JP2010054122A - Variable conductance heat pipe - Google Patents

Variable conductance heat pipe Download PDF

Info

Publication number
JP2010054122A
JP2010054122A JP2008219550A JP2008219550A JP2010054122A JP 2010054122 A JP2010054122 A JP 2010054122A JP 2008219550 A JP2008219550 A JP 2008219550A JP 2008219550 A JP2008219550 A JP 2008219550A JP 2010054122 A JP2010054122 A JP 2010054122A
Authority
JP
Japan
Prior art keywords
heat
temperature
cooled
heat pipe
variable conductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219550A
Other languages
Japanese (ja)
Other versions
JP5125889B2 (en
Inventor
Shigetoshi Ipposhi
茂俊 一法師
Tetsuya Nagayasu
哲也 永安
Shingo Hironaka
伸吾 廣中
Kurayoshi Kitazaki
倉喜 北崎
Yukio Sato
行雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008219550A priority Critical patent/JP5125889B2/en
Priority to US12/548,936 priority patent/US20100051254A1/en
Publication of JP2010054122A publication Critical patent/JP2010054122A/en
Application granted granted Critical
Publication of JP5125889B2 publication Critical patent/JP5125889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Abstract

<P>PROBLEM TO BE SOLVED: To provide energy saving, to shorten a time from operation starting until a temperature of a cooling reception object is brought into a stationary state, and to provide the stable operation of the cooling reception object from immediately after operation starting in cooling the cooling reception object by using a variable conductance heat pipe. <P>SOLUTION: In the variable conductance heat pipe, a working fluid 6 and a non-condensible gas 8 are sealed in an airtight container 1 having a heat receiving part 2 and a heat dissipation part 4. The cooling reception object 9 is provided in the heat receiving part 2, and a heating value is applied to the heat receiving part during the standby of the cooling reception object 9. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、非動作時の機器温度を省電力で任意の温度に保持するための可変コンダクタンスヒートパイプに関するものである。   The present invention relates to a variable conductance heat pipe for maintaining a device temperature during non-operation at an arbitrary temperature with power saving.

投影機器や印刷機器などは、所望の機能を得るために光源などの主要部の温度を適正な温度にしなければならない。適正な温度に保つための温度調節装置としては、ヒータ加熱により温度調節(以下温調という)するヒータ式温調器、ヒータ加熱またはヒートポンプ加熱およびヒートポンプ冷却により温調するヒートポンプ式温調器、ペルチェ効果を利用し電流制御または電流反転により温調するペルチェ素子式温調器などがある。上記機器の動作時において、非動作時の主要部温度と動作時の主要部設定温度に差が生じている場合、機器のスイッチを入れてから上記温調器により主要部温度を設定温度に調節するため、温調に要する時間(待ち時間)が発生する。上記温度差が大きいほど、待ち時間も長くなり、ユーザーの利便性を損ねる。そのため、非動作時においても温調器を動作させ予め温調し、待機時間を短縮する工夫がなされたものもある。   In order to obtain a desired function, a projection device, a printing device, and the like have to set the temperature of a main part such as a light source to an appropriate temperature. Temperature control devices for maintaining an appropriate temperature include a heater temperature controller that adjusts the temperature by heating the heater (hereinafter referred to as temperature control), a heat pump temperature controller that adjusts the temperature by heater heating or heat pump heating and heat pump cooling, and Peltier. There is a Peltier element type temperature controller that uses the effect to control the temperature by current control or current reversal. When there is a difference between the main part temperature during non-operation and the main part set temperature during operation when the above equipment is operating, the main part temperature is adjusted to the set temperature with the above temperature controller after turning on the equipment. Therefore, time (waiting time) required for temperature control occurs. The larger the temperature difference, the longer the waiting time and the convenience for the user is impaired. For this reason, some devices have been devised to operate the temperature controller in advance even during non-operation to control the temperature in advance to shorten the standby time.

さらに、画像形成装置において、ユーザーからの要求のない状態が継続している時間を検知し、運転モード及び設定加熱温度を変更することによって省電力を実現するとともに、ユーザーからの要求に対して迅速な出力を可能とするものもある。(例えば、特許文献1)、
特開2005−49621号公報(13頁、図1)
Furthermore, in the image forming apparatus, power saving is realized by detecting the time during which the state without a request from the user continues, and changing the operation mode and the set heating temperature, and promptly responding to the request from the user. Some of them allow for a smooth output. (For example, Patent Document 1),
Japanese Patent Laying-Open No. 2005-49621 (page 13, FIG. 1)

温調を必要とする電子機器を有する装置においては、ユーザーからの要求に対し迅速な出力を可能にするため、電子機器の温度を常に動作時の設定温度に近い状態で保持しておくことが望ましいが、常に電子機器の温度を維持する場合、必要とする消費電力が大きく、無駄な電力を消費することになる。そこで、特許文献1の画像形成装置においては、ユーザーからの要求のない状態が継続している時間を検知し、運転モードを変更、電子機器の設定加熱温度を低くするなどして非動作時の消費電力を小さくする工夫もされている。しかしながら、この手法においては、ユーザーからの入力を検知する機器やそれに応じた制御機構が必要となるため、これらの制御に要する電力が別途必要になるとともに、電子機器用の放熱器からの放熱と並行して設定温度に温調(加熱)するため、消費電力の削減効果はそれほど高くない。   In an apparatus having an electronic device that requires temperature control, the temperature of the electronic device must always be kept close to the set temperature during operation in order to enable quick output in response to a request from the user. Although it is desirable, if the temperature of the electronic device is always maintained, a large amount of power is required and wasteful power is consumed. Therefore, in the image forming apparatus disclosed in Patent Document 1, the time during which the user's request is not being detected is detected, the operation mode is changed, the set heating temperature of the electronic device is lowered, and the like. There are also efforts to reduce power consumption. However, this method requires a device that detects input from the user and a control mechanism corresponding to the device, so that additional power is required for these controls, as well as heat dissipation from a radiator for electronic devices. Since the temperature is adjusted (heated) to the set temperature in parallel, the power consumption reduction effect is not so high.

また、性能の高い加熱冷却装置を併用することにより、設定温度までの温度制御速度を速める手法もあるが、応答時間の短い高度な制御が必要となる上に、小型の装置には適用が難しい。   There is also a method to increase the temperature control speed up to the set temperature by using a high performance heating / cooling device together, but it requires advanced control with a short response time and is difficult to apply to small devices. .

この発明は、受熱部と放熱部を有する密閉容器に作動流体と不凝縮ガスを封止した可変コンダクタンスヒートパイプにおいて、待機動作時に受熱部に熱量を与えるものである。   In the variable conductance heat pipe in which a working fluid and a non-condensable gas are sealed in a sealed container having a heat receiving portion and a heat radiating portion, heat is given to the heat receiving portion during standby operation.

この発明によれば、受熱部への入熱により、小さな電力で可変コンダクタンスヒートパイプを断熱型ヒートパイプとして動作させることができ、可変コンダクタンスヒートパイプに封止する不凝縮ガスの量により受熱部温度を任意の温度に設定でき、受熱部に設けた被冷却体温度を任意の温度に容易に調節することができる。   According to the present invention, the variable conductance heat pipe can be operated as an adiabatic heat pipe with small power by heat input to the heat receiving section, and the temperature of the heat receiving section depends on the amount of non-condensable gas sealed in the variable conductance heat pipe. Can be set to an arbitrary temperature, and the temperature of the cooled object provided in the heat receiving section can be easily adjusted to an arbitrary temperature.

実施の形態1.
図1は本発明の実施の形態1による可変コンダクタンスヒートパイプを示す断面図である。図1において、密閉容器1の端部から、受熱部2(蒸発部)、断熱部3(輸送部)、放熱部4(凝縮部)、不凝縮ガス溜め部5が形成されており、密閉容器1内部には作動流体(液体6とその蒸気7)と不凝縮ガス8が封止された可変コンダクタンスヒートパイプ20において、その受熱部2にヒータ40と被冷却体9を設けた。
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a variable conductance heat pipe according to Embodiment 1 of the present invention. In FIG. 1, a heat receiving part 2 (evaporating part), a heat insulating part 3 (transporting part), a heat radiating part 4 (condensing part), and a non-condensable gas reservoir part 5 are formed from the end of the sealed container 1. 1, a variable conductance heat pipe 20 in which a working fluid (liquid 6 and its vapor 7) and a non-condensable gas 8 are sealed is provided with a heater 40 and a body 9 to be cooled in the heat receiving section 2 thereof.

次に、本発明の可変コンダクタンスヒートパイプの動作について説明する。被冷却体9の所望の機能を得るために被冷却体9が動作すると、被冷却体9内部で熱が発生し、被冷却体9の温度が上昇する。受熱部2は被冷却体9と接し、放熱部4は冷熱源10と接することにより、より高温の被冷却体9から受熱部2に熱が伝わる。熱は、さらに受熱部2内の液体6に伝えられ、液体6が潜熱の形態で吸熱し蒸発または沸騰し、蒸気7が生成される。蒸気7または蒸気7と液体8が断熱部3を経て放熱部4へ流入し、蒸気7が凝縮しつつ、蒸気7が保有する潜熱を放熱部4に放出し、この放出された熱を放熱部4からより低温の冷熱源10へ放熱する。その際、蒸気7が凝縮して生成された凝縮液(液体6)は、重力または毛細管力により放熱部4から断熱部3を経て再び受熱部2へ還流される。これら蒸気7および液体6の循環により、被冷却体9において発生した熱は冷熱源10に連続的に伝えられる(排熱される)。   Next, the operation of the variable conductance heat pipe of the present invention will be described. When the cooled object 9 operates to obtain a desired function of the cooled object 9, heat is generated inside the cooled object 9, and the temperature of the cooled object 9 rises. The heat receiving section 2 is in contact with the cooled body 9 and the heat radiating section 4 is in contact with the cooling heat source 10, whereby heat is transferred from the higher temperature cooled body 9 to the heat receiving section 2. The heat is further transferred to the liquid 6 in the heat receiving section 2, and the liquid 6 absorbs heat in the form of latent heat and evaporates or boils to generate a vapor 7. The steam 7 or the steam 7 and the liquid 8 flow into the heat radiating part 4 through the heat insulating part 3, and the steam 7 condenses, releases the latent heat held by the steam 7 to the heat radiating part 4, and releases the released heat to the heat radiating part. The heat is radiated from 4 to the cooler heat source 10 having a lower temperature. At this time, the condensate (liquid 6) generated by condensing the vapor 7 is recirculated from the heat radiating unit 4 to the heat receiving unit 2 through the heat insulating unit 3 by gravity or capillary force. Due to the circulation of the vapor 7 and the liquid 6, the heat generated in the cooled object 9 is continuously transmitted (exhausted heat) to the cold heat source 10.

一方、密閉容器1内に封止された不凝縮ガス8は、蒸気7または蒸気7と液体8の移動に伴い、断熱部3および放熱部4を経て、不凝縮ガス溜め部5または不凝縮ガス溜め部5側の放熱部4へ移動させられ、集積され停滞する。不凝縮ガス8が停滞すると、蒸気7は不凝縮ガス8内に進入し難くなり、蒸気7と不凝縮ガス8の界面11を形成する。蒸気7は、不凝縮ガス8を連続的に押しつつ上記界面11が移動し、蒸気7と不凝縮ガス8の圧力が平衡に達することにより、界面11の移動が停止し、その位置が安定する。したがって、(1)界面11が不凝縮ガス溜め部5に位置すると、放熱部4全体にわたり蒸気7が凝縮するため100%の放熱能力が得られ、(2)界面11が放熱部4内に位置すると、蒸気7の凝縮する面積(放熱面積)が減少するため放熱能力が低下し(0<放熱能力<100%で可変)、(3)界面11が断熱部3または受熱部2に位置すると断熱(放熱能力0%)することができる。但し、密閉容器1の壁を伝わる熱伝導により一部熱の移動が生じるため、実際には僅かであるが放熱する能力がある。   On the other hand, the non-condensable gas 8 sealed in the sealed container 1 passes through the heat insulating part 3 and the heat radiating part 4 along with the movement of the vapor 7 or the vapor 7 and the liquid 8, and then the non-condensable gas reservoir 5 or the non-condensable gas. It is moved to the heat radiating part 4 on the side of the reservoir 5 and accumulated and stagnated. When the non-condensable gas 8 stagnates, the vapor 7 hardly enters the non-condensable gas 8, and forms an interface 11 between the vapor 7 and the non-condensable gas 8. When the vapor 7 continuously pushes the non-condensable gas 8, the interface 11 moves, and when the pressure of the vapor 7 and the non-condensable gas 8 reaches equilibrium, the movement of the interface 11 stops and the position is stabilized. . Therefore, (1) when the interface 11 is located in the non-condensable gas reservoir 5, the vapor 7 is condensed over the entire heat dissipating part 4, so that 100% heat dissipating ability is obtained, and (2) the interface 11 is located within the heat dissipating part 4. Then, since the area (heat radiation area) where the steam 7 condenses decreases, the heat radiation capacity decreases (0 <heat radiation capacity <100% variable). (3) When the interface 11 is located in the heat insulating part 3 or the heat receiving part 2, heat insulation is performed. (Heat dissipation capacity 0%). However, since heat is partially transferred due to heat conduction that travels through the wall of the hermetic container 1, there is actually a slight ability to dissipate heat.

上記は可変コンダクタンスヒートパイプ20の動作原理で、被冷却体9の動作により被冷却体9の温度が不凝縮ガス8の膨張・収縮により調節され、任意の設定温度に保持されるようになる。しかし、被冷却体9の動作が停止すると、上記蒸気7の生成が停止し、不凝縮ガス溜め部5、放熱部4、断熱部3、受熱部2それから被冷却体9が冷却され、それらは冷熱源10と同等の温度まで低下してしまう。この状態では、被冷却体9が再び動作するときに、被冷却体9の温度が設定温度になるまで遅れ時間(待ち時間)が生じてしまう。そこで、本発明では、上記界面11の位置が上記(2)または(3)の状態になる発熱量を、受熱部2に設けたヒータ40により供給し、おおよそ放熱部4が断熱された状態で可変コンダクタンスヒートパイプを動作させ、小さな熱量で受熱部2の温度を任意の設定温度に保持するものである。なお、被冷却体9の動作に係わらずヒータ40を動作させても良く、被冷却体9の非動作に連動し(例えば、被冷却体9用電源とヒータ40用電源をスイッチにより切り替える)または非動作を感知してヒータ40を動作させても良い(電気的に被冷却体9の動作がOFFになったことを検知して、または温度センサーにより検知して、ヒータのスイッチを入れる)。   The above is the operation principle of the variable conductance heat pipe 20, and the temperature of the cooled object 9 is adjusted by the expansion / contraction of the non-condensable gas 8 by the operation of the cooled object 9, and is maintained at an arbitrary set temperature. However, when the operation of the cooled object 9 stops, the generation of the steam 7 stops, the non-condensable gas reservoir 5, the heat radiating part 4, the heat insulating part 3, the heat receiving part 2 and then the cooled object 9 are cooled. It will fall to the temperature equivalent to the cold heat source 10. In this state, when the cooled object 9 operates again, a delay time (waiting time) occurs until the temperature of the cooled object 9 reaches the set temperature. Therefore, in the present invention, the amount of heat generated so that the position of the interface 11 is in the state of (2) or (3) is supplied by the heater 40 provided in the heat receiving unit 2, and the heat radiating unit 4 is roughly insulated. The variable conductance heat pipe is operated to keep the temperature of the heat receiving unit 2 at an arbitrary set temperature with a small amount of heat. It should be noted that the heater 40 may be operated regardless of the operation of the cooled object 9 and linked to the non-operation of the cooled object 9 (for example, the power supply for the cooled object 9 and the power supply for the heater 40 are switched by a switch) or The heater 40 may be operated by detecting the non-operation (the heater is switched on by detecting that the operation of the object 9 to be cooled is turned off electrically or by a temperature sensor).

図2に可変コンダクタンスヒートパイプ20の受熱部2温度の熱負荷依存性の一例を示す。図中に示す◆印は通常のヒートパイプ(不凝縮ガスが無いもの)で、熱負荷の増加と共に受熱部温度が線形的に増大する(通常の冷却器においても同様)が、図中の■印は本発明による可変コンダクタンスヒートパイプで5W程度の熱負荷でおおよそ設定温度(被冷却体9の動作時の温度、例えば53℃)に近い50℃なる。すなわち、被冷却体9の動作が停止している状態で動作開始を待っている時、すなわち待機時にヒータ40に5Wの熱量を発生させておけば、待機時に被冷却体9を50℃にすることができる。この状態で被冷却体9を動作させて、動作時の発熱量が例えば50Wとなった場合でも、被冷却体9は53℃と3℃しか昇温しないため、定常状態に到達するまでの時間が短い。また大抵の機器では被冷却体9が50℃〜53℃でほとんど同じ動作ができるため、動作開始直後から被冷却体9は安定な動作となる。図2で判るように、通常のヒートパイプで53℃に設定するためには約65Wの熱負荷が必要であり、本発明によれば通常のヒートパイプの1/13の熱負荷で設定温度に極近い温度にできることになる。通常のヒートパイプで冷却した場合は、設定温度と周囲温度の差が33Kも発生するため、加熱ヒータによる温調の場合、待機時において常に65Wの熱負荷を入熱しなければならない。このため、エネルギーの大きな無駄が発生し、また実現するためには大容量のヒータおよび大電流用の配線、電源を設けなければならず、小型機器に対しては実施が困難である。   FIG. 2 shows an example of the heat load dependency of the temperature of the heat receiving section 2 of the variable conductance heat pipe 20. The ◆ mark in the figure is a normal heat pipe (no non-condensable gas), and the temperature of the heat receiving part increases linearly with the increase of the heat load (the same applies to normal coolers). A variable conductance heat pipe according to the present invention is 50 ° C. which is approximately close to a set temperature (temperature during operation of the cooled object 9, for example, 53 ° C.) with a heat load of about 5 W. That is, when the operation of the cooled object 9 is stopped and waiting for the start of operation, that is, if the heater 40 generates 5 W of heat during standby, the cooled object 9 is set to 50 ° C. during standby. be able to. Even if the cooled object 9 is operated in this state and the amount of heat generated during operation becomes 50 W, for example, the cooled object 9 only rises to 53 ° C. and 3 ° C., so the time until the steady state is reached Is short. In most devices, the cooled object 9 can perform almost the same operation at 50 ° C. to 53 ° C., so that the cooled object 9 operates stably immediately after the start of the operation. As can be seen from FIG. 2, a heat load of about 65 W is required to set the temperature to 53 ° C. with a normal heat pipe, and according to the present invention, the temperature is set to a set temperature with 1/13 heat load of a normal heat pipe. The temperature will be very close. When cooling with a normal heat pipe, the difference between the set temperature and the ambient temperature is as high as 33K. Therefore, in the case of temperature control with a heater, a heat load of 65 W must always be input during standby. For this reason, a large waste of energy is generated, and a large-capacity heater, a wiring for a large current, and a power source must be provided in order to realize this, which is difficult to implement for a small device.

上記の如く、本発明によれば、省エネで待機状態から定常状態、すなわち所望の機能を得るまでの時間が短く、確実な温調が実施可能である。また、待機時はほぼ断熱状態であることから、待機時に与える熱量は特に放熱器の能力には関係ないことから、被冷却体9の動作時設定温度をより低温で保持するように、高効率な放熱器を設けても良い。   As described above, according to the present invention, it is possible to perform reliable temperature control with a short time from energy saving to a steady state, that is, a desired function. In addition, since it is almost insulative during standby, the amount of heat applied during standby is not particularly related to the ability of the radiator, so it is highly efficient to keep the set temperature during operation of the cooled object 9 at a lower temperature. A heat radiator may be provided.

なお、本発明においては、待機時の受熱部の温度が、被冷却体9の動作時の温度Tr(図2の例では53℃)と周囲温度Te(図2の例では20℃)の間の温度になるような熱量を、ヒータ40に与えれば良い。好ましくは、待機時の受熱部の温度が、TrとTeの中央値、すなわち(Tr+Te)/2(図2の例では36.5℃)以上となる熱量を与えれば良い。図2からわかるように、待機時の受熱部の温度が(Tr+Te)/2となる熱量を与えるだけでも、被冷却体9が動作開始して数W以上の熱量を発生すれば、直ぐに50℃以上となり、本発明の効果が発揮できることがわかる。また、それ以上の熱量、すなわち待機時の受熱部の温度が、Te+0.8(Tr−Te)(周囲温度と動作時の温度の間で80%動作時寄りの温度)以上となる熱量を与えれば、被冷却体9がさらに速く動作時の定常温度に達し、より好ましいことがわかる。   In the present invention, the temperature of the heat receiving unit during standby is between the temperature Tr during operation of the cooled object 9 (53 ° C. in the example of FIG. 2) and the ambient temperature Te (20 ° C. in the example of FIG. 2). What is necessary is just to give the amount of heat | fever so that it may become this temperature to the heater 40. Preferably, the amount of heat at which the temperature of the heat receiving unit during standby is equal to or higher than the median value of Tr and Te, that is, (Tr + Te) / 2 (36.5 ° C. in the example of FIG. 2) may be given. As can be seen from FIG. 2, even if the temperature of the heat receiving unit during standby is merely given a heat quantity of (Tr + Te) / 2, if the cooled object 9 starts operating and generates a heat quantity of several watts or more, it is immediately 50 ° C. Thus, it can be seen that the effects of the present invention can be exhibited. In addition, the amount of heat exceeding that, that is, the temperature of the heat receiving unit during standby, is given as Te + 0.8 (Tr-Te) (80% of the temperature between the ambient temperature and the operating temperature is closer to the operating time) or more. In other words, it can be seen that the body 9 to be cooled reaches the steady temperature at the time of operation faster and is more preferable.

ここで、被冷却体9が例えば半導体レーザ(Laser Diode,LD)の場合、発振閾値よりも小さい電流をこのLDに流しておくことで、ヒータで発熱させる代わりに、LDすなわち被冷却体9自身で発熱させることができる。LDでは、流れる電流が発振閾値よりも小さい場合はレーザ発振せず、レーザ光が出力されない、すなわちレーザ発振は非動作状態ということになる。また、この状態のときLDに入力された電力は損失となって流れた電流値に応じてLD自身が発熱する。この構成においては、ヒータ40を設けずに、LDの温度を非動作時(レーザ非発振時、待機時)と動作時(レーザ発振時)でほぼ一定の温度に保つことが出来る。よって、LDの発振状態を発振動作開始直後から一定の動作、すなわち発振波長や出力の変動のない動作をさせることができるので、本発明の効果が特に発揮できる。   Here, when the object to be cooled 9 is, for example, a semiconductor laser (Laser Diode, LD), by passing a current smaller than the oscillation threshold to the LD, instead of generating heat by the heater, the LD, that is, the object to be cooled 9 itself Can generate heat. In the LD, when the flowing current is smaller than the oscillation threshold, laser oscillation does not occur, and laser light is not output, that is, laser oscillation is in a non-operating state. Further, in this state, the LD itself generates heat according to the value of the electric current input to the LD as a loss. In this configuration, without providing the heater 40, the temperature of the LD can be maintained at a substantially constant temperature during non-operation (when the laser is not oscillating, during standby) and during operation (when the laser is oscillating). Therefore, the LD can be oscillated in a certain manner immediately after the start of the oscillating operation, that is, the operation without fluctuations in the oscillation wavelength and output, so that the effect of the present invention can be exhibited particularly.

LDの応用として、赤色や青色といった可視光を発生するLDを映像機器の光源に利用する装置がある。映像機器の場合、この光源の光は人間の目によって色彩や輝度といった感覚で捕らえる。色彩すなわち波長や輝度すなわち出力の変化は人間の感覚に大きな変化として捕らえられるので、映像機器では光源の安定性が特に要求される。このため、LDを映像機器の光源に利用する装置では、機器の立ち上がり時のLDの動作の変化を抑制する本発明の効果は特に大きい。また、被冷却体9がLDの場合であっても、別にヒータ40を設けてよいのは言うまでもない。   As an application of the LD, there is an apparatus that uses an LD that generates visible light such as red or blue as a light source of a video device. In the case of video equipment, the light from this light source is captured by human eyes with a sense of color and brightness. Since changes in color, that is, wavelength and brightness, that is, output, are captured as large changes by human senses, video equipment is particularly required to have stability of the light source. For this reason, in an apparatus using an LD as a light source of a video device, the effect of the present invention that suppresses a change in the operation of the LD when the device starts up is particularly great. Needless to say, a separate heater 40 may be provided even when the object to be cooled 9 is an LD.

ここでは、昇温ヒータ40を別に設けず、被冷却体9自身を発熱させる構成として、LDを例にとって説明したが、この構成はLDに限られない。被冷却体9自身に動作時に比較して十分小さい電力を入力させて発熱させる構成であれば、被冷却体9がLD以外の半導体、あるいはその他の電子機器など、電気入力を有する素子や機器であればどのようなものであっても良い。   Here, the LD has been described as an example of a configuration that does not provide the temperature raising heater 40 and heats the cooled object 9 itself, but this configuration is not limited to the LD. If the cooled body 9 itself is configured to generate heat by inputting a sufficiently small electric power compared to the time of operation, the cooled body 9 is an element or device having an electrical input such as a semiconductor other than an LD or other electronic devices. Anything is acceptable.

また、昇温ヒータを設けない構成は、後述の実施の形態2〜4においても適用可能であることは言うまでもない。   Needless to say, the configuration in which the temperature raising heater is not provided is also applicable to Embodiments 2 to 4 described later.

密閉容器1は、液体6と蒸気7と不凝縮ガス8を収納する気密容器であり、好ましくは液体6および蒸気7と密閉容器1内壁の間で化学反応がほとんどない金属である方が良い。たとえば、液体6が水の場合は密閉容器1の材料は銅が好ましく、アンモニアの場合はアルミニウムやステンレスなど、化学反応により不凝縮ガスを発生しない材料が良い。   The sealed container 1 is an airtight container for storing the liquid 6, the vapor 7, and the non-condensable gas 8, and is preferably a metal that has almost no chemical reaction between the liquid 6 and the vapor 7 and the inner wall of the sealed container 1. For example, when the liquid 6 is water, the material of the sealed container 1 is preferably copper, and when ammonia is used, a material that does not generate non-condensable gas due to a chemical reaction, such as aluminum or stainless steel, is preferable.

断熱部3は、液体6、蒸気7および不凝縮ガス8が移動する通路である。断熱部3は、その周囲を空気などの流体にさらし、また構造体と接触し放熱しても良く、逆に断熱材を設けて断熱しても良い。   The heat insulating portion 3 is a passage through which the liquid 6, the vapor 7, and the non-condensable gas 8 move. The heat insulating part 3 may be exposed to a fluid such as air, may contact the structure to radiate heat, or may be insulated by providing a heat insulating material.

放熱部4は、蒸気7が凝縮し液化させ、その際放出する潜熱を冷熱源10に放出する役割を有する。内面には、凝縮を促進させるために伝熱面積を大きくする突起を設けても良く、また凝縮液膜を薄くするため凝縮液を吸引する通路を設けても良く、一方放熱部4外周面には冷熱源10への放熱を促進するために伝熱面積を大きくするフィンを設けても良い。なお、断熱部3および放熱部4は、上記した通り気液界面15がその内部に位置することがあり、その一部は不凝縮ガス8を収容する通路または容器の役割を担う。   The heat radiating unit 4 has a role of condensing and liquefying the steam 7 and releasing the latent heat released at that time to the cold heat source 10. The inner surface may be provided with a protrusion for increasing the heat transfer area in order to promote condensation, and may be provided with a passage for sucking the condensed liquid in order to make the condensed liquid film thinner. May be provided with fins that increase the heat transfer area in order to promote heat dissipation to the cold heat source 10. In addition, as above-mentioned, the heat-insulating part 3 and the thermal radiation part 4 may have the gas-liquid interface 15 located in the inside, and the one part bears the role of the channel | path or container which accommodates the non-condensable gas 8. FIG.

不凝縮ガス溜め部5は、不凝縮ガス8を収容する役割を有する。非動作時においては、液体6および蒸気7および不凝縮ガス8を収容することもある。可変コンダクタンスヒートパイプの通流路に関して受熱部2から最も離れた端部に設けられ、好ましくは、構成部位の最上部に設けられ、流入した液体6が放熱部4へ流下する構造である方が良い。   The non-condensable gas reservoir 5 has a role of accommodating the non-condensable gas 8. When not in operation, the liquid 6, the vapor 7 and the non-condensable gas 8 may be accommodated. It is provided at the end farthest from the heat receiving portion 2 with respect to the flow path of the variable conductance heat pipe, and preferably provided at the uppermost portion of the constituent part so that the inflowing liquid 6 flows down to the heat radiating portion 4. good.

液体6は、沸騰および蒸発し凝縮する液体であり、水、アンモニアなどの単一成分流体でも良く、不凍液などの多成分流体でも良い。蒸気7は、液体6または液体6の一部が気化した気体である。不凝縮ガス8は、使用環境下において凝縮しない気体であり、通常環境下では、ヘリウム、アルゴン、ネオン、窒素などである。好ましくは、密閉容器1の材料、液体6、蒸気7と化学反応しない気体であり、不活性ガスである方が好ましい。なお、封入初期に、敢えて密閉容器1と液体6を化学反応させ発生した不凝縮ガスでも良い。   The liquid 6 is a liquid that boils and evaporates and condenses, and may be a single component fluid such as water or ammonia, or may be a multicomponent fluid such as an antifreeze. The vapor 7 is a gas obtained by vaporizing the liquid 6 or a part of the liquid 6. The non-condensable gas 8 is a gas that does not condense under the use environment, and is helium, argon, neon, nitrogen, or the like under a normal environment. Preferably, it is a gas that does not chemically react with the material of the closed container 1, the liquid 6, and the vapor 7, and is preferably an inert gas. In addition, non-condensable gas generated by a chemical reaction between the sealed container 1 and the liquid 6 in the initial stage of encapsulation may be used.

実施の形態2.
図3は本発明の実施の形態2を示す構成図である。実施の形態1は、受熱部2の温度を小さなエネルギーで任意の温度にすることができる特徴を有するが、被冷却体9の中の主要部12(温調を必要とする部分)が受熱部2から離れている場合(熱介在物13が存在する場合)、実施の形態1の場合においても非動作時に熱介在物13の熱抵抗分だけの温度差が生じる。そこで、本実施の形態では、被冷却体9中の主要部12近傍にヒータ40を設けることにより、ヒータ40からの熱入力と熱介在物13の熱抵抗により発生する温度差分だけ補うことができ、動作/非動作時の温度差をより小さくすることができる。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing Embodiment 2 of the present invention. The first embodiment has a feature that the temperature of the heat receiving unit 2 can be set to an arbitrary temperature with small energy, but the main portion 12 (portion requiring temperature control) in the body 9 to be cooled is the heat receiving unit. In the case of being away from 2 (when the thermal inclusion 13 is present), even in the case of the first embodiment, a temperature difference corresponding to the thermal resistance of the thermal inclusion 13 occurs during non-operation. Therefore, in the present embodiment, by providing the heater 40 in the vicinity of the main part 12 in the object 9 to be cooled, only the temperature difference generated by the heat input from the heater 40 and the thermal resistance of the thermal inclusion 13 can be compensated. The temperature difference between operation / non-operation can be further reduced.

なお、この場合上記ヒータ40からの熱入力と熱介在物13の熱抵抗により発生する温度差は、動作時においても発生させることができることから、被冷却体9の主要部12の温度をヒータ40への熱入力により精密に温調することができる。   In this case, since the temperature difference generated by the heat input from the heater 40 and the thermal resistance of the thermal inclusion 13 can be generated even during operation, the temperature of the main part 12 of the body 9 to be cooled is set to the heater 40. The temperature can be precisely controlled by heat input to the.

また、被冷却体9の中にヒータ40を搭載することにより、冷却器(可変コウンダクタンスヒートパイプ20)から配線が無くなり、メンテナンス性が向上する。さらに、被冷却体9の外部に設けられた電源や制御回路を被冷却体9の内部に設けると、さらにメンテナンス性が向上する。この被冷却体9の中にヒータ40を搭載する構成は、被冷却体9と受熱部2の間に熱介在物13がない、すなわち図1の構成の被冷却体9に適用することができるのは言うまでもない。   Further, by mounting the heater 40 in the body 9 to be cooled, wiring is eliminated from the cooler (variable conductance heat pipe 20), and the maintainability is improved. Furthermore, when the power source and the control circuit provided outside the cooled body 9 are provided inside the cooled body 9, the maintainability is further improved. The configuration in which the heater 40 is mounted in the cooled object 9 can be applied to the cooled object 9 having the structure shown in FIG. 1 in which the thermal inclusion 13 is not provided between the cooled object 9 and the heat receiving portion 2. Needless to say.

実施の形態3.
図4は本発明の実施の形態3を示す構成図である。可変コンダクタンスヒートパイプ20の放熱部4に冷却流体を通流するファン14を設け、被冷却体9内に温度センサー15を設け、ファン14とヒータ40を温度センサー15と制御回路16で出力制御し、温調を最適化する構成である。ファン14は冷却流体を放熱部に通流するポンプであっても良い。すなわち、ファン14は、放熱部4を冷却する冷却装置であればどのようなものであっても良い。
Embodiment 3 FIG.
FIG. 4 is a block diagram showing Embodiment 3 of the present invention. A fan 14 for passing a cooling fluid is provided in the heat radiating portion 4 of the variable conductance heat pipe 20, a temperature sensor 15 is provided in the cooled object 9, and the output of the fan 14 and the heater 40 is controlled by the temperature sensor 15 and the control circuit 16. This is a configuration that optimizes temperature control. The fan 14 may be a pump that allows the cooling fluid to flow to the heat radiating portion. That is, the fan 14 may be any cooling device that cools the heat radiating unit 4.

この構成により、可変コンダクタンスヒートパイプ20を介して被冷却体9を加熱/冷却により調節することができ、設定温度への移行時間及びユーザーの待ち時間を短縮することができるとともに、被冷却体9の動作時温度をより精度良く調節することができる。さらに、最適制御により、ポンプまたはファン14のような冷却装置およびヒータ40の出力を最小限にし、省エネ温調することができる。   With this configuration, the object to be cooled 9 can be adjusted by heating / cooling via the variable conductance heat pipe 20, the transition time to the set temperature and the waiting time of the user can be shortened, and the object to be cooled 9 The operating temperature can be adjusted with higher accuracy. Furthermore, by optimal control, the output of the cooling device such as the pump or fan 14 and the heater 40 can be minimized, and the energy saving temperature can be controlled.

なお、上記では、ヒータ40を設けた場合を説明したが、実施の形態1で述べたように、ヒータ40を設けずに、被冷却体9自身を発熱させるようにしても良く、この場合は、被冷却体と冷却装置を連動させて出力制御すれば良い。   In addition, although the case where the heater 40 was provided was demonstrated above, as described in Embodiment 1, you may make it the to-be-cooled body 9 generate | occur | produce heat without providing the heater 40. In this case, The output control may be performed by interlocking the object to be cooled and the cooling device.

実施の形態4.
図5は本発明の実施の形態4を示す構成図である。可変コンダクタンスヒートパイプ20の受熱部2とヒータ40を含む被冷却体9両方を断熱材17で覆った構造である。この構成により、被冷却体9の温調効率を高めることができるとともに、設定温度保持時の放熱を小さくし、待機時に必要とされる消費電力量を少なくすることができる。詳述すれば、図2は、断熱材で覆わない場合の特性であったが、受熱部2とヒータを含む被冷却体9両方を断熱材で覆えば、図2において、VCHPの特性の立ち上がり部分が左にシフトした特性となる。したがって、待機時の受熱部の温度を、断熱材で覆わない場合と同じにするために必要な熱量が、断熱材で覆わない場合より少なくなる。
Embodiment 4 FIG.
FIG. 5 is a block diagram showing Embodiment 4 of the present invention. In this structure, both the heat receiving portion 2 of the variable conductance heat pipe 20 and the cooled object 9 including the heater 40 are covered with a heat insulating material 17. With this configuration, it is possible to increase the temperature regulation efficiency of the cooled object 9, reduce heat dissipation when the set temperature is maintained, and reduce power consumption required during standby. More specifically, FIG. 2 shows the characteristics when not covered with the heat insulating material. However, if both the heat receiving portion 2 and the cooled object 9 including the heater are covered with the heat insulating material, the rise of the VCHP characteristics in FIG. The part is shifted to the left. Therefore, the amount of heat required to make the temperature of the heat receiving unit during standby the same as that when not covered with the heat insulating material is smaller than that when not covered with the heat insulating material.

なお、ここでは、受熱部2とヒータを含む被冷却体9両方を断熱材17で覆った構成を示したが、受熱部2または被冷却体9のいずれか一方だけを断熱材で覆う構成でも、断熱材がない構成に比較して待機時に必要とされる消費電力量を少なくする効果がある。   In addition, although the structure which covered both the heat receiving part 2 and the to-be-cooled body 9 containing a heater with the heat insulating material 17 was shown here, the structure which covers only one of the heat receiving part 2 or the to-be-cooled body 9 with a heat insulating material is also shown. There is an effect of reducing the amount of power consumption required at the time of standby as compared with a configuration without a heat insulating material.

本発明の実施の形態1に係る可変コンダクタンスヒートパイプを示す構成図である。It is a block diagram which shows the variable conductance heat pipe which concerns on Embodiment 1 of this invention. 可変コンダクタンスヒートパイプと通常のヒートパイプの温度の熱負荷依存性を示す図である。It is a figure which shows the thermal load dependence of the temperature of a variable conductance heat pipe and a normal heat pipe. 本発明の実施の形態2に係る可変コンダクタンスヒートパイプを示す構成図である。It is a block diagram which shows the variable conductance heat pipe which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る可変コンダクタンスヒートパイプを示す構成図である。It is a block diagram which shows the variable conductance heat pipe which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る可変コンダクタンスヒートパイプを示す構成図である。It is a block diagram which shows the variable conductance heat pipe which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 密閉容器、2 受熱部、3 断熱部、4 放熱部、5不凝縮ガス溜め部、6 液体、7 蒸気、8 不凝縮ガス、9 被冷却体、10 冷熱源、11 界面、12 主要部、13 熱介在物、14 ファン、15 温度センサー、16 制御回路、17 断熱材、20 可変コンダクタンスヒートパイプ、40 ヒータ。 DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Heat receiving part, 3 Heat insulation part, 4 Heat radiation part, 5 Non-condensable gas reservoir part, 6 Liquid, 7 Vapor, 8 Non-condensable gas, 9 Cooled object, 10 Cooling heat source, 11 Interface, 12 Main part, 13 Heat inclusion, 14 Fan, 15 Temperature sensor, 16 Control circuit, 17 Heat insulation material, 20 Variable conductance heat pipe, 40 Heater.

Claims (9)

受熱部と放熱部を有する密閉容器に作動流体と不凝縮ガスを封止した可変コンダクタンスヒートパイプにおいて、上記受熱部に被冷却体を設置し、この被冷却体の待機時に上記受熱部に熱量を与えることを特徴とする可変コンダクタンスヒートパイプ。 In a variable conductance heat pipe in which a working fluid and a non-condensable gas are sealed in a sealed container having a heat receiving part and a heat radiating part, a body to be cooled is installed in the heat receiving part, and the amount of heat is given to the heat receiving part during standby of the body to be cooled. A variable conductance heat pipe characterized by giving. 受熱部または被冷却体に、待機時の受熱部の温度が、被冷却体の動作時の温度Trと周囲温度Teの中央値以上となる熱量を与えることを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 2. The variable according to claim 1, wherein the heat receiving unit or the object to be cooled is provided with an amount of heat such that the temperature of the heat receiving unit during standby is equal to or higher than the median of the temperature Tr during operation of the object to be cooled and the ambient temperature Te. Conductance heat pipe. 受熱部または被冷却体に、待機時の受熱部の温度が、被冷却体の動作時の温度Trと周囲温度Teの中央値以上となる熱量を与えるヒータを設けたことを特徴とする請求項2記載の可変コンダクタンスヒートパイプ。 The heat receiving part or the cooled object is provided with a heater for providing a heat quantity at which the temperature of the heat receiving part during standby is equal to or higher than the median of the temperature Tr during operation of the cooled object and the ambient temperature Te. 2. The variable conductance heat pipe according to 2. 被冷却体の待機時に、待機時の受熱部の温度が、被冷却体の動作時の温度Trと周囲温度Teの中央値以上となる熱量を、被冷却体が発生することを特徴とする請求項2記載の可変コンダクタンスヒートパイプ。 When the object to be cooled is on standby, the object to be cooled generates an amount of heat in which the temperature of the heat receiving unit at the time of standby is equal to or greater than the median of the temperature Tr and the ambient temperature Te during operation of the object to be cooled. Item 3. The variable conductance heat pipe according to Item 2. 放熱部に冷却装置を設け、ヒータと上記冷却装置を連動させて出力制御することを特徴とする請求項3に記載の可変コンダクタンスヒートパイプ。 The variable conductance heat pipe according to claim 3, wherein a cooling device is provided in the heat radiating section, and the output is controlled in conjunction with the heater and the cooling device. 放熱部に冷却装置を設け、被冷却体と上記冷却装置を連動させて出力制御することを特徴とする請求項4に記載の可変コンダクタンスヒートパイプ。 The variable conductance heat pipe according to claim 4, wherein a cooling device is provided in the heat radiating unit, and the output is controlled in conjunction with the cooled object and the cooling device. 被冷却体を断熱材で覆ったことを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 The variable conductance heat pipe according to claim 1, wherein the object to be cooled is covered with a heat insulating material. 受熱部を断熱材で覆ったことを特徴とする請求項3記載の可変コンダクタンスヒートパイプ。 The variable conductance heat pipe according to claim 3, wherein the heat receiving portion is covered with a heat insulating material. 被冷却体が半導体レーザ素子であることを特徴とする請求項1記載の可変コンダクタンスヒートパイプ。 2. The variable conductance heat pipe according to claim 1, wherein the object to be cooled is a semiconductor laser element.
JP2008219550A 2008-08-28 2008-08-28 Variable conductance heat pipe Expired - Fee Related JP5125889B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008219550A JP5125889B2 (en) 2008-08-28 2008-08-28 Variable conductance heat pipe
US12/548,936 US20100051254A1 (en) 2008-08-28 2009-08-27 Variable conductance heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219550A JP5125889B2 (en) 2008-08-28 2008-08-28 Variable conductance heat pipe

Publications (2)

Publication Number Publication Date
JP2010054122A true JP2010054122A (en) 2010-03-11
JP5125889B2 JP5125889B2 (en) 2013-01-23

Family

ID=41723606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219550A Expired - Fee Related JP5125889B2 (en) 2008-08-28 2008-08-28 Variable conductance heat pipe

Country Status (2)

Country Link
US (1) US20100051254A1 (en)
JP (1) JP5125889B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146381A (en) * 2014-02-03 2015-08-13 株式会社デンソー cooler
CN106062633A (en) * 2014-02-21 2016-10-26 卡尔蔡司Smt有限责任公司 Subassembly of an optical system, in particular in a microlithographic projection exposure apparatus
RU2660980C2 (en) * 2016-04-01 2018-07-11 Владимир Дмитриевич Шкилев Thermal pipe and its operation method
JP2018109718A (en) * 2017-01-06 2018-07-12 セイコーエプソン株式会社 Heat transport device and projector
JP2020112277A (en) * 2019-01-08 2020-07-27 学校法人同志社 Thermosiphon

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061952A1 (en) * 2009-11-19 2011-05-26 富士通株式会社 Loop heat pipe system and information processing device
US20130098070A1 (en) * 2011-10-25 2013-04-25 Stephen A. McCormick Pressure control apparatus for cryogenic storage tanks
US9382013B2 (en) 2011-11-04 2016-07-05 The Boeing Company Variably extending heat transfer devices
CN103946661A (en) * 2012-01-27 2014-07-23 古河电气工业株式会社 Heat transport apparatus
US20140290929A1 (en) * 2013-03-26 2014-10-02 Ge Energy Power Conversion Technology Ltd Heat pipe heat sink with heating unit
US20150068703A1 (en) * 2013-09-06 2015-03-12 Ge Aviation Systems Llc Thermal management system and method of assembling the same
US9863712B2 (en) 2015-10-13 2018-01-09 International Business Machines Corporation Demand-based charging of a heat pipe
US9835384B2 (en) 2015-10-13 2017-12-05 International Business Machines Corporation Demand-based charging of a heat pipe
US10184730B2 (en) 2016-08-17 2019-01-22 Harris Corporation Phase change cell
DE102016118598A1 (en) * 2016-09-30 2018-04-05 Ma Lighting Technology Gmbh Lighting console with cooling device
US11051431B2 (en) * 2018-06-29 2021-06-29 Juniper Networks, Inc. Thermal management with variable conductance heat pipe
US11570411B2 (en) * 2019-01-10 2023-01-31 Hisense Laser Display Co., Ltd. Laser light source and laser projection device
US11592145B2 (en) 2019-01-10 2023-02-28 Hisense Laser Display Co., Ltd. Laser light source and laser projection device
US20230139714A1 (en) * 2021-10-29 2023-05-04 The Boeing Company Mil-aero conduction cooling chassis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387561A (en) * 1989-08-30 1991-04-12 Fujikura Ltd Heat pipe type hot-water supply apparatus with high temperature heat accumulator
JPH04148193A (en) * 1990-10-09 1992-05-21 Nec Corp Variable conductance heat pipe
JPH06276742A (en) * 1993-03-17 1994-09-30 Toshiba Corp Power conversion device
JPH0814742A (en) * 1994-06-24 1996-01-19 Fujikura Ltd Heating method for raising temperature of heat pipe type heating roller
JP2002368326A (en) * 2001-06-05 2002-12-20 Furukawa Electric Co Ltd:The Method of cooling laser diode module and light source consisting thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613773A (en) * 1964-12-07 1971-10-19 Rca Corp Constant temperature output heat pipe
US3672443A (en) * 1969-01-28 1972-06-27 Teledyne Inc Thermal control and power flattening for radioisotopic thermodynamic power system
US3924674A (en) * 1972-11-07 1975-12-09 Hughes Aircraft Co Heat valve device
US4067237A (en) * 1976-08-10 1978-01-10 Westinghouse Electric Corporation Novel heat pipe combination
US4370547A (en) * 1979-11-28 1983-01-25 Varian Associates, Inc. Variable thermal impedance
US4520865A (en) * 1984-06-25 1985-06-04 Lockheed Missiles & Space Company, Inc. Gas-tolerant arterial heat pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387561A (en) * 1989-08-30 1991-04-12 Fujikura Ltd Heat pipe type hot-water supply apparatus with high temperature heat accumulator
JPH04148193A (en) * 1990-10-09 1992-05-21 Nec Corp Variable conductance heat pipe
JPH06276742A (en) * 1993-03-17 1994-09-30 Toshiba Corp Power conversion device
JPH0814742A (en) * 1994-06-24 1996-01-19 Fujikura Ltd Heating method for raising temperature of heat pipe type heating roller
JP2002368326A (en) * 2001-06-05 2002-12-20 Furukawa Electric Co Ltd:The Method of cooling laser diode module and light source consisting thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146381A (en) * 2014-02-03 2015-08-13 株式会社デンソー cooler
CN106062633A (en) * 2014-02-21 2016-10-26 卡尔蔡司Smt有限责任公司 Subassembly of an optical system, in particular in a microlithographic projection exposure apparatus
JP2017507358A (en) * 2014-02-21 2017-03-16 カール・ツァイス・エスエムティー・ゲーエムベーハー In particular, the sub-assembly of the optical system of a microlithographic projection exposure apparatus
RU2660980C2 (en) * 2016-04-01 2018-07-11 Владимир Дмитриевич Шкилев Thermal pipe and its operation method
JP2018109718A (en) * 2017-01-06 2018-07-12 セイコーエプソン株式会社 Heat transport device and projector
JP2020112277A (en) * 2019-01-08 2020-07-27 学校法人同志社 Thermosiphon

Also Published As

Publication number Publication date
US20100051254A1 (en) 2010-03-04
JP5125889B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5125889B2 (en) Variable conductance heat pipe
US7886816B2 (en) Intelligent cooling method combining passive and active cooling components
US6351382B1 (en) Cooling method and device for notebook personal computer
JP5061911B2 (en) Loop heat pipe and electronic equipment
JP4473925B1 (en) Loop heat pipe and electronic equipment
JP5353577B2 (en) heatsink
TWM354785U (en) Heat dissipation module and electronic device having the same
US20160141825A1 (en) Air cooled laser systems using oscillating heat pipes
JP2006237188A (en) Liquid cooling system
US6724626B1 (en) Apparatus for thermal management in a portable electronic device
JP4953075B2 (en) heatsink
JP2006242455A (en) Cooling method and device
JP2007010211A (en) Cooling device of electronics device
JP2007263427A (en) Loop type heat pipe
JP5304479B2 (en) Heat transport device, electronic equipment
WO2012161002A1 (en) Flat plate cooling device, and method for using same
JP5321716B2 (en) Loop heat pipe and electronic equipment
JP2012077988A (en) Heat relay mechanism, and heat-dissipating fin unit
JP2011115036A (en) Power generation method using heat of heat generation source, and heat pipe apparatus
JP2008218513A (en) Cooling device
JP2013194919A (en) Self-excited oscillation heat pipe and program
US20050189089A1 (en) Fluidic apparatus and method for cooling a non-uniformly heated power device
JP2008244320A (en) Cooling apparatus
JP2011096983A (en) Cooling device
KR100868517B1 (en) Cooling unit, cooling apparatus for heating element and electronic device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5125889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees