JPH0414881A - Tunnel junction element - Google Patents

Tunnel junction element

Info

Publication number
JPH0414881A
JPH0414881A JP2117826A JP11782690A JPH0414881A JP H0414881 A JPH0414881 A JP H0414881A JP 2117826 A JP2117826 A JP 2117826A JP 11782690 A JP11782690 A JP 11782690A JP H0414881 A JPH0414881 A JP H0414881A
Authority
JP
Japan
Prior art keywords
film
thin film
axis
oxide
orientated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2117826A
Other languages
Japanese (ja)
Inventor
Hajime Yuzurihara
肇 譲原
Wasaburo Ota
太田 和三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2117826A priority Critical patent/JPH0414881A/en
Publication of JPH0414881A publication Critical patent/JPH0414881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable reduction in superconductivity in an interface state to be improved by laminating an oxide superconductive thin film which is orientated in C axis, a noble metal thin film, an MgO film which is orientated in C axis, and an oxide surperconductive thin film which is orientated in A axis in sequence. CONSTITUTION:SrTiO3 single-crystal substrates (110) (100) or a MgO single- crystal substrate (100) are used as an insulation substrate 1 and a Y-family superconductor Y1Ba2Cu3OX or Bi-family superconductor Bi2Sr2Ca2Cu3OY superconductive thin film 2 is produced by the sputter method and the reactive deposition method while introducing an oxygen gas within a vacuum bath. The superconductive film is turned into C-axis orientated film. Then, a noble metal film 3 consisting of Au is immediately mounted onto the superconductive thin film 2. An MgO film 4 is produced on the noble metal thin film 3. Finally, the oxide superconductive thin film 2 is mounted with the orientated axis in A-axis direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超伝導体を用いたエレクトロニクス素
子であり、その中で特にジョセフソン素子と同様の機能
を有するトンネル接合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electronic device using an oxide superconductor, and particularly to a tunnel junction device having a function similar to that of a Josephson device.

〔従来の技術〕[Conventional technology]

近年、臨界温度が高い酸化物超伝導体のエレクトロニク
ス分野への応用研究が行われており、その中でもジョセ
フソン素子の研究が金属・合金系超伝導体に代わって盛
んに行われている。
In recent years, research has been conducted on the application of oxide superconductors with high critical temperatures to the electronics field, and research on Josephson devices has been actively conducted as an alternative to metal/alloy superconductors.

すなわち、ジョセフソン素子は、超伝導体と超伝導体の
間に絶縁層を挾んだ構造をもち、絶縁体中に対電子トン
ネル電流(超伝導トンネル電流)が流れることを利用し
たスイッチ素子であるが、従来の金属・合金系超伝導体
を用いたジョセフソン素子では臨界温度が低く高価な液
体ヘリウムを用いて冷却して使用しなければならず、コ
ストがかかるという開運かあるが、臨界温度が液体窒素
温度以上と高いイツトリウム(Y)系、ビスマス(Bi
)系酸化物超伝導体の発見に伴い、ジョセフソン素子を
構成する超伝導体をこれらイツトリウム(Y)系、ビス
マス(Bi)系酸化物超伝導体に置き換えて臨界温度の
高いジョセフソン素子の試作が行われている。
In other words, a Josephson device is a switching device that has a structure in which an insulating layer is sandwiched between two superconductors, and utilizes the fact that electron tunneling current (superconducting tunneling current) flows in the insulator. However, conventional Josephson devices using metal/alloy superconductors have a low critical temperature and must be cooled using expensive liquid helium, which is costly. Yttrium (Y) series, bismuth (Bi) whose temperature is higher than liquid nitrogen temperature.
)-based oxide superconductors, the superconductors constituting Josephson devices were replaced with these yttrium (Y)-based and bismuth (Bi)-based oxide superconductors, and Josephson devices with high critical temperatures were developed. Prototypes are being made.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、酸化物超伝導体を用いた素子で対電子ト
ンネル電流が検出されたという報告はほとんど無いと言
える。
However, it can be said that there are almost no reports on the detection of electron tunneling current in devices using oxide superconductors.

その原因としては、酸化物超伝導体のコヒーレンス長の
短いこと、表面、界面での常伝導層の存在により対電子
が破壊されてしまうことである。
The reasons for this are that the coherence length of the oxide superconductor is short and that paired electrons are destroyed due to the presence of a normal conductive layer at the surface and interface.

また、l−ンネル電流が検出されたという報告はあるが
、その場合、多くは準粒子トンネル電流、すなわち、金
属−絶縁体−金属(M I M)接合に見られる常伝導
相聞のそれである・ 尚、金属・合金系超伝導体においては、4.2にの液体
ヘリウム温度で動作するジョセフソン素子が開発されて
おり、ジョセフソンコンピュータ開発のレベルに達して
いる。
There are also reports that tunnel currents have been detected, but in most cases they are quasi-particle tunneling currents, that is, those of normal phase tunneling currents found in metal-insulator-metal (MIM) junctions. As for metal/alloy superconductors, a Josephson element that operates at a liquid helium temperature of 4.2 has been developed, and has reached the level of Josephson computer development.

本発明は、上述したようなトンネル接合素子を作製する
場合に問題となる界面状態による超伝導特性の低下を改
善するために、素子構成に工夫を施し、酸化物超伝導体
を用いたトンネル接合素子を実現することを目的とする
In order to improve the deterioration of superconducting properties due to the interface state, which is a problem when producing a tunnel junction element as described above, the present invention has devised the element configuration, and has developed a tunnel junction using an oxide superconductor. The purpose is to realize the device.

〔課題を解決するための手段及び作用〕上記目的を達成
するため、本発明によるトンネル接合素子は、絶縁基板
上に、0M配向した酸化物超伝導薄膜、貴金属薄膜、C
軸配向したMg。
[Means and effects for solving the problem] In order to achieve the above object, a tunnel junction element according to the present invention includes a 0M oriented oxide superconducting thin film, a noble metal thin film, a C
Axially oriented Mg.

膜、a軸配向した酸化物超伝導薄膜を順次積層してなる
ことを特徴とする。
The film is characterized by being formed by sequentially stacking a-axis oriented oxide superconducting thin films.

また、上記トンネル接合素子において、酸化物超伝導体
としてはインドリウム(Y)系、ビスマス(Bi)系超
伝導体を用い、貴金属としては金(Au)、白金(Pt
)を用いることを特徴とする。
Furthermore, in the above tunnel junction element, indium (Y)-based and bismuth (Bi)-based superconductors are used as the oxide superconductor, and gold (Au) and platinum (Pt) are used as the noble metals.
).

より具体的に説明すると、本発明は酸化物超伝導体を用
いたトンネル接合素子に関するものであり、酸化物超伝
導体にはY系超伝導体のYLBa。
More specifically, the present invention relates to a tunnel junction element using an oxide superconductor, and the oxide superconductor includes YLBa, a Y-based superconductor.

Cu s O、(6、5< x < 7 、5 )や、
Bi系超伝導体のB 1 zS r zc a tc 
u zoa、B i zS rzc a zCu s 
O1oを用い、これらY系、Bi系超伝導体をMgO(
100)基板あるいは5rTiO,(110)(100
)基板上にC軸配向させた後、その上に貴金属薄膜を非
常に薄くっけ、さらに上部にC軸配向したMgO膜、a
軸あるいはC軸配向した超伝導膜を作製し素子としたも
のである。
Cu s O, (6, 5 < x < 7, 5),
Bi-based superconductor B 1 zS r zc a tc
u zoa, B i zS rzc a zCu s
Using MgO (
100) Substrate or 5rTiO, (110) (100
) After the C-axis is oriented on the substrate, a very thin noble metal thin film is placed on top of it, and then a C-axis oriented MgO film is placed on top.
A superconducting film with axial or C-axis orientation is fabricated and used as an element.

以下、本発明の詳細について説明する。The details of the present invention will be explained below.

本発明によるトンネル接合素子に用いる超伝導体として
は、臨界温度90Kを示すY系超伝導体、あるいは臨界
温度80に若しくは100Kを示すBi系超伝導体があ
るが、これらの超伝導体は、臨界電流密度、抵抗率等に
異方性があり、臨界電流密度はC軸に垂直な方が軸方向
に対し約10倍異なる。
The superconductors used in the tunnel junction device according to the present invention include Y-based superconductors with a critical temperature of 90 K and Bi-based superconductors with a critical temperature of 80 or 100 K. There is anisotropy in critical current density, resistivity, etc., and the critical current density in the direction perpendicular to the C-axis is about 10 times different from the direction in the axial direction.

さらに結晶性については、特にY系超伝導体において酸
素の抜けが起きて超伝導性を失ってしまったり、コヒー
レンス長が約10人と短い等の特徴があり、絶縁層を積
層した場合、界面に高抵抗相が存在したり、絶縁層が厚
かったりすると、ジョセフソン接合を作製した場合、対
電子トンネル電流が流れないといった問題がある。
Furthermore, regarding crystallinity, there are characteristics such as the loss of superconductivity due to oxygen loss, especially in Y-based superconductors, and the short coherence length of about 10. If a high-resistance phase exists or the insulating layer is thick, there is a problem that electron tunneling current will not flow when a Josephson junction is fabricated.

また、非常に薄い絶縁層上に酸化物超伝導体をエピタキ
シャル成長させる技術もまだ確立されていない。
Furthermore, the technology for epitaxially growing oxide superconductors on very thin insulating layers has not yet been established.

そこで、本発明では、上記問題の中の界面状態の対電子
トンネル電流に対する影響を改善するために、トンネル
接合素子を上述したように構成し、超伝導体上に貴金属
薄膜を設けて超伝導薄膜の特性劣化を防止すると共に、
金属と超伝導体の近接効果により対電子電流が流れるよ
うにし、酸化物超伝導体を用いたトンネル接合素子の実
現化を図る。
Therefore, in the present invention, in order to improve the influence of the interfacial state on the electron tunneling current in the above problem, the tunnel junction element is configured as described above, and a noble metal thin film is provided on the superconductor to form a superconducting thin film. In addition to preventing characteristic deterioration of
We aim to realize a tunnel junction device using an oxide superconductor by allowing a pair of electron current to flow due to the proximity effect between the metal and the superconductor.

〔実 施 例〕〔Example〕

以下、本発明の一実施例について図面を参照して詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示すトンネル接合素子の概
略的構成図である。
FIG. 1 is a schematic diagram of a tunnel junction element showing one embodiment of the present invention.

第1図において、本発明によるトンネル接合素子は、絶
縁基板1上に、c(ft[I配向した酸化物超伝導薄膜
2、貴金属薄膜3、C軸配向したMgO膜4、a軸配向
した酸化物超伝導薄膜2を順次積層した構造となってい
る。
In FIG. 1, the tunnel junction device according to the present invention has an insulating substrate 1, a c(ft[I oriented oxide superconducting thin film 2, a noble metal thin film 3, a C-axis oriented MgO film 4, an a-axis oriented oxide It has a structure in which superconducting thin films 2 are sequentially laminated.

以下、作製法について説明する。The manufacturing method will be explained below.

先ず、上記絶縁基板lとしては5rTiOa単結晶基板
(110)(100)あるいltMgOjL結晶基板(
100)を用い、その基板上上にY系超伝導体のY!B
azcuso□あるいはBi系超伝導体のB l as
 rtc a zCu s○工超超伝導薄膜2、真空槽
内で酸素ガスを導入しながら、公知のスパッタ法、反応
性蒸着法により作製する。また、必要に応じて酸素ガス
はプラズマ状態にし、基板温度を550℃〜650℃に
加熱して作製する。
First, the insulating substrate l is a 5rTiOa single crystal substrate (110) (100) or an ltMgOjL crystal substrate (
100), and a Y-based superconductor Y! is placed on the substrate. B
azcuso□ or Bi-based superconductor B l as
The rtc a z Cu s○ superconducting thin film 2 is produced by a known sputtering method or reactive vapor deposition method while introducing oxygen gas in a vacuum chamber. Further, if necessary, the oxygen gas is brought into a plasma state and the substrate temperature is heated to 550° C. to 650° C. for fabrication.

この基板温度は膜の配向軸方向に影響を与える。This substrate temperature affects the orientation axis direction of the film.

例えば、Y系超伝導膜では基板温度550℃付近でa軸
配向、それ以上でC軸配向になるという報告がある。但
し、基板温度が低い方では臨界温度が低くなったりする
。また、膜厚は可能な限り薄くすることが望ましいが、
通常500人から40Oo人の範囲である。尚、この基
板上の超伝導膜はC軸配向膜にする。
For example, it has been reported that in a Y-based superconducting film, the a-axis orientation occurs at a substrate temperature of around 550° C., and the c-axis orientation occurs at higher temperatures. However, the critical temperature may become lower when the substrate temperature is lower. Also, it is desirable to keep the film thickness as thin as possible;
Usually ranges from 500 to 4000 people. Note that the superconducting film on this substrate is a C-axis oriented film.

次に、このC軸配向された酸化物超伝導薄膜2の上に、
直ちにAu(またはPt)からなる貴金属膜3を電子ビ
ーム蒸着法あるいはイオンスパッタ法により10人〜1
00人未満の膜厚で着ける。
Next, on this C-axis oriented oxide superconducting thin film 2,
Immediately, a noble metal film 3 made of Au (or Pt) is deposited by 10 to 1 person by electron beam evaporation or ion sputtering.
Can be worn with a film thickness of less than 0.00 people.

この際、蒸着速度はできるだけ遅くして行い、超伝導膜
2の最表面にある程度Auが侵入するようにする。また
、基板温度は400℃程度にし、C軸配向膜にする。
At this time, the deposition rate is made as slow as possible so that some amount of Au penetrates into the outermost surface of the superconducting film 2. Further, the substrate temperature is set to about 400° C., and a C-axis oriented film is formed.

次に、この貴金属薄膜3の上に、Mg○膜4を作製する
。このMgO膜4の作製は真空蒸着法で行い、膜厚は数
10人にする。また、このときの基板温度は600℃〜
650℃にし、C軸配向膜にする。
Next, on this noble metal thin film 3, an Mg◯ film 4 is formed. This MgO film 4 is produced by a vacuum evaporation method, and the film thickness is made by several tens of people. Also, the substrate temperature at this time is 600℃~
The temperature is raised to 650° C. to form a C-axis oriented film.

そして最後に、再び酸化物超伝導薄膜2をつけるわけだ
が、ここでは配向軸をa軸方向とすることが望ましい。
Finally, the oxide superconducting thin film 2 is applied again, but here it is desirable that the orientation axis be in the a-axis direction.

また、膜厚は上述の場合と同様であるが、基板温度は6
oo℃またはそれより少し低めにしa軸配向しやすいよ
うにする。
Also, the film thickness is the same as above, but the substrate temperature is 6.
The temperature is set to oo°C or slightly lower to facilitate a-axis orientation.

さて、以上のようにして作製されたトンネル接合素子の
電流−電圧特性を周知の四探針法により測定した結果、
トンネル電流はAu(またはPt)膜3の有無で改善さ
れ、超低導膜界面はAuの存在による近接効果で対電子
が長い距離にわたって(数100人の長さ)存在するた
め、絶縁膜Mg○の配向膜ができれば対電子トンネル電
流が流れることが明らかになった。すなわち、従来の酸
化物超伝導体を用いた素子の場合、コヒーレンス長が短
いために高抵抗層が界面に存在することにより、たちま
ちトンネル電流は流れなくなるという問題があったが、
本発明の素子では、Auの存在により対電子が破壊され
なくなり、対電子トンネル電流が流れる。
Now, as a result of measuring the current-voltage characteristics of the tunnel junction device fabricated as described above using the well-known four-probe method,
The tunneling current is improved by the presence or absence of the Au (or Pt) film 3, and since the pair electrons exist over a long distance (several hundreds of people) at the ultra-low conductivity film interface due to the proximity effect due to the presence of Au, the insulating film Mg It has become clear that if an oriented film of ○ is formed, electron tunneling current will flow. In other words, in the case of devices using conventional oxide superconductors, due to the short coherence length, the presence of a high-resistance layer at the interface caused the problem that tunnel current immediately stopped flowing.
In the device of the present invention, due to the presence of Au, pair electrons are not destroyed, and a pair electron tunneling current flows.

尚、電流方向を考えた場合(第1図の矢印方向)、超伝
導膜の配向軸を上下で異なるようにすることで臨界電流
密度の大きい面に電流が流れるようになる。
When considering the direction of current (the direction of the arrow in FIG. 1), by making the orientation axes of the superconducting film different on the upper and lower sides, the current flows in the plane where the critical current density is high.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、トンネル接合素
子を構成する酸化物超伝導薄膜上に貴金属薄膜を設けて
超伝導薄膜の特性劣化を防止すると共に、金属と超伝導
体の近接効果により対電子電流が流れるようにして、酸
化物超伝導体を用いた場合の界面の状態によりトンネル
電流が流れにくかった問題を改善したことにより、酸化
物超伝導体を用いたトンネル接合素子の実現が可能とな
る。
As explained above, according to the present invention, a noble metal thin film is provided on an oxide superconducting thin film constituting a tunnel junction element to prevent property deterioration of the superconducting thin film, and also to prevent deterioration of the characteristics of the superconducting thin film, and to reduce The problem of tunneling current being difficult to flow due to the state of the interface when using oxide superconductors has been solved by allowing electron current to flow, making it possible to realize tunnel junction devices using oxide superconductors. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すトンネル接合素子の概
略的構成図である。 1・・・・絶縁基板、2・・・・酸化物超伝導薄膜、3
・・・・・貴金属薄膜、4・・・・MgO膜。
FIG. 1 is a schematic diagram of a tunnel junction element showing one embodiment of the present invention. 1... Insulating substrate, 2... Oxide superconducting thin film, 3
...Precious metal thin film, 4...MgO film.

Claims (1)

【特許請求の範囲】 1、絶縁基板上に、c軸配向した酸化物超伝導薄膜、貴
金属薄膜、c軸配向したMgO膜、a軸配向した酸化物
超伝導薄膜を順次積層してなることを特徴とするトンネ
ル接合素子。 2、請求項1記載のトンネル接合素子において、酸化物
超伝導体としてはイットリウム(Y)系、ビスマス(B
i)系超伝導体を用い、貴金属としては金(Au)、白
金(Pt)を用いることを特徴とするトンネル接合素子
[Claims] 1. A c-axis oriented oxide superconducting thin film, a noble metal thin film, a c-axis oriented MgO film, and an a-axis oriented oxide superconducting thin film are sequentially laminated on an insulating substrate. Characteristic tunnel junction device. 2. In the tunnel junction device according to claim 1, the oxide superconductor is yttrium (Y) based, bismuth (B
i) A tunnel junction element characterized in that it uses a superconductor and gold (Au) and platinum (Pt) are used as noble metals.
JP2117826A 1990-05-08 1990-05-08 Tunnel junction element Pending JPH0414881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117826A JPH0414881A (en) 1990-05-08 1990-05-08 Tunnel junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117826A JPH0414881A (en) 1990-05-08 1990-05-08 Tunnel junction element

Publications (1)

Publication Number Publication Date
JPH0414881A true JPH0414881A (en) 1992-01-20

Family

ID=14721201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117826A Pending JPH0414881A (en) 1990-05-08 1990-05-08 Tunnel junction element

Country Status (1)

Country Link
JP (1) JPH0414881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480861A (en) * 1993-07-14 1996-01-02 Sumitomo Electric Industries Ltd. Layered structure comprising insulator thin film and oxide superconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480861A (en) * 1993-07-14 1996-01-02 Sumitomo Electric Industries Ltd. Layered structure comprising insulator thin film and oxide superconductor thin film

Similar Documents

Publication Publication Date Title
US5595959A (en) Method of forming a high-TC microbridge superconductor device
US5627139A (en) High-temperature superconducting josephson devices having a barrier layer of a doped, cubic crystalline, conductive oxide material
US5250817A (en) Alkali barrier superconductor Josephson junction and circuit
Koren et al. Properties of all YBa2Cu3O7 Josephson edge junctions prepared by in situ laser ablation deposition
Robertazzi et al. Y1Ba2Cu3O7/MgO/Y1Ba2Cu3O7 edge Josephson junctions
Nevirkovets et al. Anomalous critical current in double-barrier Nb/Al–AlO x–Al–AlO x–Nb devices
Maruyama et al. Interface-treated Josephson junctions in trilayer structures
JPH0414881A (en) Tunnel junction element
JPH0221676A (en) Tunnel junction between superconductors
US5856205A (en) Josephson junction device of oxide superconductor having low noise level at liquid nitrogen temperature
Sanders et al. Evidence for tunneling and magnetic scattering at in situ YBCO/noble-metal interfaces
Simon et al. Progress towards a YBCO circuit process
Rowell The status, recent progress and promise of superconducting materials for practical applications
US20040134967A1 (en) Interface engineered high-Tc Josephson junctions
JP2861235B2 (en) Superconducting element
JPH0412575A (en) Tunnel junction element
Mikheenko et al. Grain-boundary links and critical current of tapes
Meng et al. YBCO/metallic oxide/YBCO trilayers for high-T/sub c/superconducting SNS junctions
JP2950958B2 (en) Superconducting element manufacturing method
JP2920496B2 (en) Method of forming oxide dispersed particles
Usagawa et al. Transport properties of PBCO thin films on (110)/(001) RBCO single crystal substrates
JP3155641B2 (en) Superconducting tunnel junction device
KR100267974B1 (en) method for fabricating josephson junction device operating on high temperature
Denlinger et al. High performance YBCO films. Report for 1 August-31 October 1992
Xiaofan Fabrication and properties of Nb3Sn-Pb Josephson tunnel junctions