JPH0412575A - Tunnel junction element - Google Patents

Tunnel junction element

Info

Publication number
JPH0412575A
JPH0412575A JP2115387A JP11538790A JPH0412575A JP H0412575 A JPH0412575 A JP H0412575A JP 2115387 A JP2115387 A JP 2115387A JP 11538790 A JP11538790 A JP 11538790A JP H0412575 A JPH0412575 A JP H0412575A
Authority
JP
Japan
Prior art keywords
film
single crystal
oxide superconducting
axis oriented
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2115387A
Other languages
Japanese (ja)
Inventor
Hajime Yuzurihara
肇 譲原
Wasaburo Ota
太田 和三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2115387A priority Critical patent/JPH0412575A/en
Publication of JPH0412575A publication Critical patent/JPH0412575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase the critical current density of an oxide superconducting thin film, by laminating a c-axis oriented oxide superconducting thin film, a single crystal insulating film, and an a-axis oriented oxide superconducting thin film. CONSTITUTION:When thin films are laminated, c-axis oriented films are conventionally used. When a current is made to flow in a laminated film, the current flows in the c-axis direction in the case of the c-axis oriented film. When an a-axis oriented film is used, the larger current flows. As a result, an axially oriented oxide superconducting thin film 3 of Y1Ba2Cu3O7-x(0<x<0.5) or the like is formed on an MgO (100) single crystal substrate 1 or on a single crystal insulating film of an SrTiO3 (110) or (100) single crystal substrate 1. An insulating film 2 (e.g. MgO and Al2O3) is formed on the film 3, and further an oxide superconducting film 3 is formed. Thereby a tunnel junction element whose tunnel current is large can be obtained.

Description

【発明の詳細な説明】 [技術分野] 本発明は、Y系、Bi系等を含む酸化物超伝導薄膜を用
いたトンネル接合素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a tunnel junction element using an oxide superconducting thin film containing Y-based, Bi-based, etc.

[従来技術] ジョセフソン素子に代表されるいわゆるトンネル効果を
利用する素子の研究は、金属・合金系超伝導体において
これまで行われてきたが、最近は酸化物超伝導体を用い
た研究が盛んである。基板はSrTiO3、MgO等の
単結晶基板で、!縁物を介してY系やBi系超伝導薄膜
を積層する。しかしながら、酸化物超伝導体単独では臨
界温度の高い薄膜が作成されているが、超伝導体−絶縁
体−超伝導体接合にすると素子全体の臨界温度が低下し
、しかもトンネル電流はさらに低温でないと流れなかっ
たりする。その原因としては、接合の界面がうまく超伝
導体と絶縁体に分離されていないこと、酸化物超伝導体
のコヒーレンス長が短いことなどが挙げられる。
[Prior art] Research on devices that utilize the so-called tunneling effect, such as Josephson devices, has been conducted in metal/alloy superconductors, but recently research using oxide superconductors has been conducted. It's thriving. The substrate is a single crystal substrate of SrTiO3, MgO, etc.! Y-based or Bi-based superconducting thin films are laminated via a border. However, when using oxide superconductors alone, thin films with high critical temperatures have been created, but when superconductor-insulator-superconductor junctions are used, the critical temperature of the entire device decreases, and the tunnel current is even lower. Sometimes it doesn't flow. The reasons for this are that the junction interface is not well separated into superconductors and insulators, and that the coherence length of oxide superconductors is short.

ところが、トンネル電流値は前記原因以外に超伝導体の
臨界電流密度の小さいことにも影響をうけていることが
判明した。
However, it has been found that the tunnel current value is also affected by the low critical current density of the superconductor, in addition to the above-mentioned causes.

[発明の目的] 本発明の目的は、酸化物超伝導薄膜をもちいるトンネル
接合素子において、前記酸化物超伝導薄膜の臨界電流密
度が大きくできる構造を提供する点にある6 [構  成] 本発明は、(1)セラミックス単結晶基板上に、(2)
c軸配向させた酸化物超伝導薄膜、 (3)Mg○のよ
うな単結晶膜、(4)a軸配向させた酸化物超伝導薄膜
の順で積層したことを特徴とするトンネル接合素子に関
する。
[Object of the Invention] An object of the present invention is to provide a structure in which the critical current density of the oxide superconducting thin film can be increased in a tunnel junction device using an oxide superconducting thin film. The invention provides (1) on a ceramic single crystal substrate, (2)
A tunnel junction device characterized in that a c-axis oriented oxide superconducting thin film, (3) a single crystal film such as Mg○, and (4) an a-axis oriented oxide superconducting thin film are laminated in this order. .

前記酸化物超伝導体としては、Y系あるいはBi系ある
いはLa系等のいずれでもよく、例えば、Y 、 B 
a2Cu、07−X(0< X <0.5)、Y□B、
a2Ca307−1+ Bi25r2Ca、Cu20t
、Bi、5r2Ca、Cu20s、Bi25r2Ca、
CuzOto−(M x L al−x)z Cu O
4−s (MはS r p Ca # B a )など
を挙げることができる。
The oxide superconductor may be Y-based, Bi-based, La-based, etc., for example, Y, B, etc.
a2Cu, 07-X (0<X<0.5), Y□B,
a2Ca307-1+ Bi25r2Ca, Cu20t
, Bi, 5r2Ca, Cu20s, Bi25r2Ca,
CuzOto-(M x L al-x)z Cu O
4-s (M is S r p Ca # B a ), and the like.

また、(2)の酸化物超伝導体と(4)の酸化物超伝導
体は通常同一のものを使用するが、これに限定されるわ
けではなく、必要に応じて任意の組合せとすることがで
きる。
In addition, although the oxide superconductor in (2) and the oxide superconductor in (4) are usually the same, they are not limited to this, and any combination may be used as necessary. I can do it.

Y系、Bi系等の超伝導体はペロブスカイト型構造を基
本とし、電気伝導はCu−○の結合した平面(ab面)
で起きているとされている。
Y-based, Bi-based, etc. superconductors are based on a perovskite structure, and electrical conduction occurs in the Cu-○ bonded plane (ab-plane).
It is said to occur in

それは、臨界電流密度を調べると、Y系の場合C軸に平
行に電流を流した時と、C軸に垂直に電流を流した時と
で値が異なり、異方性を持つことから理解できる。Y系
においては、77に付近でC軸方向、C軸に垂直な方向
で電流密度が1ケタ違うという報告がある(高温超伝導
データブック[]新技術事業団監修)。従って、薄膜を
積層する場合、現在C軸配向した膜がほとんどである。
This can be understood from the fact that when examining the critical current density, in the Y system, the value is different when the current is passed parallel to the C-axis and when the current is passed perpendicular to the C-axis, and it has anisotropy. . In the Y system, there is a report that the current density differs by one order of magnitude in the C-axis direction and in the direction perpendicular to the C-axis near 77 (High Temperature Superconductivity Data Book [] supervised by the New Technology Corporation). Therefore, when laminating thin films, most of the films are currently C-axis oriented.

積層膜に電流を流す場合、C軸配向膜ではC軸方向に電
流が流れるため、これをa軸配向した膜にすれば電流は
より大きく流れる。そこで、MgO(100)単結晶基
板上かあるいは、S rTio、 (110)または(
100)単結晶基板などの単結晶絶縁膜上に、Y1Ba
2CuffOt−x(0<X<O,S)等の超伝導薄膜
を作製し、そのうえに絶縁膜(例えばMgO、AQ20
1等)を形成した後、さらに酸化物超伝導膜を形成する
。なお、前記単結晶絶縁膜としてはMgOが最も好まし
く、ついでSrTiO3であるが、そのほかにもZrO
2、LaAnO,、NdGa○8等を挙げることができ
る。
When a current is passed through a laminated film, the current flows in the C-axis direction in a C-axis oriented film, so if this is made into an a-axis oriented film, a larger current flows. Therefore, on MgO (100) single crystal substrate or S rTio, (110) or (
100) Y1Ba on a single crystal insulating film such as a single crystal substrate
A superconducting thin film such as 2CuffOt-x (0<X<O, S) is fabricated, and an insulating film (e.g. MgO, AQ20
1 etc.), an oxide superconducting film is further formed. The single crystal insulating film is most preferably MgO, followed by SrTiO3, but ZrO3 is also preferred.
2, LaAnO, and NdGa○8.

以下に、実施例を示しながら膜構成について説明する。The membrane structure will be described below with reference to Examples.

第1図はトンネル接合を示したものである。MgO(1
00)単結晶基板1の上に真空蒸着法でY系超伝導膜3
をつける。真空蒸着法は、Y、Ba、Cu金属を電子銃
を用いて蒸発させる。
FIG. 1 shows a tunnel junction. MgO(1
00) Y-based superconducting film 3 is deposited on the single crystal substrate 1 by vacuum evaporation method.
Attach. In the vacuum evaporation method, Y, Ba, and Cu metals are evaporated using an electron gun.

酸素ガス圧はI Xl0−2〜5 Xl0−2Paにし
、蒸着速度は2人/S以下にして成膜する。このとき、
酸素は、高周波電界によりプラズマ状態にし基板加熱温
度は600℃付近で行う。成膜後、基板を徐冷する際、
数Paの酸素を流しておく。
The oxygen gas pressure is set to I Xl0-2 to 5 Xl0-2 Pa, and the deposition rate is set to 2 persons/S or less to form a film. At this time,
Oxygen is brought into a plasma state by a high-frequency electric field, and the substrate is heated at a temperature around 600°C. After film formation, when slowly cooling the substrate,
Oxygen at several Pa is passed through it.

このとき、超伝導膜はa軸に配向した。基板温度は58
0℃から600℃程度が良い。次に絶縁膜2を積層する
場合、基板と同じMgO膜をつける。
At this time, the superconducting film was oriented along the a-axis. The board temperature is 58
A temperature of about 0°C to 600°C is good. Next, when laminating the insulating film 2, the same MgO film as the substrate is applied.

MgO膜はrfマグネトロンスパッタリングにより行う
。酸素ガス圧は2X10−”Paで基板温度は650℃
にする。この時、膜はa軸配向していた。膜厚は40人
〜50人であった。そして、さらに先と同様超伝導膜3
を作成した。
The MgO film is formed by RF magnetron sputtering. Oxygen gas pressure is 2X10-”Pa and substrate temperature is 650℃.
Make it. At this time, the film was oriented along the a-axis. The film thickness was 40 to 50. Then, as before, superconducting film 3
It was created.

従来のもののトンネル電流が〜1X10’A/cII2
であったのに対し、この素子のトンネル電流は〜I X
 10’ A / cm”とすることができた。
The tunnel current of the conventional one is ~1X10'A/cII2
On the other hand, the tunnel current of this element is ~I
10'A/cm".

[効  果] 本発明の構成をとることによりトンネル電流の大きなト
ンネル接合素子が得られた。
[Effects] By adopting the configuration of the present invention, a tunnel junction element with a large tunnel current was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明実施例のトンネル接合素子の断面図で
ある。 1・・・単結晶基板   2・・・絶縁膜3・・・超伝
導膜 特許出願人 株式会社 リ コ − 代理人弁理士 友 松 英 爾・′ゝ【“・:\ −勇一′
FIG. 1 is a sectional view of a tunnel junction element according to an embodiment of the present invention. 1...Single crystal substrate 2...Insulating film 3...Superconducting film Patent applicant Rico Co., Ltd. − Representative patent attorney Tomo Hideji Matsu

Claims (1)

【特許請求の範囲】[Claims] 1、(1)セラミックス単結晶基板上に、(2)c軸配
向させた酸化物超伝導薄膜、(3)単結晶絶縁膜、(4
)a軸配向させた酸化物超伝導薄膜の順で積層したこと
を特徴とするトンネル接合素子。
1. (1) On a ceramic single crystal substrate, (2) c-axis oriented oxide superconducting thin film, (3) single crystal insulating film, (4
) A tunnel junction device characterized in that a-axis oriented oxide superconducting thin films are laminated in this order.
JP2115387A 1990-05-01 1990-05-01 Tunnel junction element Pending JPH0412575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115387A JPH0412575A (en) 1990-05-01 1990-05-01 Tunnel junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115387A JPH0412575A (en) 1990-05-01 1990-05-01 Tunnel junction element

Publications (1)

Publication Number Publication Date
JPH0412575A true JPH0412575A (en) 1992-01-17

Family

ID=14661285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115387A Pending JPH0412575A (en) 1990-05-01 1990-05-01 Tunnel junction element

Country Status (1)

Country Link
JP (1) JPH0412575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677545A (en) * 1992-08-24 1994-03-18 Nippon Telegr & Teleph Corp <Ntt> Superconducting thin film vertical type junction element and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677545A (en) * 1992-08-24 1994-03-18 Nippon Telegr & Teleph Corp <Ntt> Superconducting thin film vertical type junction element and its manufacture

Similar Documents

Publication Publication Date Title
JPH02260674A (en) Tunnel type josephson element and manufacture thereof
JPH05894A (en) Compound oxide superconducting thin film
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
JPH03218686A (en) Josephson element
JPH0412575A (en) Tunnel junction element
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JPH0221676A (en) Tunnel junction between superconductors
JP2644284B2 (en) Superconducting element
JPS62170108A (en) Super conductor containing nb, si and al and oxide thereof having transition temperature 77k or more
JPH01100022A (en) Preparation of superconducting thin film
JP3061634B2 (en) Oxide superconducting tape conductor
JPH0414881A (en) Tunnel junction element
JP2813287B2 (en) Superconducting wire
JPH02281765A (en) Superconducting element using oxide superconductor thin-film
JP2920496B2 (en) Method of forming oxide dispersed particles
JP2950958B2 (en) Superconducting element manufacturing method
Meng et al. YBCO/metallic oxide/YBCO trilayers for high-T/sub c/superconducting SNS junctions
JP2849721B2 (en) Superconducting switch element
JPH0446098A (en) Superconducting member
JP2840475B2 (en) Method for producing oxide superconducting thin film
JP2835203B2 (en) Superconducting element manufacturing method
JPH0227612A (en) Oxide superconducting wire rod
JPH01179779A (en) Method for protecting multi-ply oxide superconductor
JPH05160448A (en) Abrupt josephson device
Usagawa et al. Transport properties of PBCO thin films on (110)/(001) RBCO single crystal substrates