JPH04148505A - Production of voltage non-linearity resistor - Google Patents

Production of voltage non-linearity resistor

Info

Publication number
JPH04148505A
JPH04148505A JP2274097A JP27409790A JPH04148505A JP H04148505 A JPH04148505 A JP H04148505A JP 2274097 A JP2274097 A JP 2274097A JP 27409790 A JP27409790 A JP 27409790A JP H04148505 A JPH04148505 A JP H04148505A
Authority
JP
Japan
Prior art keywords
mixed
sio2
raw material
particle size
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2274097A
Other languages
Japanese (ja)
Inventor
Masanobu Hikosaka
彦坂 正信
Kiyobumi Ogita
清文 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2274097A priority Critical patent/JPH04148505A/en
Publication of JPH04148505A publication Critical patent/JPH04148505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To improve the degree of mixture between the main materials and the added materials and to enhance electric characteristics and yield by using SiO2 with a particle diameter below that specified when producing a non-linear resistor which consists of added materials that contain SiO2 and a main material based on an inorganic substance. CONSTITUTION:Bi2O3, SiO2, Co2O3, and other added components are mixed and crushed in pure water to obtain a slurry. Next, a binder and a main material, for example ZnO, are mixed into a slurry and the slurry mentioned above is added and the two are emulsified. This is spray dried, calcinated after press molding, and then coated with an insulator and baked. When an added material with large and irregular particle diameters is mixed and emulsified with ZnO, the reactivity during sintering poor. Also, when the crushing time is lengthened and the SiO2 particles are made smaller, more time is needed and the amount of impurities that get mixed in increases, having a negative impact on electric features. If the particle diameter of the SiO2 material is set at 5mum or less, sintering performance is fine and it is possible to obtain an excellent voltage non-linearity resistor.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、添加原料にSiO□を含み、例えば酸化亜鉛
のような無機物質を主原料とする電圧非直線抵抗体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing a voltage nonlinear resistor containing SiO□ as an additive raw material and using an inorganic material such as zinc oxide as a main raw material.

88発明の概要 本発明は、添加原料に5in2を含み、例えば酸化亜鉛
のような無機物質よりなる主原料粉末と上記添加原料と
より製造される非直線抵抗体の製造方法において、上記
添加原料の5i02を上記主原料の粉末より粒径の小さ
い粉末として他の添加原料と混合粉砕を行った後主原料
粉末と混合を行うことにより混合度を高めて電気特性を
向上させるようにしたものである。
88 Summary of the Invention The present invention provides a method for manufacturing a non-linear resistor that includes 5in2 as an additive raw material and is manufactured from a main raw material powder made of an inorganic substance such as zinc oxide and the above additive raw material. 5i02 is made into a powder with a smaller particle size than the above-mentioned main raw material powder, mixed with other additive raw materials and pulverized, and then mixed with the main raw material powder to increase the degree of mixing and improve the electrical properties. .

C0従来の技術 従来、無機物質を主成分とする電圧非直線抵抗体の主原
料には通常酸化亜鉛(ZnO)が用いられており、また
電圧非直線性誘発原料である添加原料として、B i2
03、SiO□、CO2O3,5b203等が用いられ
ている。
C0 Prior Art Conventionally, zinc oxide (ZnO) has been normally used as the main raw material for voltage nonlinear resistors that are mainly composed of inorganic substances, and B i2 has been used as an additive raw material that induces voltage nonlinearity.
03, SiO□, CO2O3, 5b203, etc. are used.

このような電圧非直線抵抗体は以下の方法により製造さ
れる。
Such a voltage nonlinear resistor is manufactured by the following method.

(1)電圧非直線性を誘発するB i203.5i02
、Co2O3,5b203等の添加成分を主原料のZn
Oに対して5〜15%となるように計量し、撹拌中の純
水に固形分濃度が40〜60%となるよう投入する。
(1) B i203.5i02 that induces voltage nonlinearity
, Co2O3, 5b203, etc. are added to the main raw material Zn.
It is weighed so that it is 5 to 15% based on O, and added to pure water under stirring so that the solid content concentration is 40 to 60%.

これを10分以上混合した後、振動ミル等へ投入し、3
〜8時間混合粉砕し、添加原料スラリーを得る。
After mixing this for more than 10 minutes, put it into a vibrating mill etc. and
Mix and grind for ~8 hours to obtain additive raw material slurry.

(2)次にバインダー溶液及びZnOを投入して、十分
にスラリー化した乳化槽の中に前項で製造した添加原料
スラリーを投入し、全体を1〜5時間時間子分に乳化混
合する。これにより生成したスラリーをスプレードライ
ヤー等で噴霧乾燥して成形し易い粉体を得る。
(2) Next, the binder solution and ZnO are put in, and the additive raw material slurry produced in the previous section is put into the emulsification tank which has been sufficiently slurried, and the whole is emulsified and mixed for 1 to 5 hours. The slurry thus produced is spray-dried using a spray dryer or the like to obtain a powder that is easy to mold.

(3)上記のように得られた粉体を乾式成形プレスに所
定量充填し、圧力を200〜500kg/cm2として
直径60mmで厚さ30mmの形状の成形体を得る。
(3) A predetermined amount of the powder obtained as described above is filled into a dry molding press, and a pressure of 200 to 500 kg/cm2 is applied to obtain a molded body having a diameter of 60 mm and a thickness of 30 mm.

(4)成形後、900〜1000℃にて数時間仮焼し、
冷却後側面に絶縁体を塗布して再度1100〜1250
℃にて10時間程度焼成して両端面を研磨した後、端面
にアルミニウムの電極をつけて完成する。
(4) After molding, calcining at 900 to 1000°C for several hours,
After cooling, apply insulator to the side surface and heat again to 1100~1250
After baking at ℃ for about 10 hours and polishing both end faces, aluminum electrodes are attached to the end faces to complete the process.

通常上記ZnOの粉末には工業用の各種用途に用いられ
る亜鉛華を使用する。
Usually, zinc white, which is used for various industrial purposes, is used as the ZnO powder.

この亜鉛華の粒子は平均粒径が非常に小さく、その粒径
は0.3〜1.0μmの範囲内に分布しており、粉体物
性も比較的−様である。
The average particle size of the zinc white particles is very small, and the particle sizes are distributed within the range of 0.3 to 1.0 μm, and the powder physical properties are also relatively similar.

しかし、電圧非直線性誘発原料であるB i203、C
o2O3,5b208等の平均粒径は通常3−5μm程
度となっており、また5102は粒径が10〜30μm
と亜鉛華の粒径に比して更に大きい。
However, B i203, C which is the voltage nonlinearity inducing raw material
The average particle size of o2O3, 5b208, etc. is usually about 3-5 μm, and 5102 has a particle size of 10-30 μm.
This is even larger than the particle size of zinc white.

このように粒径が大きく不揃いな上記添加原料を直接Z
nOに混合して乳化した場合、微視的には混合が十分行
われないため焼結時の反応性が悪くなる。
In this way, the above additive raw materials with large and irregular particle sizes can be directly
When mixed with nO and emulsified, the reactivity during sintering deteriorates because the mixing is not microscopically sufficient.

従って、非直線性電圧抵抗体を製造する際には特願昭6
2−239392号公報に開示されるように上記添加物
の湿式混合粉砕を行って平均粒径をZnO粒子の平均粒
径以下としている。
Therefore, when manufacturing a nonlinear voltage resistor, it is necessary to
As disclosed in Japanese Patent No. 2-239392, the above additives are wet mixed and pulverized to have an average particle size equal to or less than the average particle size of ZnO particles.

D1発明が解決しようとする課題 しかし、上記のように添加物原料を湿式混合粉砕して添
加物全体の平均粒径を主原料の平均粒径より小としても
、大粒径の粒体が一部残ってしまう。
D1 Problem to be Solved by the Invention However, even if the additive raw materials are wet-mixed and pulverized as described above to make the average particle size of the entire additive smaller than the average particle size of the main raw material, the large particle size particles Some parts will remain.

特にSiO2はモース硬度が6.5〜8.0と他の原料
添加物に比して非常に大きいため、湿式混合粉砕を行っ
ても大粒径の粒体が残り易く、更に5in2は焼成温度
の11.00℃〜1250″C稈度の温度では溶解しな
い。
In particular, SiO2 has a Mohs hardness of 6.5 to 8.0, which is very large compared to other raw material additives, so even if wet mixing and pulverization is performed, large particles tend to remain. It does not melt at temperatures of 11.00°C to 1250″C culm.

従って、焼成時に上記のように大粒径の5i02が存在
すると、周囲の粒子との収縮率の差により内部ピンホー
ル等が発生し、その結果歩留まりが低下する。
Therefore, if 5i02 with a large particle size is present during firing as described above, internal pinholes etc. will occur due to the difference in shrinkage rate with surrounding particles, resulting in a decrease in yield.

また、粉砕時間を長くして5i02の粒径を小さくする
と、時間がかかり過ぎるうえ、玉石等の不純物の混入量
が増加して粉砕効率が悪くなり、更に製造された電圧非
直線抵抗体の電気特性に悪影響を及ぼす。
In addition, if the particle size of 5i02 is reduced by increasing the grinding time, it will take too much time, and the amount of impurities such as cobbles will increase, reducing the grinding efficiency. adversely affect characteristics.

本発明はこのような背景の下になされたものであり、5
i02の粒径を小さくして主原料と添加物原料との混合
度を高くすることにより電気特性を向上し、これにより
歩留まりを向上することを目的とする。
The present invention was made against this background, and
The purpose is to improve electrical properties by reducing the particle size of i02 and increasing the degree of mixing between the main raw material and the additive raw material, thereby improving the yield.

E0課題を解決するための手段及び作用上記の課題を解
決するため、本発明は無機物質よりなる主原料粉末と、
他の添加原料とを湿式混合粉砕して得られる平均粒子径
が上記主原料粉末に比して小であるスラリー状生成物と
を混合し、これを造粒して得られる微粒粉を焼結する工
程を備えた電圧非直線抵抗体の製造方法において、上記
添加原料内のSiO□の粒径を5μm以下としたことを
特徴とする。
Means and operation for solving the E0 problem In order to solve the above problems, the present invention provides a main raw material powder made of an inorganic substance,
A slurry-like product obtained by wet mixing and pulverization of other additive raw materials and having an average particle size smaller than that of the main raw material powder is mixed, and the resulting fine powder is sintered by granulating it. The method for manufacturing a voltage nonlinear resistor is characterized in that the particle size of SiO□ in the additive raw material is 5 μm or less.

G、実施例 本実施例においては平均粒径が夫々40μm120μm
110μm、 5μm、1μmである5i02試料に対
して添加原料スラリーを作成して粒度分布を測定し、更
にこれら各スラリーにより主原料の無機物質をZnOと
した電圧非直線抵抗体を作成して各々の電気的特性等を
測定した。その詳細を以下に示す。
G. Example In this example, the average particle size was 40 μm and 120 μm, respectively.
An additive raw material slurry was prepared for the 5i02 samples with sizes of 110 μm, 5 μm, and 1 μm, and the particle size distribution was measured.Furthermore, a voltage nonlinear resistor using ZnO as the main raw material inorganic material was created using each of these slurries. Electrical characteristics etc. were measured. The details are shown below.

即ち、主原料に対して1wt%の上記5i02試料と、
主原料に対してl 2wt%のBi2O2、Co20.
.5bzOs等の原料添加物とを混合して撹拌中の純水
に固形分濃度が50%となるよう投入し、10分以上混
合を行う。
That is, the above 5i02 sample of 1 wt% based on the main raw material,
Bi2O2, Co20.12wt% based on the main raw materials.
.. The mixture is mixed with raw material additives such as 5bzOs and added to pure water under stirring so that the solid content concentration becomes 50%, and the mixture is mixed for 10 minutes or more.

その後、上記混合液を振動ミルに投入し混合粉砕を行っ
て添加原料スラリーを作成し、その粒度分布を遠心沈降
式粒度分布測定器等により測定する。本実施例において
は、上記混合粉砕時間を平均粒径40μmのSiO□を
用いたスラリーの平均粒径がZnOの平均粒径よりも小
さい0.8μmとなった時間である6時間に統一した。
Thereafter, the above-mentioned liquid mixture is put into a vibrating mill, mixed and pulverized to prepare an additive raw material slurry, and its particle size distribution is measured using a centrifugal sedimentation type particle size distribution analyzer or the like. In this example, the mixing and pulverizing time was unified to 6 hours, which is the time when the average particle size of the slurry using SiO□ with an average particle size of 40 μm became 0.8 μm, which is smaller than the average particle size of ZnO.

次に上記添加原料スラリーにバインダー溶液及びZnO
を投入し、十分にスラリー化を行って主原料スラリーを
作成する。これを乳化槽の中に投入して全体の乳化混合
を2時間行い、乳化したスラリーをスプレードライヤー
で噴霧乾燥して夫々造粒粉を得る。
Next, binder solution and ZnO are added to the above additive raw material slurry.
and sufficiently slurry it to create the main raw material slurry. This was put into an emulsification tank and emulsified and mixed as a whole for 2 hours, and the emulsified slurry was spray-dried with a spray dryer to obtain granulated powders.

更に、得られた造粒粉を直径60mm、高さ30mmの
金型で円板形にプレス成形して1100〜1250℃に
て10時間焼成して両端を研磨し、成形体を得る。
Further, the obtained granulated powder is press-molded into a disc shape using a mold having a diameter of 60 mm and a height of 30 mm, and is fired at 1100 to 1250° C. for 10 hours and both ends are polished to obtain a molded body.

更にまた、上記成形体を超音波探傷器にて直径0、2m
m以上の気孔の有無を検査して内部ピンホール発生率の
確認を行い、その後上記両端面にAlを溶射して電極を
形成し、電圧非直線抵抗体を製造した。
Furthermore, the above molded body was inspected using an ultrasonic flaw detector with a diameter of 0.2 m.
The occurrence rate of internal pinholes was confirmed by inspecting the presence or absence of pores of m or more in size, and then Al was thermally sprayed on both end faces to form electrodes, thereby producing a voltage nonlinear resistor.

上記工程により、各平均粒径の5iQ2試料の夫々につ
いて電圧非直線抵抗体を作成し、内部ピンホール発生率
と、4710μ5lookA破壊率と、添加物粉砕後の
10μm以上の粒子の存在率とを測定した結果を夫々第
1図、第2図、第3図に示す。
Through the above process, a voltage nonlinear resistor was created for each of the 5iQ2 samples with each average particle size, and the internal pinhole generation rate, 4710μ5lookA destruction rate, and the presence rate of particles of 10μm or more after additive pulverization were measured. The results are shown in FIGS. 1, 2, and 3, respectively.

上記測定結果により、原料5i02の平均粒径を5μm
以下とすると、内部ピンホール発生率、粒径が10μm
以上の粒子の残存率及び4/1oμS・100kAの放
電耐量破壊率も0となっている。
Based on the above measurement results, the average particle size of raw material 5i02 was determined to be 5 μm.
Assuming the following, the internal pinhole generation rate and particle size are 10 μm
The residual rate of the above particles and the 4/1 μS/100 kA discharge withstand breakdown rate were also 0.

従って、原料5iQ2の粒径を5μm以下にすると、焼
結性が良く電気特性も良好な電圧非直線抵抗体が得られ
ることがわかる。
Therefore, it can be seen that when the particle size of the raw material 5iQ2 is set to 5 μm or less, a voltage nonlinear resistor with good sinterability and good electrical properties can be obtained.

また、上記製造工程において添加原料を混合、粉砕して
得られる生成物の平均粒径が0.8μmより小さく、か
つ最大粒径が10μm以下とするために要する粉砕時間
及び不純物混入量を原料5in2の各粒径値に対して測
定した結果を第4図に示す。
In addition, in the above manufacturing process, the grinding time and amount of impurities mixed in to make the product obtained by mixing and grinding the additive raw materials so that the average particle size is smaller than 0.8 μm and the maximum particle size is 10 μm or less are calculated based on the raw material 5in2. FIG. 4 shows the measurement results for each particle size value.

第4図においては平均粒径を5μm110μm140μ
mとして測定を行った結果を夫々グラフ1.2.3に示
しており、また粉砕時間が長く生産性が悪い範囲及び不
純物混入量過多により電気特性が低下する範囲にハツチ
ングを施している。
In Figure 4, the average particle size is 5 μm, 110 μm, and 140 μm.
The results of measurements taken as m are shown in graphs 1.2.3, and hatching is applied to the range where the grinding time is long and productivity is poor, and the range where electrical properties are degraded due to excessive amount of impurities mixed in.

これにより、原料SiO□の平均粒径を10μmまたは
40μmとすると測定結果は上記ハツチングを施した範
囲に含まれるのに対し、平均粒径を5μmとした測定結
果は上記ハツチング範囲には含まれず、生産性及び電気
特性の双方共に満たされることがわかる。
As a result, if the average particle size of the raw material SiO It can be seen that both productivity and electrical characteristics are satisfied.

H1発明の効果 本発明によれば、原料5i02の平均粒径を小としたこ
とにより焼成時における粒径が10μm以上となるSi
O□粒子の発生を抑制しており、従って粒径10μm以
上の5in2により生起されていた内部ピンホールの発
生が抑制され、よって得られる電圧非直線抵抗体の電気
的特性が向上する。
H1 Effects of the Invention According to the present invention, by reducing the average particle size of the raw material 5i02, the Si material has a particle size of 10 μm or more during firing.
The generation of O□ particles is suppressed, and therefore the generation of internal pinholes caused by 5in2 with a particle size of 10 μm or more is suppressed, thereby improving the electrical characteristics of the voltage nonlinear resistor obtained.

更に、添加原料の混合粉砕時間を短縮でき、生産性が向
上するという効果も得られる。
Furthermore, the time for mixing and pulverizing the added raw materials can be shortened, and productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5i02平均粒径と内部ピンホール発生率の相
関図、第2図はSiO□平均粒径と4/10μs・10
0kA破壊率の相関図、第3図は5i02平均粒径と原
料添加物粉砕後の粒径10μm以上の粒子の存在率の相
関図、第4図は5i02平均粒径と粉砕メディア混入量
及び添加物粉砕時間の相関図である。 外する 第1図 SiO2平81粒督と内部ピンホール発生率の相関図第
2図 5102平均粒径と4/10Jis 100kA!Jjllの8間1ff1 0.15 To  20    40 S102平均粒径(μm)
Figure 1 is a correlation diagram between 5i02 average grain size and internal pinhole generation rate, Figure 2 is a correlation diagram between SiO□ average grain size and 4/10μs・10
Correlation diagram of 0kA fracture rate, Figure 3 is a correlation diagram of 5i02 average particle size and abundance rate of particles with a particle size of 10 μm or more after raw material additive crushing, Figure 4 is a correlation diagram of 5i02 average particle size and amount of grinding media mixed and addition It is a correlation diagram of object crushing time. Fig. 1 Correlation diagram between SiO2 Hei 81 grain director and internal pinhole generation rate Fig. 2 5102 average grain size and 4/10Jis 100kA! Jjll's 8 to 1ff1 0.15 To 20 40 S102 average particle size (μm)

Claims (1)

【特許請求の範囲】[Claims] (1)無機物質よりなる主原料粉末と、他の添加原料と
を湿式混合粉砕して得られる平均粒子径が上記主原料粉
末に比して小であるスラリー状生成物とを混合し、これ
を造粒して得られる微粒粉を焼結する工程を備えた電圧
非直線抵抗体の製造方法において、 上記添加原料内のSiO_2の粒径を5μm以下とした
ことを特徴とする電圧非直線抵抗体の製造方法。
(1) A main raw material powder made of an inorganic substance and a slurry-like product obtained by wet mixing and pulverization of other additive raw materials and having a smaller average particle diameter than the above-mentioned main raw material powder; A voltage nonlinear resistor manufacturing method comprising a step of sintering fine powder obtained by granulating a voltage nonlinear resistor, characterized in that the particle size of SiO_2 in the additive raw material is 5 μm or less. How the body is manufactured.
JP2274097A 1990-10-12 1990-10-12 Production of voltage non-linearity resistor Pending JPH04148505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274097A JPH04148505A (en) 1990-10-12 1990-10-12 Production of voltage non-linearity resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274097A JPH04148505A (en) 1990-10-12 1990-10-12 Production of voltage non-linearity resistor

Publications (1)

Publication Number Publication Date
JPH04148505A true JPH04148505A (en) 1992-05-21

Family

ID=17536952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274097A Pending JPH04148505A (en) 1990-10-12 1990-10-12 Production of voltage non-linearity resistor

Country Status (1)

Country Link
JP (1) JPH04148505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535862B2 (en) 2010-07-07 2013-09-17 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8637216B2 (en) 2010-10-25 2014-01-28 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus and process cartridge for image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535862B2 (en) 2010-07-07 2013-09-17 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus, and process cartridge
US8637216B2 (en) 2010-10-25 2014-01-28 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus and process cartridge for image forming apparatus

Similar Documents

Publication Publication Date Title
JPS62870B2 (en)
JPS62132765A (en) Manufacture of high insulation high alumina base ceramic composition
JPH04148505A (en) Production of voltage non-linearity resistor
JPS63296307A (en) Manufacture of zinc oxide type varistor
JP2019133951A (en) Composition for insulator for spark plug, and method of manufacturing insulator for spark plug
US4119469A (en) Insulating ceramic substances having controlled porosity and the method for preparing them by sintering
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
Jorand et al. Compaction and sintering behaviour of sol-gel powders
JPH0733548A (en) Production of ceramic filter
JP2692210B2 (en) Zinc oxide varistor
JPH11228219A (en) Production of high-density ito sintered compact utilizing ito recycled powder
JPH04300235A (en) Production of ceramic body
JPS647030B2 (en)
Balakrishna et al. PARTICLE AGGREGATES IN POWDER PROCESSING- A REVIEW
JPH07247169A (en) Production of ceramic capacitor raw material powder
JPH03257902A (en) Manufacture of voltage nonlinear resistor
JP2506368B2 (en) Method for producing alumina-based ceramics
JP2004088031A (en) Method of manufacturing voltage nonlinear resistor
JPH0967119A (en) Rare earth element oxide
JPH09157021A (en) Production of dielectric material for low temperature sintering
JPH02241003A (en) Manufacture of zinc oxide type varistor
JPH02210803A (en) Manufacture of voltage nonlinear resistor
RU2044717C1 (en) Method of black ceramic preparing
Hashi et al. Relationship between rheological properties of slurries and pore size distribution of cast and compressed compacts of mullite
KR100302230B1 (en) Method for producing silica radome using wet hydrostatic pressure molding process