JPH04149074A - High strength laminated ceramic sintered body - Google Patents

High strength laminated ceramic sintered body

Info

Publication number
JPH04149074A
JPH04149074A JP27100390A JP27100390A JPH04149074A JP H04149074 A JPH04149074 A JP H04149074A JP 27100390 A JP27100390 A JP 27100390A JP 27100390 A JP27100390 A JP 27100390A JP H04149074 A JPH04149074 A JP H04149074A
Authority
JP
Japan
Prior art keywords
sintered body
ceramic sintered
base material
thick film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27100390A
Other languages
Japanese (ja)
Inventor
Yuji Sato
裕二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP27100390A priority Critical patent/JPH04149074A/en
Publication of JPH04149074A publication Critical patent/JPH04149074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve impact resistance and strength by joining a thick layer of a ceramic sintered body contg. a large amt. of Al2O3 on the surface of a substrate of a ceramic sintered body contg. Al2O3 in a specified thickness ratio. CONSTITUTION:A substrate of a ceramic sintered body contg. Al2O3, ZrO2, a stabilizer, etc., is obtd. A thick layer of a ceramic sintered body contg. >=60wt.% Al2O3, SiC whiskers, etc., is obtd. so that the layer has a higher Al2O3 content and a lower coefft. of thermal expansion than the substrate. The ratio of the thickness of the thick layer to that of the substrate is regulated to 0.03-0.5. The layer is joined to the substrate and they are sintered under pressure to produce a high strength laminated ceramic sintered body.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、切削丁具、耐摩耗り具などの工具から1機械
電気、輸送機械、建設などの産業分野で用いられる各種
部品として適する高強度積層セラミl(+クス焼結体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a high-performance steel sheet suitable for various parts used in industrial fields such as cutting tools, wear-resistant tools, machinery, electricity, transportation machinery, and construction. It relates to strong laminated ceramic l(+cus sintered body).

(従来の技術) 酸化アルミニウムを含イイしてなる酸化物系セラミック
ス焼結体としては、例えばAx 20.−MgD系焼結
体、A℃、O,−ZrO□(安定止剤含有)系焼結体、
  Aj2J2−丁IC系焼結体、A氾20s−SiC
ウィスカー系焼結体、  AQ 20a−CraOi系
焼結体がある。
(Prior Art) Examples of oxide-based ceramic sintered bodies containing aluminum oxide include Ax 20. -MgD-based sintered body, A°C, O, -ZrO□ (stabilizer-containing)-based sintered body,
Aj2J2-D IC-based sintered body, A 20s-SiC
There are whisker-based sintered bodies and AQ 20a-CraOi-based sintered bodies.

これらの焼結体は、それぞれすぐれた特性を持っており
、その最もすぐれた特性を引き出して、ある用途に用い
たとしても、他の弱点となる特性のために結局短寿命に
なっていまつという問題がある。
Each of these sintered bodies has excellent properties, and even if the best properties are brought out and used for a certain purpose, the lifespan will be shortened due to other weak characteristics. There's a problem.

このような酸化物系セラミックス焼結体が短寿命である
という課題に対して、性質の異なるセラミックスを積層
して解決することが提案されておリ、その代表的なもと
して、特開平1−148548号公報がある。
It has been proposed to solve the problem of the short life of oxide-based ceramic sintered bodies by laminating ceramics with different properties. There is a publication No. 148548.

(発明が解決りようとする課題) 組成組織の異なるセラミックス同志又IJ性質の異なる
セラミックス同志を積層した積層セラミックスの内、特
開平−148548号公報には、接合部分の境界面を曲
線状又は直線状の凹凸面に形成して、性質の異なる2種
類以−1■のセラミックスを体に接合したというセラミ
ックス構造体が開示されている。同公報に開示のセラミ
ックス構造体は、接合部の境界面の面積が増大して、接
合強度を高めるというものであるるゴれども、接合部の
境界面の面積を増大させることにより生じる接合強度劣
化の効果よりも、性質の異なるセラミックスの熱膨張係
数の差及び焼結時における収縮率の差により生じる境界
面近傍の変形と残留応力から起こる接合強度劣化の方が
強くなって実用化が困難であるという問題がある。
(Problem to be Solved by the Invention) Among the laminated ceramics in which ceramics having different compositional structures or ceramics having different IJ properties are laminated, Japanese Patent Application Laid-open No. 148548 discloses that the boundary surface of the joint portion is curved or straight. A ceramic structure is disclosed in which two or more types of ceramics having different properties are bonded to a body by forming an uneven surface in the shape of a shape. The ceramic structure disclosed in the publication increases the joint strength by increasing the area of the interface between the joints. The deterioration of bonding strength caused by deformation and residual stress near the interface caused by differences in thermal expansion coefficients of ceramics with different properties and differences in shrinkage rates during sintering is stronger than the effect of deterioration, making it difficult to put it into practical use. There is a problem that.

本発明は、L述のような問題点を解決したもので、具体
的には、酸化アルミニウムを含むセラミックス焼結体同
志を接合する場合、一方のセラミ、・・クス焼結体、特
に熱膨張係数の小さいセラミ・ソクス焼結体の厚さを制
限することにより高強度を発現した積層セラミックス焼
結体の提供を[1的とするものである。
The present invention solves the problems mentioned above. Specifically, when joining ceramic sintered bodies containing aluminum oxide, one ceramic... One object of the present invention is to provide a laminated ceramic sintered body that exhibits high strength by limiting the thickness of the ceramic-sintered body having a small coefficient.

(課題を解決するための手段) 本発明者らは、セラミックス焼結体の用途範囲を広げる
ために、その特性の向1−を計る1」的で組成組織の異
なるセラミックス焼結体同志を直接接合した積層焼結体
について検討していた所、a化アルミニウムを含むセラ
ミックス焼結体に、この焼結体と特性及び組成組織の異
なるセラミックス焼結体を接合する場合、その接合境界
面の残留応力と焼結体の表面の残留応力によって積層焼
結体の強度が異なり、これらの残留応力は、一方の焼結
体の厚さにより大きく影響を受けるという知見を得たも
のである。この知見により本発明を完成するに至ったも
のである。
(Means for Solving the Problems) In order to expand the range of uses of ceramic sintered bodies, the present inventors have directly tested ceramic sintered bodies with different compositional structures to measure the direction of their properties. While considering the bonded laminated sintered body, we found that when a ceramic sintered body containing aluminum a-chloride is joined to a ceramic sintered body with different properties and composition structure, there may be residual residue on the bonding interface. It was discovered that the strength of a laminated sintered body varies depending on stress and residual stress on the surface of the sintered body, and that these residual stresses are greatly affected by the thickness of one of the sintered bodies. This knowledge led to the completion of the present invention.

すなわち、本発明の高強度積層セラミックス焼結体は、
酸化アルミニウムを含有してなるセラミックス焼結体の
基材の表面の1部又は少なくども而に、該基材に比へて
多量の酸化アルミニラt1を含むセラミックス焼結体の
厚膜層を接合してなる積層セラミックス焼結体であって
5該厚膜層の厚さ(d2)と該基材の厚さ(d1)との
比が、d、/d、二0、03〜05でなることを特徴と
するものである。
That is, the high-strength multilayer ceramic sintered body of the present invention is
A thick film layer of a ceramic sintered body containing a large amount of aluminum oxide t1 compared to the base material is bonded to a part or at least of the surface of a base material of a ceramic sintered body containing aluminum oxide. A multilayer ceramic sintered body consisting of 5 thick film layers, wherein the ratio of the thickness (d2) of the thick film layer to the thickness (d1) of the base material is d, /d, 20,03 to 05. It is characterized by:

本発明の高硬度積層セラミ・・ノクス焼結体における基
材と厚膜層とは、共に酸化アルミニウムを含んだセラミ
ックス焼結体からなり、具体的には。
The base material and the thick film layer in the high hardness laminated ceramic/nox sintered body of the present invention are both made of a ceramic sintered body containing aluminum oxide, specifically.

例えば AI!、z03−ZrO□系セラミックス焼結
体。
For example, AI! , z03-ZrO□-based ceramic sintered body.

Al220z−TiC系セラミックス焼結体、  12
0゜SiCウィスカー系セラミックス焼結体、A2□O
3MgO系セラミックス焼結体、  Al220+−C
rzL系セラミックス焼結体を挙げることができる。こ
の内、基材は、強度6靭性のすぐれる酸化アルミニウム
含有セラミックス焼結体にすることが好ましく、厚膜層
に比べて酸化アルミニウムの含有量を少なくした、例え
ばAl220zの他に、ZrO2,Y20tなどの安定
止剤含有のZrO□、TIの炭化物7窒化物、酸化物及
びこれらの相互固溶体などの含有したセラミ・・lクス
焼結体である。これにλ1して、1部1膜層は、耐摩耗
性、耐酸化性の1ぐれる酸化アルミニー】ム含有セラミ
ックス焼結体にすることが々rましく、酸化アルミニウ
ムの含イーI′Mを多くした1−述のセラミックス焼結
体、又は Aρ201の他にSiCウィスカーの含f7
シたセラミックス焼結体であり、特に酸化アルミニウム
の含有量が60Φ量%以トのセラミックス焼結体である
ことが11摩耗性及び強度から好ましいことである。
Al220z-TiC ceramic sintered body, 12
0゜SiC whisker ceramic sintered body, A2□O
3MgO ceramic sintered body, Al220+-C
Examples include rzL ceramic sintered bodies. Among these, the base material is preferably an aluminum oxide-containing ceramic sintered body with excellent strength and toughness, and has a lower content of aluminum oxide than the thick film layer, for example, in addition to Al220z, ZrO2, Y20t It is a ceramic .lx sintered body containing stabilizers such as ZrO□, TI carbides, 7-nitrides, oxides, and mutual solid solutions of these. In addition, λ1, it is very common for each film layer to be made of a ceramic sintered body containing aluminum oxide, which has excellent wear resistance and oxidation resistance. Increased 1-ceramic sintered body mentioned above, or containing SiC whiskers in addition to Aρ201 f7
In particular, it is preferable to use a ceramic sintered body having an aluminum oxide content of 60% or more in terms of abrasion resistance and strength.

この厚膜層の厚さ(d2)と該基材の厚さ(d1)との
比が、d2/d、 =0.03〜05になると、厚膜層
の表面に圧縮応力が作用し、その結集積層セラミックス
焼結体の強度を高めていると考えられるが、特に厚膜層
の熱膨張係数を基材の熱膨張係数よりも小さくすると厚
膜層の表面)こ圧縮応力が残留し、高強度な積層セラミ
ックス焼結体になることから好ましいことである。この
厚膜層の厚さ(d2)と基材の厚さ(at)との比が、
003未満になると(da/d。
When the ratio of the thickness (d2) of this thick film layer to the thickness (d1) of the base material becomes d2/d, = 0.03 to 0.05, compressive stress acts on the surface of the thick film layer, It is thought that this increases the strength of the laminated ceramic sintered body, but especially when the coefficient of thermal expansion of the thick film layer is smaller than that of the base material, compressive stress remains on the surface of the thick film layer. This is preferable because it results in a high-strength multilayer ceramic sintered body. The ratio between the thickness of this thick film layer (d2) and the thickness of the base material (at) is
When it becomes less than 003 (da/d.

<0.03)圧縮応力による強度向上が生じなく、逆に
05を超えて大きくなると(d2/d、>0.51基材
からj・ノ吸層表面・\及は(−残留応力の効果かなく
なることから、d2・’d、 =0.03〜05と定め
たものである。
<0.03) No strength improvement due to compressive stress occurs, and on the contrary, if it increases beyond 05 (d2/d, >0.51 from the base material to the absorption layer surface and (-effect of residual stress) Therefore, d2·'d is set as 0.03 to 05.

さらに、別の見方をすると、厚膜層の粒径又は厚膜層の
出発物質として用いる粒径を基材の粒径もしくはJ、%
村の出発物質として用いる粒径に比へて粗粒にオること
は、焼結時において厚膜層の収縮率か基材の収縮−+1
に比へて小さくなり、その結果厚膜層の表面が圧縮応力
を残留した状態になることから一層好ましいことでおる
Furthermore, from another perspective, the particle size of the thick film layer or the particle size used as a starting material for the thick film layer is the particle size of the base material or J,%
The fact that the particles are coarse compared to the particle size used as the starting material for the village is due to the shrinkage rate of the thick film layer or the shrinkage of the base material - +1 during sintering.
This is even more preferable because the surface of the thick film layer remains compressive stress.

また、基材の2面以上にPa膜層を形成すること、例え
ば、厚膜層と厚膜層との間を基材を介在させたサンドイ
ッチ状にすることも好ましいことである。
It is also preferable to form Pa film layers on two or more sides of the base material, for example, to form a sandwich-like structure with the base material interposed between the thick film layers.

本発明の高強度積層セラミックス焼結体は、従来から9
]なわれている粉末冶金法を応用することにより作製す
ることができる。具体的には、基材を形成するための出
発物質を混合粉砕した混合粉末を干−ルト内に挿入し、
その上に直接厚膜層を形成するだめの混合粉末を挿入し
た後、加斗成形続び焼結するツノ法である。また、基材
を形成するための混合粉末を干−ルト内に挿入した後少
し加I−1シ、そのトに直接P、i膜層を形成するため
の混合粉末を挿入し、 、t+[3E成形及び焼結する
方法も好ましいことである。さらに、基材を形成するた
めの混合粉末の加重粉末成形体に、シート状の19膜層
形成用の粉末成形体を直接叉は焼結時に気散する接層剤
を介在させた状態で焼結する方法もtarましいことで
ある。
The high-strength multilayer ceramic sintered body of the present invention has conventionally
] It can be produced by applying the powder metallurgy method known in the art. Specifically, a mixed powder obtained by mixing and pulverizing the starting materials for forming the base material is inserted into a drying funnel,
This is a horn method in which a mixed powder to form a thick film layer is directly inserted thereon, followed by potting and sintering. In addition, after inserting the mixed powder for forming the base material into the drying funnel, the mixed powder for forming the P and i film layers was directly inserted into the drying funnel, and then 3E forming and sintering methods are also preferred. Furthermore, a sheet-shaped powder compact for forming 19 film layers is sintered directly onto the weighted powder compact of the mixed powder to form the base material, or with a bonding agent interposed therein that diffuses during sintering. The method of tying it together is also a problem.

(作用) 本発明の高強度積層セラミックス焼結体は、基材がtと
じて強度、靭性を高める作用をし、この基材に基材より
も多量に酸化アルミニウムを含イ]−する厚膜層が拡散
接合されて、この厚膜層が耐摩耗性を高める作用をする
と共に、主として、基材と厚膜層とに含有する酸化アル
ミニウム量の差により、厚膜層の表向に圧縮応力が残留
し、その結果、積層焼結体の強度を向ヒさせる作用をし
ているものである。
(Function) The high-strength multilayer ceramic sintered body of the present invention has a thick film that acts to increase strength and toughness as the base material contains aluminum oxide in a larger amount than the base material. The layers are diffusion bonded, and this thick layer has the effect of increasing wear resistance, as well as compressive stress on the surface of the thick layer, mainly due to the difference in the amount of aluminum oxide contained in the base material and the thick layer. remains, and as a result, it acts to improve the strength of the laminated sintered body.

(実施例) 実施例I I・均粒径υ3μmのAβ2o3粉末、1′均ちソ径0
.05gmの7rfJz粉末(:3千ル%Y 20 、
、含む)、゛P均杓径0.lLLmのにg[]粉末を用
いて、第1表に示した組成に配合した。この配合粉末と
 A[21]、、基焼結体製ホールとメタノール溶媒と
をウレタン内張製ポットに入れて、64時間混合した後
、5wl;%パラフィンを添加して乾燥した。こうして
得た基材形成用混合粉末を所定量金型に充填し、0Lo
n/cm2の圧力で加圧して、積層粉末圧粉体を得た。
(Example) Example I Aβ2o3 powder with an average particle diameter of υ3 μm, 1' average diameter of 0
.. 05gm 7rfJz powder (: 3000% Y20,
, including), ゛P uniform diameter 0. The composition shown in Table 1 was blended using lLLm and g[] powder. This blended powder, A[21], a hole made of a base sintered body, and a methanol solvent were placed in a urethane-lined pot and mixed for 64 hours, and then 5 wt.% paraffin was added and dried. A predetermined amount of the thus obtained mixed powder for base material formation is filled into a mold, and 0Lo
A laminated powder compact was obtained by applying pressure at a pressure of n/cm2.

1 この積層粉末圧粉体を大気中、16C1(1’c、 2
時間保持にて焼結後、A「ガス中1500気圧、155
0℃、 40分間保持にて熱間静水斤(HIP)処理し
て本発明品1〜6と比較品1〜5を得た。(イリし、比
較品1.2は、厚膜層形成工程を削除した。)こうして
得た本発明品1〜6と比較品1〜5を用いて、下記の 
(^)切削試験条件による耐衝撃性試験を行い、各試料
が欠損又はチッピングするまでの衝撃回数を求めて、そ
の結果を第1表に示した。また (A) 各試料の基材厚さ及びI9膜層厚さを測定し第2表に併
1尼した、1 切削1試験条件(乾式) 被 削 材 548Cf 4本スロット入り丸棒)9ノ
削速度 300m/′min 切  込  み :1.5mm 送         リ    0.1   mm/r
evチップ形状: 5NGN120408fブレホーニ
ング0.2 X −20’ ) (掬い面側に厚膜層のチップ) 時   間:欠損又はチ・ソビングするまで以下余白 実施例2 宇均粒径0.3u m 、1.Ou mのAj22L粉
末。
1 This laminated powder compact was placed in the atmosphere at 16C1 (1'c, 2
After sintering with time holding, A "1500 atmospheres in gas, 155
Inventive products 1 to 6 and comparative products 1 to 5 were obtained by hot isostatic plating (HIP) treatment at 0° C. for 40 minutes. (However, the thick film layer forming step was omitted for comparative products 1.2.) Using the thus obtained inventive products 1 to 6 and comparative products 1 to 5, the following procedure was carried out.
(^) An impact resistance test was conducted under cutting test conditions, and the number of impacts until each sample broke or chipped was determined, and the results are shown in Table 1. (A) The base material thickness and I9 film layer thickness of each sample were measured and are also listed in Table 2. Cutting speed 300m/'min Depth of cut: 1.5mm Feed rate 0.1mm/r
ev chip shape: 5NGN120408f brehoning 0.2 x -20') (chip with thick film layer on the scooping side) Time: until chipping or chipping. 1. Ou m's Aj22L powder.

゛F均粒径 0.1LLrnの MgO粉末1 ゞV均
粒径 08μm、t、5μmのTiC粉末を用いて、第
:3表に示した組成に配合した。この配合粉末をA「ガ
ス1気圧中、1650℃、2時間保持による焼結条件の
他は、実施例!と同様に行って、本発明品7.8と比較
品6〜8を得た。(但し、比較品6.7は、厚膜層形成
工程を削除した。)こうして得た本発明品7.8と比較
品6〜8を用いて、実施例1のfAl切削試験条件でも
って耐衝撃性試験を行い、その結果を実施例Iと同様に
求めて第4表に示した。
MgO powder 1 with an average particle size of 0.1 LLrn and TiC powder with an average particle size of 08 μm, t, and 5 μm were blended into the composition shown in Table 3. This blended powder was sintered in the same manner as in Example!, except that the sintering conditions were held at 1,650° C. for 2 hours in 1 atmosphere of A gas to obtain product 7.8 of the present invention and comparative products 6 to 8. (However, in comparison product 6.7, the thick film layer forming step was omitted.) Using the thus obtained inventive product 7.8 and comparative products 6 to 8, the fAl cutting test conditions of Example 1 were used. An impact test was conducted, and the results were determined in the same manner as in Example I and are shown in Table 4.

また、各試料の基材厚さ及び厚膜層厚さを測定して、第
4表に併記した。
In addition, the base material thickness and thick film layer thickness of each sample were measured and are also listed in Table 4.

以下余白 (発明の効果) 本発明の高強度積層セうミ・・!クス焼結体は。Margin below (Effect of the invention) The high-strength laminated structure of the present invention...! sintered body.

従来の基材のみでなるセラミックス焼結体父は本発明か
ら外れた積層セラミックス焼結体と比較して、 ctr
削試験における−・li+撃性が20〜575 %も向
lするという顕苫な効果を発揮するものである。
The conventional ceramic sintered body made of only a base material has a ctr
It exhibits a remarkable effect in that the -.li+ impact resistance in the cutting test is reduced by 20 to 575%.

このことから、各種の構造+41材料、特にit腐食性
、絶縁性などセラミックス焼結体を利用するのに強度不
足から困難とされているようなイヒ′i′産業、電気産
業における各種部品や、切削I−貝、耐摩丁−貝などの
1−貝部品どして応用できる産業トイ1用なt4料であ
る。
From this, various structural +41 materials, especially various parts in the industrial and electrical industries, where it is difficult to use ceramic sintered bodies due to their lack of strength due to their corrosive properties and insulating properties, It is a T4 material for industrial toys that can be applied to 1-shell parts such as cutting I-shells and durable knife shells.

特許出願人 東芝クンカロイ株式会視Patent applicant: Toshiba Kuncaloy Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)酸化アルミニウムを含有してなるセラミックス焼
結体の基材の表面の1部又は少なくとも一面に、該基材
に比べて多量の酸化アルミニウムを含むセラミックス焼
結体の厚膜層を接合してなる積層セラミックス焼結体で
あって、該厚膜層の厚さ(d_2)と該基材の厚さ(d
_1)との比が、d_2/d_1=0.03〜0.5で
なることを特徴とする高強度積層セラミックス焼結体。
(1) A thick film layer of a ceramic sintered body containing a larger amount of aluminum oxide than the base material is bonded to a part or at least one surface of a base material of a ceramic sintered body containing aluminum oxide. A multilayer ceramic sintered body consisting of a thickness (d_2) of the thick film layer and a thickness (d_2) of the base material.
_1) A high-strength multilayer ceramic sintered body characterized in that the ratio of d_2/d_1 to d_1 is 0.03 to 0.5.
(2)上記厚膜層は、酸化アルミニウムが60重量%以
上含有していることを特徴とする特許請求の範囲第1項
記載の高強度積層セラミックス焼結体。
(2) The high-strength multilayer ceramic sintered body according to claim 1, wherein the thick film layer contains 60% by weight or more of aluminum oxide.
(3)上記厚膜層は、上記基材に比べて熱膨張係数が小
さいことを特徴とする特許請求の範囲第1項又は第2項
記載の高強度積層セラミックス焼結体。
(3) The high-strength multilayer ceramic sintered body according to claim 1 or 2, wherein the thick film layer has a smaller coefficient of thermal expansion than the base material.
JP27100390A 1990-10-09 1990-10-09 High strength laminated ceramic sintered body Pending JPH04149074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27100390A JPH04149074A (en) 1990-10-09 1990-10-09 High strength laminated ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27100390A JPH04149074A (en) 1990-10-09 1990-10-09 High strength laminated ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH04149074A true JPH04149074A (en) 1992-05-22

Family

ID=17494057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27100390A Pending JPH04149074A (en) 1990-10-09 1990-10-09 High strength laminated ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH04149074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116571A1 (en) * 2006-04-11 2007-10-18 Towa Corporation Low-adhesion material, mold for shaping resin and stainproof material
US7784764B2 (en) * 2004-11-02 2010-08-31 Towa Corporation Low-adhesion material, mold for molding resin using the same and contaminant adhesion preventing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784764B2 (en) * 2004-11-02 2010-08-31 Towa Corporation Low-adhesion material, mold for molding resin using the same and contaminant adhesion preventing material
WO2007116571A1 (en) * 2006-04-11 2007-10-18 Towa Corporation Low-adhesion material, mold for shaping resin and stainproof material
KR100923623B1 (en) * 2006-04-11 2009-10-23 토와 가부시기가이샤 Low-adhesion material, mold for shaping resin and stainproof material
US7901797B2 (en) 2006-04-11 2011-03-08 Towa Corporation Low-adhesion material, resin molding die, and soil resistant material

Similar Documents

Publication Publication Date Title
US4471026A (en) Ternary alloys in brazing ceramics
US4777155A (en) Sintered member of aluminum nitride base reinforced composite material
JP3495051B2 (en) Ceramic-metal joint
JPH05148053A (en) Ceramics-metal joined material
JPH04149074A (en) High strength laminated ceramic sintered body
JPH05163078A (en) Joint form made up of ceramic and metal
JPH02217359A (en) Titanium carbon nitride based toughened ceramics
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
JPH09221372A (en) Wear resistant member
JP3370060B2 (en) Ceramic-metal joint
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JPH02296777A (en) High-strength ceramics sintered body containing whisker and production thereof
JPH01153575A (en) Sialon-based sintered ceramic
Tuan et al. Toughening Al2O3 with NiAl and NiAl (Fe) particles
JPH05318431A (en) Production of inclination function material
JPH0617271B2 (en) Cutting tool and its manufacturing method
JPS63203705A (en) Composite sintered body of cubic boron nitride and cemented carbide
JPS6050905A (en) Ceramic substrate for thin film magnetic head
JPH06666B2 (en) Ceramic material with excellent precision workability
JPH03150275A (en) Porous silicon nitride structure
JPS5864271A (en) Silicon nitride sintered body
JPH04319435A (en) Laminated sinter
JPH01133981A (en) Silicon nitride composite body
JPH07172944A (en) Adhesive composition, bonded product, and bonding process
JP2000129386A (en) Highly friction-resistant cemented carbide for brazing, and its manufacture