JPH04148193A - Variable conductance heat pipe - Google Patents

Variable conductance heat pipe

Info

Publication number
JPH04148193A
JPH04148193A JP2271063A JP27106390A JPH04148193A JP H04148193 A JPH04148193 A JP H04148193A JP 2271063 A JP2271063 A JP 2271063A JP 27106390 A JP27106390 A JP 27106390A JP H04148193 A JPH04148193 A JP H04148193A
Authority
JP
Japan
Prior art keywords
temperature
heat pipe
section
gas
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2271063A
Other languages
Japanese (ja)
Other versions
JP2897390B2 (en
Inventor
Michihiko Nakano
充彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2271063A priority Critical patent/JP2897390B2/en
Publication of JPH04148193A publication Critical patent/JPH04148193A/en
Application granted granted Critical
Publication of JP2897390B2 publication Critical patent/JP2897390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To permit the variation of temperature control property freely after sealing a heat pipe by changing the amount of heating of a heater heating hydrogen storage alloy placed in the hollow section of a container. CONSTITUTION:When a heater control circuit 8 puts a heater 7 ON when the measured temperature of an instrument 10 whose temperature is to be controlled, has reduced to a value lower than a predetermined set temperature, the temperature of hydrogen storage alloy 6 is increased and hydrogen gas 5, operating as non-condensing gas, is released from the hydrogen storage alloy 6. Then, the position of an interface 13 between gas and vapor is moved toward the direction of -X or the direction of an evaporating section 14 whereby the area of heat dissipating section or a condensing section 15 is reduced and the conductance of this heat pipe is reduced. On the contrary, when the measured temperature of the instrument 10, whose temperature is to be controlled, has been risen to a value higher than the predetermined set temperature, the heater control circuit 8 puts the heater 7 OFF. As a result, the temperature of the hydrogen storage alloy 6 is reduced and hydrogen gas 5 is absorbed into the hydrogen storage alloy 6. Further, the position of the interface 13 between the gas and the vapor is moved toward the direction of +X or the direction of a pipe 11 whereby the area of the condensing section 15 is increased and the conductance of the heat pipe is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工衛星に搭載され、人工衛星内部の熱伝達を
行うヒートパイプに関し、特に温度により伝熱量が変化
する可変コンダクタンス(熱伝導度)ヒートパイプに関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat pipe that is installed on an artificial satellite and performs heat transfer inside the artificial satellite, and in particular relates to a heat pipe that is mounted on an artificial satellite and that transfers heat inside the artificial satellite. Regarding heat pipes.

〔従来の技術〕[Conventional technology]

従来、この種の可変コンダクタンスヒートパイプは、第
2図の従来の実施例の断面図に示すように、一端に蒸発
部14.他端に凝縮部15を有する中空管2と、その他
端と互いの中空部が接続ばれたコンテナ部17とに、金
属メツシュ等で精兵され毛細管作用をもつウィック1と
、作動流体6液体3と、作動流体の蒸気4と、ヒートパ
イプ(使用温度範囲では液化しない非凝縮性ガス162
が封入されている。ウィック1と作動流体の液や3と作
動流体の蒸気4とは、中空管2の中空部番。
Conventionally, this type of variable conductance heat pipe has an evaporator section 14. A hollow tube 2 having a condensing part 15 at the other end, a container part 17 to which the other end and each other's hollow parts are connected, a wick 1 made of metal mesh or the like and having a capillary action, a working fluid 6 liquid 3 , working fluid vapor 4, and heat pipe (non-condensable gas 162 that does not liquefy in the operating temperature range)
is included. The wick 1, the liquid working fluid, and the wick 3 and the steam 4 of the working fluid are hollow part numbers of the hollow tube 2.

封入されている。非凝縮性ガス16はガス溜り2なるコ
ンテナ部17に封入されるが中空管2にd入り自在であ
る。ここでヒートパイプの作動流台は、使用温度範囲が
常温付近のときには、水、フルコール等が使用される。
It is enclosed. The non-condensable gas 16 is sealed in a container portion 17 serving as a gas reservoir 2, but can freely enter the hollow tube 2. Here, when the working temperature range of the heat pipe is around normal temperature, water, full coal, etc. are used for the sink.

また、吸熱部である連発部14には被温度制御機器が放
熱部である凝艇部15には放熱体が接続される。このよ
うな構部のヒートパイプにおいては、非凝縮性ガス16
を作動流体の蒸気4との間、即ち凝縮部15の中1部付
近に蒸気・ガス界面13が生じる。
Further, a heat radiator is connected to the continuous firing section 14, which is a heat absorbing section, and a temperature-controlled device is connected to the boat section 15, which is a heat radiating section. In the heat pipe of such a structure, the non-condensable gas 16
A vapor-gas interface 13 is generated between the working fluid and the vapor 4, that is, near the middle part of the condensing part 15.

いま、蒸発部14への熱入力が増加し、その温度が高く
なると、作動流体の蒸気4の圧力が増力、1し、凝縮部
15の位置に形成されている蒸気・ノス界面13の位置
が図中の+X方向、即ちコンテナ部17方向に移動する
。その結果、凝縮部15の領域、即ち放熱領域が増加す
るため、ヒートパイプのコンダクタンスが増加し、ヒー
トパイプの温度上昇を防止する。
Now, when the heat input to the evaporator 14 increases and its temperature rises, the pressure of the steam 4 of the working fluid increases to 1, and the position of the steam-nos interface 13 formed at the position of the condensing part 15 increases. It moves in the +X direction in the figure, that is, in the direction of the container section 17. As a result, the area of the condensing section 15, that is, the heat dissipation area increases, so the conductance of the heat pipe increases and the temperature of the heat pipe is prevented from rising.

また、蒸発部14への熱入力が減少し、その温度が低く
なると、作動流体の蒸気4の圧力が減少し、蒸気・ガス
界面13の位置が図中の−X方向。
Furthermore, when the heat input to the evaporator 14 decreases and its temperature decreases, the pressure of the steam 4 as the working fluid decreases, and the position of the steam/gas interface 13 moves in the -X direction in the figure.

即ち蒸発部14方向に移動する。その結果、凝縮部15
の領域が減少するため、ビートパイプのコンダクタンス
が減少し、ヒートパイプの温度下降を防止する。
That is, it moves in the direction of the evaporator 14. As a result, the condensing section 15
Since the area of the heat pipe decreases, the conductance of the beat pipe decreases, preventing the temperature drop of the heat pipe.

以上説明したように従来のヒートパイプは、蒸発部14
への熱入力またはその温度によってコンダクタンスが変
化し、ヒートパイプへの熱入力の変化に対してその温度
を一定に保っていた。
As explained above, in the conventional heat pipe, the evaporation section 14
The conductance changes depending on the heat input to the heat pipe or its temperature, keeping its temperature constant against changes in the heat input to the heat pipe.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の可変コンダクタンスヒートパイプは、被
温度制御機器の広い制御温度幅に対して細かい温度制御
を行うためには、非凝縮性ガスの量を多くする必要があ
る。そのため、コンテナ部の容積が増加し、重量増とな
る欠点があった。
The conventional variable conductance heat pipe described above requires a large amount of non-condensable gas in order to perform fine temperature control over a wide control temperature range of the temperature-controlled device. Therefore, there was a drawback that the volume of the container part increased and the weight increased.

また、温度制御性は封入した非凝縮性ガスの量で左右さ
れ、その量は中空管封入後に変更はできず、ヒートパイ
プへの熱入力量の変更に対して、即応が不可能であると
いう問題があった。
In addition, temperature controllability depends on the amount of non-condensable gas sealed in the tube, and that amount cannot be changed after the hollow tube is filled, making it impossible to respond immediately to changes in the amount of heat input to the heat pipe. There was a problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の可変コンダクタンスヒートパイプは、ウィック
と作動流体が封入され一方の端部には吸熱部である前記
作動流体が蒸発する蒸発部を他方の端部には放熱部であ
る前記作動流体が凝縮する凝縮部を有する中空管と、前
記中空管の他方の端部の中空部と中空部が接続され非凝
縮性ガスが封入されたコンテナ部とを有し、温度変化に
従って前記作動流体の蒸気と前記非凝縮性ガスとによっ
て前記凝縮部の位置に形成されている蒸気・ガス界面の
位置が移動することにより伝熱量が変化する可変コンダ
クタンスヒートパイプにおいて、前記非凝縮性ガスとし
て水素ガスを使用し、前記コンテナ部の中空部に置かれ
た水素貯蔵合金と、前記コンテナ部の外側におかれ前記
コンテナ部を介して前記水素貯蔵合金を加熱するヒータ
とを備えており、前記ヒータ加熱量を変化させることに
より伝熱コンダクタンスを変化させている。
In the variable conductance heat pipe of the present invention, a wick and a working fluid are sealed, one end has a heat absorption part where the working fluid evaporates, and the other end has a heat radiation part where the working fluid condenses. a hollow tube having a condensing section, and a container section in which the hollow section at the other end of the hollow tube is connected and a non-condensable gas is sealed therein; In a variable conductance heat pipe in which the amount of heat transfer changes by moving the position of a steam-gas interface formed at the condensing part by steam and the non-condensable gas, hydrogen gas is used as the non-condensable gas. a hydrogen storage alloy placed in a hollow part of the container part; and a heater placed outside the container part to heat the hydrogen storage alloy through the container part; The heat transfer conductance is changed by changing the .

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.

この可変コンダクタンスヒートパイプは、コンテナ部1
7の中空部が中空管2の凝縮部15側の中空部にパイプ
11によって接続されている。コンテナ部17には非凝
縮性ガスのガス溜めとして動作する水素貯蔵合金6が取
りつけ、られている。
This variable conductance heat pipe
The hollow part of the hollow tube 7 is connected to the hollow part of the hollow tube 2 on the condensing part 15 side by a pipe 11. A hydrogen storage alloy 6 is attached to the container portion 17 and acts as a gas reservoir for non-condensable gas.

水素貯蔵合金6は、水素を多量に吸収し、蓄えることが
できる合金であり、鉄−チタン系合金のほかランタン−
ニッケル系、ミツシュメタル系合金などが使用できる。
Hydrogen storage alloy 6 is an alloy that can absorb and store a large amount of hydrogen, and includes iron-titanium alloys as well as lanthanum-based alloys.
Nickel-based, Mitsushi metal-based alloys, etc. can be used.

この水素貯蔵合金6は、温度に応じた一定の水素圧の平
衡に達するまで水素を吸収し、金属水素化物の形で貯蔵
する。平衡水素化圧より低い水素圧の下では、貯蔵した
水素を放出し、元の金属に戻る。またコンテナ部17の
外側には、ヒータ7が取りつけられ、更にその外側にコ
ンテナ17を外界と断熱する断熱材18が設けられる。
This hydrogen storage alloy 6 absorbs hydrogen until reaching a constant hydrogen pressure equilibrium depending on temperature and stores it in the form of metal hydride. Under hydrogen pressures lower than the equilibrium hydrogenation pressure, the stored hydrogen is released and the metal returns to its original state. Further, a heater 7 is attached to the outside of the container portion 17, and a heat insulating material 18 is further provided outside the heater 7 to insulate the container 17 from the outside world.

可変コンダクタンスヒートパイプの蒸発部14には、そ
の温度を計測する温度センサ9を有する被温度制御機器
10が接触して取付けられ、凝縮部15には、放熱体1
2が取付けられている。ヒータ7のオン・オフ制御が、
被温度制御機器10が計測した蒸発部14の温度情報を
受けたヒータ制御回路8によって行なわれる。ウィック
11作動流体の液体3および作動流体の蒸気4について
は、従来の実施例と同様の機能・動作を果すものであり
、説明は省略する。
A temperature-controlled device 10 having a temperature sensor 9 for measuring the temperature is attached to the evaporating section 14 of the variable conductance heat pipe in contact with the evaporating section 14, and a heat dissipating body 1 is attached to the condensing section 15.
2 is installed. The on/off control of the heater 7 is
This is performed by the heater control circuit 8 which receives the temperature information of the evaporator 14 measured by the temperature-controlled device 10. The liquid 3 of the wick 11 and the vapor 4 of the working fluid perform the same functions and operations as in the conventional embodiment, and therefore their explanation will be omitted.

次にこの可変コンダクタンスヒートパイプの動作を説明
する。ヒータ制御回路8は被温度制御機器10の計測し
た温度が予め定められた設定温度よりも下がった時、ヒ
ータ7をオンする。ヒータ加熱の結果、水素貯蔵合金6
の温度が上昇し、水素貯蔵合金6から非凝縮性ガスとし
て動作する水素ガス5が放出される。そして、ガス・蒸
気界面13の位置が図中の−X方向、即ち蒸発部14方
向に移動し、放熱部である凝縮部15の領域が減少し、
このヒートバイブのコンダクタンスが減少する。またヒ
ータ制御回路8は被温度制御機器10の計測した温度が
予め定められた設定温度よりも上がった時ヒータ7をオ
フする。その結果、水素貯蔵合金6の温度が下降し、水
素貯蔵合金6に水素ガス5が吸収される。そして、ガス
・蒸気界面13の位置が図中の+X方向、即ちバイブ1
1の方向に移動し、凝縮部15の領域が増加してヒート
バイブのコンダクタンスが増加する。
Next, the operation of this variable conductance heat pipe will be explained. The heater control circuit 8 turns on the heater 7 when the temperature measured by the temperature-controlled device 10 falls below a predetermined set temperature. As a result of heater heating, hydrogen storage alloy 6
temperature increases, and hydrogen gas 5, which behaves as a non-condensable gas, is released from the hydrogen storage alloy 6. Then, the position of the gas-steam interface 13 moves in the -X direction in the figure, that is, in the direction of the evaporation section 14, and the area of the condensation section 15, which is a heat dissipation section, decreases.
The conductance of this heat vibration decreases. Further, the heater control circuit 8 turns off the heater 7 when the temperature measured by the temperature-controlled device 10 rises above a predetermined set temperature. As a result, the temperature of the hydrogen storage alloy 6 decreases, and the hydrogen gas 5 is absorbed into the hydrogen storage alloy 6. Then, the position of the gas/steam interface 13 is in the +X direction in the figure, that is, the vibe 1
1, the area of the condensing section 15 increases, and the conductance of the heat vibrator increases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、水素を非常に効率の良い
形で貯蔵することが可能な水素貯蔵合金非凝縮性ガスの
ガス溜めとして使用する事により、従来の可変コンダク
タンスのガス溜めであるコンテナ部を掻く小容量とする
ことができ、可変コンダクタンスヒートパイプの重量を
軽量化することができる効果がある。
As explained above, the present invention enables the use of a container, which is a conventional variable conductance gas reservoir, by using a hydrogen storage alloy as a gas reservoir for a non-condensable gas that can store hydrogen in a highly efficient manner. This has the effect of reducing the weight of the variable conductance heat pipe.

また、ヒータによる加熱量を変化させることにより、水
素貯蔵合金から放出される水素ガス量を任意に変化させ
ることができるのでヒートバイブ封止後も被温度制御機
器に対する温度制御性を自在に変更可能であるという効
果がある。
In addition, by changing the amount of heating by the heater, the amount of hydrogen gas released from the hydrogen storage alloy can be arbitrarily changed, making it possible to freely change the temperature controllability of the temperature-controlled equipment even after the heat vibrator is sealed. There is an effect that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来の実
施例の断面図である。 1・・・ウィック、2・・・中空管、3・・・作動流体
の液体、4・・・作動流体の蒸気、5・・・水素ガス、
6・・・水素貯蔵合金、7・・・ヒータ、8・・・ヒー
タ制御回路、9・・・温度センサ、10・・・被温度制
御機器、11・・・バイブ、12・・・放熱体、13・
・・蒸気・ガス界面、14・・・蒸発部、15・・・凝
縮部、16・・・非凝縮性ガス、17・・・コンテナ部
、18・・・断熱材。
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is a sectional view of a conventional embodiment. DESCRIPTION OF SYMBOLS 1...Wick, 2...Hollow tube, 3...Liquid of working fluid, 4...Vapor of working fluid, 5...Hydrogen gas,
6... Hydrogen storage alloy, 7... Heater, 8... Heater control circuit, 9... Temperature sensor, 10... Temperature controlled device, 11... Vibrator, 12... Heat sink , 13・
... Steam/gas interface, 14... Evaporation section, 15... Condensation section, 16... Non-condensable gas, 17... Container section, 18... Heat insulating material.

Claims (1)

【特許請求の範囲】 1、ウィックと作動流体が封入され一方の端部には吸熱
部である前記作動流体が蒸発する蒸発部を他方の端部に
は放熱部である前記作動流体が凝縮する凝縮部を有する
中空管と、前記中空管の他方の端部の中空部と中空部が
接続され非凝縮性ガスが封入されたコンテナ部とを有し
、温度変化に従って前記作動流体の蒸気と前記非凝縮性
ガスとによって前記凝縮部の位置に形成されている蒸気
ガス界面の位置が移動することにより伝熱量が変化する
可変コンダクタンスヒートパイプにおいて、前記非凝縮
性ガスとして水素ガスを使用し、前記コンテナ部の中空
部に置かれた水素貯蔵合金と、前記コンテナ部の外側に
おかれ前記コンテナ部を介して前記水素貯蔵合金を加熱
するヒータとを備えており、前記ヒータ加熱量を変化さ
せることにより伝熱コンダクタンスを変化させることを
特徴とする可変コンダクタンスヒートパイプ。 2、請求項1記載の可変コンダクタンスヒートパイプに
おいて、前記蒸発部の温度を計測する温度センサと、前
記計測された温度情報に従つて前記ヒータの加熱量を制
御するヒータ制御回路とを有することを特徴とする可変
コンダクタンスヒートパイプ。
[Claims] 1. A wick and a working fluid are sealed, one end is a heat absorbing part where the working fluid evaporates, and the other end is a heat radiating part where the working fluid condenses. It has a hollow tube having a condensing section, and a container section in which the hollow section at the other end of the hollow tube is connected and a non-condensable gas is sealed, and the vapor of the working fluid is In a variable conductance heat pipe in which the amount of heat transfer changes by moving the position of a steam-gas interface formed at the condensing part by the non-condensable gas and the non-condensable gas, hydrogen gas is used as the non-condensable gas. , comprising a hydrogen storage alloy placed in a hollow part of the container part, and a heater placed outside the container part to heat the hydrogen storage alloy via the container part, and changing the heating amount of the heater. A variable conductance heat pipe characterized by changing heat transfer conductance by 2. The variable conductance heat pipe according to claim 1, further comprising: a temperature sensor that measures the temperature of the evaporation section; and a heater control circuit that controls the heating amount of the heater according to the measured temperature information. Features a variable conductance heat pipe.
JP2271063A 1990-10-09 1990-10-09 Variable conductance heat pipe Expired - Lifetime JP2897390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271063A JP2897390B2 (en) 1990-10-09 1990-10-09 Variable conductance heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271063A JP2897390B2 (en) 1990-10-09 1990-10-09 Variable conductance heat pipe

Publications (2)

Publication Number Publication Date
JPH04148193A true JPH04148193A (en) 1992-05-21
JP2897390B2 JP2897390B2 (en) 1999-05-31

Family

ID=17494881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271063A Expired - Lifetime JP2897390B2 (en) 1990-10-09 1990-10-09 Variable conductance heat pipe

Country Status (1)

Country Link
JP (1) JP2897390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054122A (en) * 2008-08-28 2010-03-11 Mitsubishi Electric Corp Variable conductance heat pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054122A (en) * 2008-08-28 2010-03-11 Mitsubishi Electric Corp Variable conductance heat pipe

Also Published As

Publication number Publication date
JP2897390B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US3754594A (en) Unilateral heat transfer apparatus
US4254820A (en) Heat transport device
US3399717A (en) Thermal switch
EP0348838A3 (en) Bellows heat pipe for thermal control of electronic components
JP2003302178A5 (en)
JPH0519064B2 (en)
US4058160A (en) Heat transfer device
US3502138A (en) Means for regulating thermal energy transfer through a heat pipe
US3924674A (en) Heat valve device
GB2099980A (en) Heat transfer panels
US3712053A (en) Thermal-mechanical energy transducer device
US2026423A (en) Constant temperature device
JPH02134549A (en) Heat exchange measurement method and apparatus
US3637007A (en) Method of and means for regulating thermal energy transfer through a heat pipe
JPH04148193A (en) Variable conductance heat pipe
US3955619A (en) Heat transfer device
US4884627A (en) Omni-directional heat pipe
KR20190081999A (en) Loop Type Heat Pipe
US20030121515A1 (en) Counter - thermosyphon loop heat pipe solar collector
JPH0631701B2 (en) Heat cycle equipment
JPS61186785A (en) Heat carrier
JPH02146498A (en) Small heat transport device
JPH0726795B2 (en) Heat transport pipe
JPS6039658Y2 (en) heat pipe
JPH0674956B2 (en) heat pipe