JPH04148854A - Surface-defect detecting apparatus - Google Patents

Surface-defect detecting apparatus

Info

Publication number
JPH04148854A
JPH04148854A JP2274638A JP27463890A JPH04148854A JP H04148854 A JPH04148854 A JP H04148854A JP 2274638 A JP2274638 A JP 2274638A JP 27463890 A JP27463890 A JP 27463890A JP H04148854 A JPH04148854 A JP H04148854A
Authority
JP
Japan
Prior art keywords
image
output
image processing
defect
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2274638A
Other languages
Japanese (ja)
Inventor
Takashi Senba
銭場 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2274638A priority Critical patent/JPH04148854A/en
Publication of JPH04148854A publication Critical patent/JPH04148854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To prevent image blurring by providing a constitution wherein a scanner controller, a scanner and a tracking mirror are made to follow and vibrated in response to a conveying speed when the luminance signals of the normal part and the defective part of a test specimen are detected, and the image is picked up under the relatively stationary state. CONSTITUTION:When there is the defect of irregular flaws on the surface of a test specimen 1 in conveyance, the luminance signals of the normal part and the defective part are detected with an image sensing device 3. The defect is judged and detected with a defect judging circuit 10 based on the output signal after image processing in an image processing circuit 9. Namely, the output luminance signal level from the circuit 9 is compared with a reference luminance signal level. The presence or absence of the defect is judged based on the magnitude of the level. At this time, when the conveying speed of the test specimen 1 is 1,000 mm/second, the image blurring of 1,000 X 1/60 17 mm at the field time of 1/60 second is generated in the device 3. Therefore, a tracking mirror 8 is made to follow and vibrated, and the relative speed with respect to the test specimen 1 is made to be 0. Then, the image of the defective part can be picked up without the image blurring. Thus, the detection of the defective part and the measurement of the size can be accurately performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はパイプ、棒材の表面を連続的に探傷する表面
欠陥探傷装置においてパイプ等への被検(Aの111常
部と欠陥部の輝fu (i−j ”’Jか5′シるのを
利用して欠陥を検出する表面欠陥探傷装置に関するもの
である。
Detailed Description of the Invention [Field of Industrial Application] This invention is a surface defect detection device that continuously detects defects on the surface of pipes and bars. This invention relates to a surface defect detection device that detects defects by using the brightness fu (i-j ``J or 5'').

〔従来の技術〕[Conventional technology]

第6図は従来の表面欠陥探傷装置を示すブロック図であ
る。第6図において(1)は被検材であるパイプ、(2
)は被検材であるパイプ(1)の搬送方向、(3)は被
検材(1)の欠陥部の輝度値ぢ゛を検出する撮像装置、
(4)は前記撮像装置(3)の出力信号を処理する信号
処理回路をそれぞれ示す。従来は被検1=4(1,)で
あるパイプの表面に凹状傷(ワレ傷)や凸状傷(ヘゲ等
)の欠陥がある場合に被検材(1)の欠陥部では正常部
と輝度信号が異るのをを利用して撮像装置(3)にて被
検材(1)の正常部と欠陥部の輝度信号を検出して信号
処理回路(4)にて撮像装置(3)の出力を信号処理し
欠陥部を検出していた。例えば撮像装置の出力の輝度信
号レベルか基準輝度信号レベルより大のとき欠陥有小の
とき欠陥無として欠陥部を検出していた1、又被検材(
1)の正常部と欠陥部の輝度信号の光るのを一層弁別し
易くする方法として、被検材(1)を磁化させて輝度信
号の高い磁粉液をかけて欠陥部に磁粉を集中させて欠陥
部の輝度信号を高める方法はしばしば用いられる。
FIG. 6 is a block diagram showing a conventional surface defect detection device. In Figure 6, (1) is the pipe that is the material to be tested, (2
) is the transport direction of the pipe (1), which is the material to be inspected, (3) is an imaging device that detects the brightness value of the defective part of the material to be inspected (1),
(4) indicates a signal processing circuit that processes the output signal of the imaging device (3). Conventionally, when there is a defect such as a concave scratch (cracking scratch) or a convex scratch (scratching, etc.) on the surface of the pipe, the test material 1 = 4 (1,), the defective part of the test material (1) is a normal part. The imaging device (3) detects the luminance signals of the normal part and the defective part of the material to be inspected (1) by using the difference in the luminance signals, and the signal processing circuit (4) detects the luminance signals of the imaging device (3). ) was used to detect defective parts by signal processing the output. For example, when the brightness signal level of the output of the imaging device is higher than the reference brightness signal level, a defect is detected as having a defect, and if the defect is small, a defective part is detected as having no defect.
As a method to make it easier to distinguish between the luminance signals of the normal part and the defective part in 1), the material to be inspected (1) is magnetized and a magnetic powder liquid with a high luminance signal is applied to concentrate the magnetic particles in the defective part. A method of increasing the brightness signal of a defective part is often used.

〔発明が解決しようとする課題] 従来の表面欠陥探傷装置において、撮像装置としてはメ
カニカルスキャン装置か不要のため信頼性が向[−シ、
かつ被検材の表面状態を而でとらえるため被検材の全領
域に渡って表面欠陥探傷が可能な撮像管やCCDカメラ
が用いられるケースか多い。−1−記のCCI)カメラ
の一例としてフィールドタイムが1/60secの場合
、i−/60sec間欠陥信号を受光させる必要がある
。被検材の搬送速度は通常60m/minであり、フィ
ールドタイ18]−/ 60 secでは 60 m/
m1nx t / 605ec= 17 nun移動す
るため画像ブレか生しる。この発明はかかる課題を解決
するためになされたものであり被検材速度に追従するト
ラッキングミラーを設けて画像ブレを防ttr、するこ
とを目的とする。
[Problems to be Solved by the Invention] Conventional surface defect detection equipment does not require a mechanical scanning device as an imaging device, which improves reliability.
In addition, in order to visually capture the surface condition of the material to be inspected, an image pickup tube or a CCD camera that can detect surface defects over the entire area of the material to be inspected is often used. As an example of the CCI camera described in -1-, when the field time is 1/60 sec, it is necessary to receive the defect signal for i-/60 sec. The conveyance speed of the material to be inspected is normally 60 m/min, and in field tie 18] -/ 60 sec, it is 60 m/min.
m1nxt/605ec=17 nun movement causes image blur. The present invention has been made to solve this problem, and an object of the present invention is to prevent image blur by providing a tracking mirror that follows the speed of a specimen to be inspected.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る表面欠陥探傷装置は被検材の正常部と欠
陥部の輝度1、」弓を検出する撮像装置と被検材速度に
追従振動させるスキャナコントローラスキャナ及びトラ
ッキングミラーとを具備するものである。
The surface defect detection device according to the present invention has a brightness of 1 in normal and defective areas of a test material, and is equipped with an imaging device that detects a bow, a scanner controller that vibrates in accordance with the speed of the test material, and a tracking mirror. be.

〔作用〕[Effect]

この発明に係る表面探傷装置は撮像装置にて被検材の正
常部と欠陥部の輝度信号を検出する場合。
The surface flaw detection apparatus according to the present invention detects brightness signals of a normal part and a defective part of a material to be inspected using an imaging device.

被検材の搬送速度に応じてスキャナコントローラスキャ
ナ、及びトランキングミラーを追従振動させ、被検材を
相対的に静止状態として撮像することにより画像ブレを
防止する。
Image blur is prevented by causing the scanner controller, scanner, and trunking mirror to vibrate in accordance with the conveyance speed of the material to be inspected, and taking an image of the material to be inspected in a relatively stationary state.

〔実施例] 以下この発明の実施例について第1図〜第5図を用いて
説明する。図において(1)〜(3)は上記従来装置と
全く同一・のちのである。(5)は被検材の速度を検出
する速度検出器、(6)は速度検出器(5)の出力によ
りトラッキングミラー、(8)の追従振動速度をコント
ロールするスギャナコントローラ、(7)はトラッキン
グミラー(8)を追従振動させるスキャナー、(8)は
スキャナーの出力に追従振動するトラッキングミラー、
(9)は撮像装置(3)の出力を画像処理する画像処理
回路、 (1,0)は画像処理回路(9)の出力を欠陥
判定する欠陥判定回路、 (1,Dは画像処理回路(9
)の出力を表示する表示モニター、 (]、2)は画像
処理回路(9)の出力を画像積分する画像積分回路をそ
れぞれ示す。第1図において搬送してくる被検材(1)
の表面に凹状傷(ワレ傷)や凸状傷(ヘゲ等)の欠陥か
ある場合、欠陥部では正常部と輝度信号が異るのを利用
して撮像装@(3)にて被検材(1)の正常部と欠陥部
の輝度信号を検出し画像処理回路(9)にて被検イ・]
(1)の正常部と欠陥部の輝度信−弓を画像処理し画像
処理回路(9)の出力信号を欠陥判定回路(10)にて
欠陥判定し、欠陥を検出する3、例えば画像処理回路(
9)の出力の輝度信号レベルが基準輝度信号レベルより
大のとき欠陥角、小のとき欠陥無として欠陥を検出する
。又被検材(1)の11:、常部と欠陥部の輝度信号の
異るのを一層弁別しゃずくする方法として被検材を磁化
させて輝度信号の高い磁粉液をかけて欠陥部に磁粉を集
中させて欠陥部の輝度信号を高める方法はしばしば用い
られる。ところが被検材(1)の搬送速度が高速の場合
、撮像装置(3)は−例としてフィールドタイムが1−
/60 secであり、搬送速度が1−000 mm 
/ secの場合、  1000mm/sX 1/ 6
0sec″−17mmの画像ブレか生じる。そのため被
検材速度に応じてトラッキングミラー(8)を追従振動
させて被検材(1)との相対速度を0にすると被検材(
1)の画像ブレを生しることなく被検材(1)の欠陥部
の画像を撮像することが可能である。因みに被検材(1
)が静止している場合トラッキングミラー(8)は45
゜の位置に静11−シており被検材(1)の欠陥部の欠
陥信−号はトランキングミラー(8)に反射して撮像装
置(3)に入力される。被検材速度が60m/m=10
00 mm / sの場合、撮像装置(3)と被検材(
1)との距離をi o Oc、1 mmとし、被検イ:
4(1)に対するYJ効視野を200 mmとすると、
被検4・イ(1)を100mm間進む間トラッキングミ
ラー(8)を追従させ。
[Examples] Examples of the present invention will be described below with reference to FIGS. 1 to 5. In the figure, (1) to (3) are exactly the same as the conventional device described above. (5) is a speed detector that detects the speed of the material to be inspected; (6) is a tracking mirror based on the output of the speed detector (5); (8) is a sugana controller that controls the following vibration speed; (7) is a scanner that vibrates to follow the tracking mirror (8), (8) is a tracking mirror that vibrates to follow the output of the scanner,
(9) is an image processing circuit that performs image processing on the output of the imaging device (3), (1,0) is a defect determination circuit that determines defects on the output of the image processing circuit (9), (1,D is an image processing circuit ( 9
), and (], 2) respectively indicate an image integration circuit that integrates the output of the image processing circuit (9). Test material being transported in Figure 1 (1)
If there are defects such as concave scratches (cracks) or convex scratches (scratches, etc.) on the surface, the imaging device @(3) takes advantage of the fact that the brightness signal in the defective area is different from that in the normal area. The brightness signals of the normal and defective parts of the material (1) are detected and inspected by the image processing circuit (9).]
Image processing is performed on the brightness signals of the normal and defective areas in (1), and the output signal of the image processing circuit (9) is judged to be defective in the defect determination circuit (10).3, for example, an image processing circuit (
When the luminance signal level of the output of step 9) is larger than the reference luminance signal level, a defect is detected as a defect angle, and when it is smaller, there is no defect. In addition, 11 of Test material (1): As a method to further differentiate the difference in brightness signals between normal parts and defective parts, the test material is magnetized and a magnetic powder liquid with a high brightness signal is applied to the defective part. A method of increasing the brightness signal of a defective area by concentrating magnetic particles is often used. However, when the conveyance speed of the material to be inspected (1) is high, the imaging device (3) has a field time of 1, for example.
/60 sec, and the conveying speed is 1-000 mm
/ sec, 1000mm/sX 1/6
An image blur of 0 sec"-17 mm will occur. Therefore, if the tracking mirror (8) is vibrated in accordance with the speed of the material to be inspected and the relative speed with respect to the material to be inspected (1) is set to 0, the object to be inspected (
It is possible to capture an image of the defective portion of the material to be inspected (1) without causing the image blurring described in 1). By the way, the material to be tested (1
) is stationary, the tracking mirror (8) is 45
The defect signal of the defective portion of the material to be inspected (1) is reflected by the trunking mirror (8) and input to the imaging device (3). Test material speed is 60m/m = 10
00 mm/s, the imaging device (3) and the specimen material (
1), and the distance from the object to the test object A is i o Oc, 1 mm.
If the YJ effective field for 4(1) is 200 mm, then
The tracking mirror (8) is made to follow the subject 4-A (1) while it moves for 100 mm.

被検+イ(1)の次の100印進む間トラッキングミラ
ー(8)を逆転さげると被検材(1)を高速搬送させて
も被検材(1〕の全表面を抜けなく連続的に追従し4画
像ブレを生しることなく連続的に全表面を撮像すること
が可能である。
If the tracking mirror (8) is reversely lowered while proceeding to the next 100 marks of the test material + A (1), the entire surface of the test material (1) will be continuously covered without falling through even if the test material (1) is transported at high speed. It is possible to follow the four images and continuously capture images of the entire surface without causing image blur.

第2図はスキャナコントローラ(6)の出力波形を示す
図であり、スキャナコントローラ(6)は被検材搬送速
度検出器(5)の速度を受けてスキャナ(7)へドライ
ブ信号eを出力する波形を示す。ドライブ信号eは周期
一定(T)の三角波で被検材(])の搬送速度検出器(
5)の速度を受けて十昇、F降をくり返す。ドライブ信
号eはL経時トラッキングミラー(8)を正転させ下降
時逆転させる。ドライブ信号の周期Tは撮像装置の有効
視野(−、一定距離)と搬送速度との比で決る。即ちT
−何効視野/搬送速度の周期でスキャナコントローラ(
6)はドライブ信号をスキャナ(7)へ出力する。スキ
ャナ(7)はスキャナコントローラ(6)よりドライブ
信号eを受けてトラッキングミラー(8)を正転逆転の
振動を(り返ずドライブ装置である。従ってトランキン
グミラー(8)を逆転させる時間はスキャナ(7)とト
ラッキングミラー(8)の機械的な慣性で定まるか可能
な限りXiノい方がトラッキングミラー(8)か被検材
(1)の搬送速度に追従する時間即ち+f(’tiムす
る時間か長くなり安定し′C画像ブレを生しることなく
全表面を撮像することが可能である。尚画像処理回路(
9)の出力を表示モニター(11)に入力することによ
り被検材(1)の表面状態を目視にて確認出来るように
ビジュアル化することか可能である。
FIG. 2 is a diagram showing the output waveform of the scanner controller (6), which outputs a drive signal e to the scanner (7) in response to the speed of the specimen conveyance speed detector (5). Shows the waveform. The drive signal e is a triangular wave with a constant period (T), and the conveyance speed detector (
Based on the speed of 5), repeat 10 ascent and F descent. The drive signal e causes the L elapsed tracking mirror (8) to rotate forward and reverse when descending. The period T of the drive signal is determined by the ratio between the effective field of view (-, constant distance) of the imaging device and the conveyance speed. That is, T
- Scanner controller (
6) outputs a drive signal to the scanner (7). The scanner (7) receives the drive signal e from the scanner controller (6) and vibrates the tracking mirror (8) in the forward and reverse directions (it is a drive device). Therefore, the time required to reverse the trunking mirror (8) is The time required to follow the transport speed of the tracking mirror (8) or the material to be inspected (1), i.e. +f('ti The image processing time becomes longer and the image stabilizes, allowing the entire surface to be imaged without image blurring.The image processing circuit (
By inputting the output of step 9) into the display monitor (11), it is possible to visualize the surface condition of the test material (1) so that it can be visually confirmed.

第3図はこの発明の池の実施例を示す図で第3図におい
て画像処理回路(9)の出力画像はノイズ成分か多いた
め、S/Nが低く欠陥検出が出来ない場合が多い。従っ
てS/Nを向」ニさせるため画像処理回路(9)の出力
を画像積分回路(12)に入力し1画像積分することに
よりS/Nを向にさせ画像積分回路(12)の出力を欠
陥判定回路(10)に入力し、S/Nの低い欠陥信号で
も欠陥検出を可能としている。
FIG. 3 is a diagram showing an embodiment of the present invention. In FIG. 3, the output image of the image processing circuit (9) has many noise components, so the S/N ratio is low and defects cannot be detected in many cases. Therefore, in order to change the S/N in the opposite direction, the output of the image processing circuit (9) is input to the image integration circuit (12) and is integrated for one image. The signal is input to a defect determination circuit (10), making it possible to detect defects even with a defect signal having a low S/N ratio.

第4図は画像処理回路(9)の出力画像例として被検材
の11〕方向の1水平ラインにおいて欠陥部の輝度信号
(S)、ノイズ信号(N)を示す。一般に輝度信号(S
)とノイズ信号(N)との比S/NかS/N#2以下で
は被検材(1)の欠陥部の自動検出が不可と呂われでい
る。そのためS/N″−2以−I−にするへ< S/N
を向上させる必要かある。
FIG. 4 shows a brightness signal (S) and a noise signal (N) of a defective portion in one horizontal line in the 11] direction of the specimen as an example of the output image of the image processing circuit (9). Generally, the luminance signal (S
) and the noise signal (N) is below S/N or S/N #2, it is said that automatic detection of defective parts of the material to be inspected (1) is impossible. Therefore, set S/N″-2 to -I-< S/N
Is there a need to improve?

第5図は画像処理回路(9)の出力を画像積分回路(1
2)にて画像積分した出力例を示す。一般にN画面積分
すると、/’−N倍S/Nか向上すると言われており、
被検材(1)の搬送速度が1000mm/scCの場合
、被検材(1)が1. O0皿進む間、1フイ1−00
 mm 〜ルドタイムが1./60secの時1000mm /
 see /1− / 60sec = 6.即ち6画
面静11−画像が得られ〔3内面積分可能となり、、r
6−2.4倍S/Nが向上する。従って1画面ではS 
、/ N = 1.、 、5 であっても6画像積分す
ることにより S/N=1.5X(6−3,7(こU古
目二する。
Figure 5 shows the output of the image processing circuit (9) and the image integration circuit (1).
An example of the output of image integration in 2) is shown. It is generally said that if you integrate N screens, the S/N will improve by /'-N times,
When the conveyance speed of the test material (1) is 1000 mm/scC, the test material (1) is 1. 1 fee 1-00 while proceeding with O0 plate
mm ~ Ludo time is 1. /1000mm at 60sec/
see /1- / 60sec = 6. That is, 6 static 11-images are obtained [3 internal area integrals are possible, , r
S/N is improved by 6-2.4 times. Therefore, on one screen, S
,/N=1. , , 5, by integrating 6 images, S/N = 1.5X (6-3,7).

〔発明の効果〕〔Effect of the invention〕

この発明は以上のようになっているから被検材の高速搬
送時においても撮像装置のフィールドタイムによる画像
ブレをなくり、iE確に画像をとらえることか出来、従
って正補“に欠陥検出を行うことがi”iJ能である。
Since this invention is configured as described above, it is possible to eliminate image blurring caused by the field time of the imaging device even when the material to be inspected is being conveyed at high speed, and it is possible to accurately capture the image with iE, thus making it possible to detect defects in "correction". What you do is i”iJ ability.

又画像ブレをなくすことによって正確な欠陥検出ととも
に欠陥の寸法を正確に測定することか可能である。さら
にこの発明は画像処理回路の出力を積分する画像hlj
l回分を設けているので欠陥信冒のS/Nを1−げ、よ
りS/Nの低い欠陥信号でも欠陥検出かIIJ能である
Furthermore, by eliminating image blur, it is possible to accurately detect defects and accurately measure the dimensions of defects. Furthermore, the present invention provides an image hlj that integrates the output of the image processing circuit.
Since 1 times are provided, the S/N of the defect signal is increased by 1, and even a defect signal with a lower S/N can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の表面欠陥探傷装置のブロック図、第
2図はこの発明のスキャナコントローラの出力波形を示
す図、第3図はこの発明の他の実施例の表面欠陥探傷装
置のブロンク図、第71図はこの発明の画像処理回路の
出力画像例を示す図第5図はこの発明の画像積分回路の
画像積分例を示す図、第6図は従来の表面欠陥探傷装置
のブロフク図である。図において(1)は被検+A’、
 (2)は被検+4(1)の搬送方向、(3)は撮像装
置、(4)は信号処理回路、(5)は被検材搬送速度検
出器、(6)はスキャナコントローラ、(7)はスキャ
ナ、(8)はトラッキングミラー、(9)は画像処理回
路、(1())は欠陥判定回路、 (1,1,)は表示
モニター、 (1,2)は1j−1ij像積分回路であ
る。 尚図中間−あるいは相当部分には同一符号を付して示し
である1、
FIG. 1 is a block diagram of a surface defect detection device of the present invention, FIG. 2 is a diagram showing output waveforms of the scanner controller of the present invention, and FIG. 3 is a block diagram of a surface defect detection device of another embodiment of the present invention. , FIG. 71 is a diagram showing an example of an output image of the image processing circuit of the present invention. FIG. 5 is a diagram showing an example of image integration by the image integrating circuit of the present invention. FIG. 6 is a block diagram of a conventional surface defect detection device. be. In the figure, (1) is subject+A',
(2) is the transport direction of the test object +4 (1), (3) is the imaging device, (4) is the signal processing circuit, (5) is the test material transport speed detector, (6) is the scanner controller, (7 ) is the scanner, (8) is the tracking mirror, (9) is the image processing circuit, (1()) is the defect determination circuit, (1,1,) is the display monitor, (1,2) is the 1j-1ij image integration It is a circuit. The middle part of the figure or the corresponding part is indicated by the same reference numeral 1,

Claims (2)

【特許請求の範囲】[Claims] (1)パイプ、棒材の被検材表面を連続的に探傷する表
面欠陥探傷装置において、被検材の欠陥部の輝度信号を
検出する撮像装置と被検材の近傍に設けられ、被検材か
らの輝度信号を上記撮像装置に入力させるトラッキング
ミラーと、前記撮像装置の出力信号である被検材の輝度
信号を画像処理する画像処理回路と、前記画像処理回路
の出力を欠陥判定する欠陥判定回路と、前記画像処理回
路の出力を表示する表示モニターと、被検材の速度を検
出する速度検出器と、前記速度検出器の出力を受信し、
被検材速度に追従した振動速度を出力するスキャナコン
トローラと、前記スキャナコントローラからの出力によ
り上記トラッキングミラーを追従振動させるスキャナー
とを備えたことを特徴とする表面欠陥探傷装置。
(1) In a surface defect detection device that continuously detects flaws on the surface of a test material such as a pipe or bar, an imaging device that detects a brightness signal of a defective part of the test material and an imaging device installed near the test material. a tracking mirror that inputs a luminance signal from the material to the imaging device; an image processing circuit that performs image processing on the luminance signal of the material to be inspected, which is an output signal of the imaging device; and a defect that determines the output of the image processing circuit as defective. a determination circuit, a display monitor that displays the output of the image processing circuit, a speed detector that detects the speed of the test material, and receives the output of the speed detector;
A surface defect detection device comprising: a scanner controller that outputs a vibration speed that follows the speed of a material to be inspected; and a scanner that causes the tracking mirror to vibrate in accordance with the output from the scanner controller.
(2)前記画像処理回路の出力を積分し、その出力を欠
陥判定回路に与える画像積分回路を具備したことを特徴
とする請求項(1)記載の表面欠陥探傷装置。
(2) The surface defect detection apparatus according to claim 1, further comprising an image integration circuit that integrates the output of the image processing circuit and provides the output to a defect determination circuit.
JP2274638A 1990-10-12 1990-10-12 Surface-defect detecting apparatus Pending JPH04148854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274638A JPH04148854A (en) 1990-10-12 1990-10-12 Surface-defect detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274638A JPH04148854A (en) 1990-10-12 1990-10-12 Surface-defect detecting apparatus

Publications (1)

Publication Number Publication Date
JPH04148854A true JPH04148854A (en) 1992-05-21

Family

ID=17544494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274638A Pending JPH04148854A (en) 1990-10-12 1990-10-12 Surface-defect detecting apparatus

Country Status (1)

Country Link
JP (1) JPH04148854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324233A (en) * 2001-04-25 2002-11-08 Showa Corp Method and device for detecting crack of pipe
CN107707793A (en) * 2017-09-26 2018-02-16 浙江工业大学 A kind of surface image acquisition methods for surface characteristics detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519500A (en) * 1978-07-28 1980-02-12 Concast Ag Method of continuously casting metal
JPS61256237A (en) * 1985-05-09 1986-11-13 Dainippon Printing Co Ltd Defect inspection for cyclic pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519500A (en) * 1978-07-28 1980-02-12 Concast Ag Method of continuously casting metal
JPS61256237A (en) * 1985-05-09 1986-11-13 Dainippon Printing Co Ltd Defect inspection for cyclic pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324233A (en) * 2001-04-25 2002-11-08 Showa Corp Method and device for detecting crack of pipe
CN107707793A (en) * 2017-09-26 2018-02-16 浙江工业大学 A kind of surface image acquisition methods for surface characteristics detection

Similar Documents

Publication Publication Date Title
JPH04166751A (en) Method and apparatus for inspecting defect in bottle and the like
JP2009008659A (en) Surface flaw detection device
TW201003064A (en) Defect inspection method and defect inspection apparatus
JP2007240469A (en) Glass bottle inspection device
JP3241666B2 (en) Glass container defect inspection equipment
JP5509465B2 (en) Glass bottle inspection equipment
JPH11223610A (en) Surface defect inspection device and fluorescent magnetic particle flaw inspecting method
JP2003061115A5 (en)
JPH04148854A (en) Surface-defect detecting apparatus
JPS6262205A (en) Surface irregularity inspection for object
JP2007240468A (en) Glass bottle inspection device
JPH0763699A (en) Flaw inspection apparatus
JPH043820B2 (en)
JPH0493756A (en) Apparatus for detecting foreign matter in bottle
JPH0735703A (en) Image processing method
JPS6096088A (en) Defect detector of shaft symmetrical object
JPH06100551B2 (en) Defect detection method
JPH0763537A (en) Surface defect inspecting device
JPH04364446A (en) Defect inspecting apparatus
JP2003065967A (en) Apparatus and method for inspecting thread part of glass bottle
JPH0238955A (en) Surface flaw inspection device
JPH0718830B2 (en) Infrared flaw detector
JP2000055827A (en) Method and device for inspecting mouth part of glass container, etc.
JPH02171640A (en) Inspection of container
JPH08219740A (en) Method and equipment for inspecting semiconductor device