JPS6039658Y2 - heat pipe - Google Patents

heat pipe

Info

Publication number
JPS6039658Y2
JPS6039658Y2 JP10781880U JP10781880U JPS6039658Y2 JP S6039658 Y2 JPS6039658 Y2 JP S6039658Y2 JP 10781880 U JP10781880 U JP 10781880U JP 10781880 U JP10781880 U JP 10781880U JP S6039658 Y2 JPS6039658 Y2 JP S6039658Y2
Authority
JP
Japan
Prior art keywords
gas
gas reservoir
temperature
bellows
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10781880U
Other languages
Japanese (ja)
Other versions
JPS5730578U (en
Inventor
英俊 安村
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to JP10781880U priority Critical patent/JPS6039658Y2/en
Publication of JPS5730578U publication Critical patent/JPS5730578U/ja
Application granted granted Critical
Publication of JPS6039658Y2 publication Critical patent/JPS6039658Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、熱輸送手段として用いられるヒートパイプで
、特に蒸発部の熱入力の変動に対してガス緩衝法により
凝縮面積を変化させる可変コンダクタンス性を有するも
のに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pipe used as a heat transport means, and particularly to a heat pipe having variable conductance that changes the condensation area by a gas buffering method in response to fluctuations in heat input to the evaporation section.

この種の可変コンダクタンスヒートパイプとして従来知
られているものは、コンテナの凝縮部に容量の大きいガ
スだめを連結し、コンテナ内の作動液蒸気とガスだめ内
のガスを凝縮部の任意の位置の境界面で圧力的に平衡さ
せ、熱入力が変動して蒸気の圧力が変化するのに対応し
て境界面の位置をずらしながら凝縮面積を変えるもので
、ガス緩衝法と称されている。
Conventionally known as this type of variable conductance heat pipe, a large-capacity gas reservoir is connected to the condensing section of a container, and the working fluid vapor in the container and the gas in the gas reservoir are transferred to any position in the condensing section. This method is called a gas buffer method, in which the pressure is balanced at the boundary surface, and the condensation area is changed by shifting the position of the boundary surface in response to changes in the steam pressure due to fluctuations in heat input.

従ってこれによると、蒸発部に入力する熱量の変動に対
しては有効であるが、ガスだめ内のガスの一部はコンテ
ナ内にも入って凝縮部の熱的影響を受けており、凝縮部
の放熱、吸熱が変動する等してそこの温度が変化すると
、ガスの圧力も変化して平衡する蒸気との境界面をずら
してしまい、これにより凝縮面積も変わって作動液蒸気
の温度一定制御を狂わすという問題がある。
Therefore, according to this, although it is effective against fluctuations in the amount of heat input to the evaporation section, some of the gas in the gas reservoir also enters the container and is affected by the heat of the condensation section. When the temperature changes due to fluctuations in the heat release and heat absorption of the gas, the pressure of the gas also changes, shifting the boundary surface with the equilibrium steam, which changes the condensation area and makes it difficult to maintain a constant temperature of the working liquid steam. The problem is that it makes the system go crazy.

本考案は、このような問題を解消すべくなされたもので
、温度変化に対し略可逆的に顕著の形状が変化する性質
を有する形状記憶部材に着目し、この形状記憶部材から
戊り温度の上昇により縮む特性を有するベローズをガス
だめ内に設け、凝縮部の温度の変動に伴うガスだめのガ
ス圧力の変化をベローズの収縮でガスだめ体積を変える
ことにより吸収し、凝縮部の温度の変動が作動液の蒸気
に影響を及ぼさないようにしたヒートパイプを提供する
ものである。
The present invention was developed to solve these problems, and focuses on a shape memory member that has the property of changing its shape substantially reversibly in response to temperature changes. A bellows that has the characteristic of contracting as it rises is installed in the gas reservoir, and changes in the gas pressure in the gas reservoir due to fluctuations in the temperature of the condensing section are absorbed by changing the volume of the gas reservoir by contraction of the bellows, thereby reducing the fluctuation in the temperature of the condensing section. The present invention provides a heat pipe in which the heat pipe does not affect the vapor of the working fluid.

以下、図面を参照して本考案の一実施例を具体的に説明
すると、図において符号1は密閉した筒状のコンテナで
あり、このコンテナ1の内壁に繊維状のウィック2が装
着され、且つ内部の蒸気空間内3に作動液4が入ってお
り、このようなコンテナ1の両端の所定の範囲がそれぞ
れ蒸発部5と凝縮部6に、それらの中間が断熱部7にな
っている。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, reference numeral 1 denotes a closed cylindrical container, a fibrous wick 2 is attached to the inner wall of the container 1, and A working fluid 4 is contained in an internal vapor space 3, and predetermined ranges at both ends of the container 1 serve as an evaporating section 5 and a condensing section 6, respectively, and a heat insulating section 7 between them.

また、このようなコンテナ1の一端の凝縮部6には非凝
縮ガス9を充填する容量の大きいガスだめ8が連結し、
このガスだめ8のガスとコンテナ1内の作動液の蒸気が
凝縮部6の任意の位置の境界面10で圧力的に平衡する
ようになっており、ガスだめ8の内壁にも洩れた作動液
を蒸発部5に戻すためのウィック2が装着されている。
Further, a gas reservoir 8 having a large capacity for filling a non-condensable gas 9 is connected to the condensing part 6 at one end of the container 1,
The gas in the gas reservoir 8 and the vapor of the working fluid in the container 1 are pressure-equilibrium at the boundary surface 10 at an arbitrary position of the condensing section 6, and the hydraulic fluid may also leak to the inner wall of the gas reservoir 8. A wick 2 is attached to return the water to the evaporation section 5.

ガスだめ8には更に隔壁11を介してガス室12が隣接
して付設され、この隔壁11の略中心の孔13の部分の
ガスだめ側に形状記憶部材から成るベローズ14が伸縮
して体積変化すべく取付けられ、ベローズ14及びガス
室12内にも非凝縮ガス15が封入されている。
A gas chamber 12 is further attached to the gas reservoir 8 adjacently via a partition wall 11, and a bellows 14 made of a shape memory member expands and contracts on the gas reservoir side of the hole 13 in the approximate center of the partition wall 11 to change the volume. The bellows 14 and the gas chamber 12 are also filled with non-condensable gas 15.

形状記憶部材はCu−Zn−Al、 Cu−3i、 C
u −Au−Zn、 Cu−Al−Ni、 Ti−Ni
等の合金を記憶性効果を生じるマルテンサイト変態に熱
処理して作られるもので、温度の変化により形状が顕著
に変わり、温度を戻すことにより形状が元の記憶する状
態に復原する性質を有する。
Shape memory members are Cu-Zn-Al, Cu-3i, C
u-Au-Zn, Cu-Al-Ni, Ti-Ni
It is made by heat-treating alloys such as , martensitic transformation to produce a memory effect, and has the property that its shape changes markedly when the temperature changes, and when the temperature is returned, the shape returns to its original memorized state.

そこで本考案によると、かかる形状記憶部材で温度によ
り体積変化すべく蛇腹状のベローズ14を形威し、温度
が高くなると縮んで体積を減じるようになっている。
Therefore, according to the present invention, the shape memory member is formed into an accordion-shaped bellows 14 so that the volume changes depending on the temperature, and when the temperature rises, it contracts and reduces the volume.

本考案はこのように構成されているから、コンテナ1の
凝縮部6において吸熱が円滑に行われてそこの温度が上
昇しない状態では、ガスだめ8のガス9の温度と共に圧
力が一定に保持され形状記憶部材から成るベローズ14
が伸びて体積を増した原形を威し、これによりガスだめ
8の体積は減じた状態になっている。
Since the present invention is configured in this manner, when heat absorption is smoothly performed in the condensing section 6 of the container 1 and the temperature there does not rise, the temperature and pressure of the gas 9 in the gas reservoir 8 are maintained constant. Bellows 14 made of a shape memory member
expands and expands its original shape, which increases its volume, so that the volume of the gas reservoir 8 is reduced.

そしてこのような状態で、蒸発部5が加熱されて所定の
熱入力により作動液が蒸化されると、その蒸気はコンテ
ナ1内の蒸気空間3を経て凝縮部6に移動し、凝縮部6
で境界面10を任意に設定してガスだめ8のガス9を圧
力的に平衡するのであり、こうして設定された境界面1
0で凝縮面積Aが定められてこの凝縮面積Aにおいて最
適な状態で放熱または吸熱が行われる。
In this state, when the evaporator 5 is heated and the working fluid is evaporated by a predetermined heat input, the vapor moves through the vapor space 3 in the container 1 to the condenser 6.
The boundary surface 10 is arbitrarily set to balance the pressure of the gas 9 in the gas reservoir 8, and the boundary surface 1 thus set is
A condensation area A is determined at 0, and heat radiation or absorption is performed in this condensation area A in an optimal state.

一方、このような凝縮部6で作動液の蒸気が液化すると
、その液体はコンテナ1の内壁のウィック2により毛管
力で凝縮部5に戻り、以下これを連続的に繰返えすこと
により蒸発部5から凝縮部6へ順次熱輸送される。
On the other hand, when the vapor of the working fluid is liquefied in the condensing section 6, the liquid returns to the condensing section 5 by capillary force through the wick 2 on the inner wall of the container 1, and by repeating this continuously, the liquid returns to the evaporating section. The heat is sequentially transported from the condensing section 5 to the condensing section 6.

次いで、蒸発部5の熱入力が変動すると、作動液の蒸気
圧力が変化してガスだめ8のガス9との境界面10の位
置をすらすようになり、これにより上記蒸発部5の熱入
力の変動に応じて凝縮部6の凝縮面積が自動的に調整さ
れ、作動液蒸気温度を一定に保つような可変コンダクタ
ンス制御が行われる。
Next, when the heat input to the evaporator 5 changes, the vapor pressure of the working fluid changes and the position of the boundary surface 10 between the gas reservoir 8 and the gas 9 becomes smoother, thereby causing the heat input to the evaporator 5 to change. The condensing area of the condensing section 6 is automatically adjusted according to fluctuations in the temperature, and variable conductance control is performed to keep the working fluid vapor temperature constant.

そして更に、凝縮部6の吸熱が中断する等してそこの温
度が蓄熱により上昇するように変動すると、この凝縮部
6に一部入っているガスだめ8のガス9の温度と共に圧
力が高くなる。
Furthermore, if heat absorption in the condensing section 6 is interrupted and the temperature there increases due to heat accumulation, the pressure will increase along with the temperature of the gas 9 in the gas reservoir 8 that is partially contained in the condensing section 6. .

すると、ガスだめ8内の形状記憶部材から成るベローズ
14がこれを検知して縮みガスだめ8の体積を増すよう
になり、これによりガス9の圧力上昇分が吸収される。
Then, the bellows 14 made of a shape memory member inside the gas reservoir 8 detects this and contracts to increase the volume of the gas reservoir 8, thereby absorbing the increased pressure of the gas 9.

従って、境界面10の位置はずれることなく接続され、
ガス圧力の上昇で境界面10が凝縮面積を減じる方向に
移行しその結果蒸気温度を上昇するということがなくな
って、蒸気温度の一定制御が保持されるのである。
Therefore, the position of the boundary surface 10 is connected without shifting,
A constant control of the steam temperature is maintained because an increase in gas pressure does not cause the boundary surface 10 to shift in a direction that reduces the condensation area, thereby increasing the steam temperature.

尚、ガスだめ8、ガス室12、ベローズ14等の部分の
組立て方法について説明すると、まず板材から深絞り加
工で容器を作り、この容器をバルジ加工してベローズ1
4を作る。
In addition, to explain how to assemble the gas reservoir 8, gas chamber 12, bellows 14, etc., first, a container is made from a plate material by deep drawing, and this container is bulged to form the bellows 1.
Make 4.

次いでこのベローズ14を隔壁11に洩れのないように
ロウ付けし、形状の記憶を授与するための熱処理、即ち
押し棒を差込みながら変態温度範囲以下(−20〜O°
C)まで冷却して変形を与え、こうして作られたベロー
ズ14を具備する隔壁11をガスだめ8とガス室12と
の間にロウ付けし、且つそれらのガスだめ8及びガス室
12内に非凝縮ガスを封入する。
Next, this bellows 14 is brazed to the partition wall 11 without leakage, and heat-treated to impart shape memory, that is, the bellows 14 is heated below the transformation temperature range (-20 to 0°) while inserting a push rod.
C), the partition wall 11 provided with the bellows 14 thus produced is brazed between the gas reservoir 8 and the gas chamber 12, and a non-metallic material is placed inside the gas reservoir 8 and the gas chamber 12. Fill with condensed gas.

このように本考案によると、凝縮部6における吸熱温度
が変動してもそれによるガスだめ8内のガス温度及び圧
力が自動的に吸収されて、この影響が作動液の蒸気に及
ばないようになっているので、可変コンダクタンス性が
一層良くなり、凝縮部6が成る程度温度変化するような
使用条件でも適用することが可能になる。
As described above, according to the present invention, even if the endothermic temperature in the condensing section 6 fluctuates, the resulting gas temperature and pressure in the gas reservoir 8 are automatically absorbed to prevent this influence from affecting the vapor of the working fluid. Therefore, the variable conductance property is improved, and it can be applied even under usage conditions where the temperature changes to the extent that the condensing section 6 is formed.

温度により形状変化する形状記憶部材を利用してそれに
より作られたベローズ14でガスだめ8のガス9の温度
を直接検出してガスだめ体積の変化を行うようになって
いるので、センサ、体積増減手段、電気系路等は不要に
なり、構造が簡単である。
Since the temperature of the gas 9 in the gas reservoir 8 is directly detected by the bellows 14 made by using a shape memory member whose shape changes depending on temperature, and the volume of the gas reservoir is changed, the sensor, volume There is no need for increasing/decreasing means, electrical circuits, etc., and the structure is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案によるヒートパイプの一実施例を示す断面
図である。 1・・・・・・コンテナ、4・・・・・・作動液、6・
・・・・・凝縮部、8・・・・・・ガスだめ、9,15
・・・・・・非凝縮ガス、10・・・・・・境界面、1
2・・・・・・ガス室、14・・・・・・ベローズ。
The drawing is a sectional view showing an embodiment of the heat pipe according to the present invention. 1...Container, 4...Hydraulic fluid, 6.
... Condensing section, 8 ... Gas reservoir, 9,15
...Non-condensable gas, 10...Boundary surface, 1
2... Gas chamber, 14... Bellows.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンテナの凝縮部にガスを充填したガスだめが連結され
、上記コンテナ内の作動液の蒸気と上記ガスだめのガス
を凝縮部の任意の位置の境界面で圧力的に平衡させ、蒸
発部の熱入力の変動に対し上記境界面の位置をずらして
凝縮面積を変化する可変コンダクタンス性を有するヒー
トパイプにおいて、上記ガスだめ内に形状記憶部材から
戒り温度の上昇により縮む形状記憶のベローズをガス室
と連通して設け、凝縮部の温度の変動に伴う上記ガスだ
めのガス圧力の変化を、上記ベローズによるガスだめ体
積変化で吸収するように構成してことを特徴とするヒー
トパイプ。
A gas reservoir filled with gas is connected to the condensing section of the container, and the vapor of the working fluid in the container and the gas in the gas reservoir are brought into pressure equilibrium at an arbitrary position of the boundary surface of the condensing section, and the heat in the evaporating section is reduced. In a heat pipe with variable conductance that changes the condensation area by shifting the position of the boundary surface in response to fluctuations in input, a shape-memory bellows that shrinks as the temperature rises is installed in the gas chamber from a shape-memory member. 1. A heat pipe, characterized in that the heat pipe is provided in communication with the gas reservoir, and is configured to absorb changes in gas pressure in the gas reservoir due to fluctuations in temperature of the condensing section by a change in volume of the gas reservoir due to the bellows.
JP10781880U 1980-07-29 1980-07-29 heat pipe Expired JPS6039658Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10781880U JPS6039658Y2 (en) 1980-07-29 1980-07-29 heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10781880U JPS6039658Y2 (en) 1980-07-29 1980-07-29 heat pipe

Publications (2)

Publication Number Publication Date
JPS5730578U JPS5730578U (en) 1982-02-17
JPS6039658Y2 true JPS6039658Y2 (en) 1985-11-28

Family

ID=29469100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10781880U Expired JPS6039658Y2 (en) 1980-07-29 1980-07-29 heat pipe

Country Status (1)

Country Link
JP (1) JPS6039658Y2 (en)

Also Published As

Publication number Publication date
JPS5730578U (en) 1982-02-17

Similar Documents

Publication Publication Date Title
US4019571A (en) Gravity assisted wick system for condensers, evaporators and heat pipes
US5771967A (en) Wick-interrupt temperature controlling heat pipe
US4170262A (en) Graded pore size heat pipe wick
US4674565A (en) Heat pipe wick
US4402358A (en) Heat pipe thermal switch
US4248295A (en) Freezable heat pipe
WO2017082439A1 (en) Three-dimensional heat-absorbing device
US4254820A (en) Heat transport device
US4616699A (en) Wick-fin heat pipe
JPH0519064B2 (en)
US3844342A (en) Heat-pipe arterial priming device
US5842513A (en) System for transfer of energy between a hot source and a cold source
US5275232A (en) Dual manifold heat pipe evaporator
US4441548A (en) High heat transport capacity heat pipe
GB2099980A (en) Heat transfer panels
JPS6039658Y2 (en) heat pipe
US3637007A (en) Method of and means for regulating thermal energy transfer through a heat pipe
US5044426A (en) Variable conductance heat pipe enhancement
KR20190082000A (en) Heat Pipe with Bypass Loop
US6431262B1 (en) Thermosyphon radiators
JPS6337303B2 (en)
JPS6039659Y2 (en) heat pipe
JP2897390B2 (en) Variable conductance heat pipe
JP2742823B2 (en) heat pipe
JPH0447570Y2 (en)