efficient optical amplification can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の希土類元素充填型光導波路の一実施例
の概略図、 第2図(a)は第1図の導波路の平面図、第2図(b)
は第2図(a)のA−A’における断面図である。 1・・・導波路の基板  2・・・導波路のコア部分3
・・・導波路の5i02等のクラッド部分4・・・コア
中の希土類元素充填部分 特許出願人  日本電信電話株式会社
FIG. 1 is a schematic diagram of an embodiment of the rare earth element-filled optical waveguide of the present invention, FIG. 2(a) is a plan view of the waveguide of FIG. 1, and FIG. 2(b)
is a sectional view taken along line AA' in FIG. 2(a). 1... Waveguide substrate 2... Waveguide core part 3
...Waveguide cladding part 4 such as 5i02... Rare earth element filling part in the core Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、光導波路において、コアの中央部に光軸と平行にス
リットを設け、該スリットに希土類元素を含有したガラ
スを充填したことを特徴とする希土類元素充填型光導波
路。
1. A rare earth element-filled optical waveguide, characterized in that a slit is provided in the center of the core parallel to the optical axis, and the slit is filled with glass containing a rare earth element.
JP27236990A 1990-10-12 1990-10-12 Rare earth element charged type optical waveguide Pending JPH04149412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27236990A JPH04149412A (en) 1990-10-12 1990-10-12 Rare earth element charged type optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27236990A JPH04149412A (en) 1990-10-12 1990-10-12 Rare earth element charged type optical waveguide

Publications (1)

Publication Number Publication Date
JPH04149412A true JPH04149412A (en) 1992-05-22

Family

ID=17512930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27236990A Pending JPH04149412A (en) 1990-10-12 1990-10-12 Rare earth element charged type optical waveguide

Country Status (1)

Country Link
JP (1) JPH04149412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332137A (en) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332137A (en) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> Light-emitting device

Similar Documents

Publication Publication Date Title
US6628876B1 (en) Method for making a planar waveguide
JP2679904B2 (en) Manufacturing method of product comprising optical gain device
CA2023244C (en) Optical amplifier
US5381262A (en) Planar wave guide type optical amplifier
JP2755471B2 (en) Rare earth element doped optical waveguide and method of manufacturing the same
AU616462B2 (en) Amplifying optical signals
JPH1174588A (en) Pumping unit for optical fiber laser
JPH04322228A (en) Optical fiber amplifier
JP2948656B2 (en) Method of manufacturing active element-doped optical fiber component
JPH0921922A (en) Production of optical waveguide
JP2656972B2 (en) Multi-wavelength glass waveguide laser array
KR0160135B1 (en) Optical signal amplifier and its method
EP1649560B1 (en) Optical amplifier
JPH04149412A (en) Rare earth element charged type optical waveguide
RU2309500C2 (en) Optical amplifier pumped at multiple wavelengths
JP2842954B2 (en) Rare earth element doped optical waveguide and method of manufacturing the same
KR100416999B1 (en) Planar waveguide circuit type optical amplifier
JPH02221902A (en) Glass waveguide
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JP3001675B2 (en) Fiber amplifier and waveguide element amplifier
CN220492413U (en) Multichannel light-emitting system based on multi-concentration erbium-doped fiber
JP2859763B2 (en) Functional glass waveguide for single mode transmission
JP3137165B2 (en) Manufacturing method of optical waveguide circuit
JP2006146127A (en) Manufacturing method of optical waveguide
JPH08110425A (en) Optical waveguide and its production and light transmission module