JPH0414743B2 - - Google Patents

Info

Publication number
JPH0414743B2
JPH0414743B2 JP60219488A JP21948885A JPH0414743B2 JP H0414743 B2 JPH0414743 B2 JP H0414743B2 JP 60219488 A JP60219488 A JP 60219488A JP 21948885 A JP21948885 A JP 21948885A JP H0414743 B2 JPH0414743 B2 JP H0414743B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
ultraviolet light
peroxide concentration
reactor water
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60219488A
Other languages
Japanese (ja)
Other versions
JPS6279331A (en
Inventor
Hidefumi Ibe
Takayoshi Yasuda
Hidetoshi Karasawa
Makoto Nagase
Takehiko Kitamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60219488A priority Critical patent/JPS6279331A/en
Publication of JPS6279331A publication Critical patent/JPS6279331A/en
Publication of JPH0414743B2 publication Critical patent/JPH0414743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、過酸化水素濃度測定方法および装置
に係り、特に、原子炉炉水中の過酸化水素濃度を
オンライン計測するのに好適な過酸化水素濃度測
定方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and device for measuring hydrogen peroxide concentration, and in particular to a method and apparatus for measuring hydrogen peroxide concentration in nuclear reactor water. This invention relates to a concentration measuring method and device.

〔発明の背景〕[Background of the invention]

石英窓を用いて高温水の吸光度を測定する方法
は、クリステンセン(Christensen)の「パルス
ラジオリシス アト ハイ テンプリチヤーズ
アンド ハイ プレツシヤーズ」(“Pulse
Radiolysis at High Temperatures and High
Pressures” ,Radiat.Phy.Chem.Vol.16,183
(1980))という文献に報じられており、220℃ま
での温度依存性が計測されている。しかしなが
ら、一段の石英窓で耐熱性と気密性を同時に確保
しようとする点に難点があるため、それ以上の高
温での計測には成功していない。
A method for measuring the absorbance of high-temperature water using a quartz window is described in Christensen's ``Pulse Radiolysis at High Temperatures''.
“And High Pressures” (“Pulse
Radiolysis at High Temperatures and High
Radiat.Phy.Chem.Vol.16, 183
(1980)), and temperature dependence up to 220°C has been measured. However, there is a problem in trying to simultaneously ensure heat resistance and airtightness with a single quartz window, so measurements at higher temperatures have not been successful.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、軽水炉の構造材料の腐食因子
として重要な過酸化水素の濃度を直接測定し、原
子炉の水質管理の信頼性を向上させる過酸化水素
濃度測定方法および装置を提供することである。
An object of the present invention is to provide a method and device for measuring hydrogen peroxide concentration that directly measures the concentration of hydrogen peroxide, which is an important corrosion factor for structural materials in light water reactors, and improves the reliability of water quality management in nuclear reactors. be.

〔発明の概要〕[Summary of the invention]

軽水炉では、炉心で冷却水が中性子、ガンマ線
の強い照射下に曝される結果、酸素、水素をはじ
めとする13種の水の放射線分解生成物が生成す
る。これらの分解生成物は構造材料の腐食因子と
して極めて重要であり、その定量的評価が不可欠
である。個々の分解生成物の生成及び反応速度等
は、実験室レベルではパルスラジオリシス等の手
法により盛んに測定されているが、大部分は室温
〜100℃のものであつて、原子炉の炉水温度まで
測られた例は皆無である。当然、実炉水で測定さ
れた例もない。現在、炉水の水質測定は、炉水を
冷却後にサンプリングし、サンプル水中の酸素、
水素濃度等を測定する方式である。しかしなが
ら、その測定値は冷却操作中に水の放射線分解生
成物が再結合反応した後のものであるために、構
造材料の置かれている環境を真に示しているとは
いえない。
In light water reactors, cooling water in the reactor core is exposed to intense neutron and gamma ray irradiation, resulting in the formation of 13 types of water radiolysis products, including oxygen and hydrogen. These decomposition products are extremely important as corrosion factors for structural materials, and their quantitative evaluation is essential. The production and reaction rates of individual decomposition products are frequently measured at the laboratory level using techniques such as pulse radiolysis, but most of the measurements are at room temperature to 100°C, and are measured at temperatures ranging from room temperature to 100°C. There have never been any cases where the temperature has been measured. Naturally, there is no example of measurement using actual reactor water. Currently, the water quality of reactor water is measured by sampling the reactor water after it has cooled down, and measuring the oxygen and
This method measures hydrogen concentration, etc. However, since the measured value is obtained after the recombination reaction of water radiolysis products during the cooling operation, it cannot be said to truly represent the environment in which the structural material is located.

発明者らは、「アナリテイカル エバリユーシ
ヨン オブ ウオーター ラジオリシス」 (“Analytical Evaluation of Water
Radiolysis”The 3rd International Conference
on Water Chemistry,Bournmouth,U.K.,
No7(1983))という論文その他で公表しているよ
うに、沸騰水型原子炉の炉水中で進行する水の放
射線分解反応を数値的に解き、原子炉材料の真の
腐食環境を明らかにした。その結果、第2図に示
すような水の放射線分解生成物の濃度分布が得ら
れた。第2図において横軸は、炉心入口から一次
冷却系の中を流れる液体素片にのつて測つた時間
であつて、その時間に対応して図上部に区分して
あるように、一次冷却系の位置が定まる。同図か
ら、水の放射線分解生成物は、一次冷却系の中で
比較的大きな濃度分布をもつことがわかる。この
ことからも、炉外のサンプリング測定では炉内の
腐食環境を知ることはできないことがわかる。し
たがつて、実炉環境を評価するためには直接測定
が重要になる。
The inventors have proposed the “Analytical Evaluation of Water Radiolysis”.
Radiolysis”The 3rd International Conference
on Water Chemistry, Bournmouth, UK,
No. 7 (1983)), we numerically solved the radiolysis reaction of water that progresses in the reactor water of boiling water reactors and clarified the true corrosive environment of reactor materials. . As a result, a concentration distribution of water radiolysis products as shown in FIG. 2 was obtained. In Figure 2, the horizontal axis is the time measured for the liquid particles flowing from the core inlet into the primary cooling system. The position of is determined. The figure shows that the radiolysis products of water have a relatively large concentration distribution in the primary cooling system. This also shows that it is not possible to know the corrosive environment inside the furnace by sampling measurements outside the furnace. Therefore, direct measurements are important for evaluating the actual reactor environment.

水の放射線分解生成物の中で、特に濃度が高い
のは、第2図からわかるように、水素、酸素、過
酸化水素である。水の放射線分解生成物が、第3
図に示すように、波長190〜300nmの紫外領域に
吸収を持つことはよく知られているが、同図に示
すように、多くの成分が同波長領域に紫外の吸収
をもつため、これまで紫外の吸光により濃度測定
を行なおうとする発想は持たれなかつた。ところ
が第2図に示すように実炉環境では、濃度の高い
水素、酸素は上記の紫外波長領域に吸収をもた
ず、過酸化水素以外の妨害となりうる成分は極め
て低濃度であるため、結局上記波長の吸光度は過
酸化水素濃度のみに対応することになる。
Among the radiolysis products of water, hydrogen, oxygen, and hydrogen peroxide have particularly high concentrations, as can be seen from FIG. The radiolysis products of water are the third
As shown in the figure, it is well known that it has absorption in the ultraviolet region of wavelengths 190 to 300 nm. The idea of trying to measure concentration using ultraviolet absorption did not occur to me. However, as shown in Figure 2, in the actual reactor environment, highly concentrated hydrogen and oxygen do not absorb in the above ultraviolet wavelength region, and components other than hydrogen peroxide that can cause interference are at extremely low concentrations, so in the end The absorbance at the above wavelength corresponds only to the hydrogen peroxide concentration.

本発明は、こうした新しい知見にもとづき、波
長190〜300nmの紫外光の吸光によつて炉水中の
過酸化水素濃度を測定することを骨子とする。
Based on these new findings, the main feature of the present invention is to measure the hydrogen peroxide concentration in reactor water by absorbing ultraviolet light with a wavelength of 190 to 300 nm.

高温水の紫外の吸光度を測定するには、光を高
温高圧水中に通す窓が必要である。前記波長を対
象とする場合には石英ガラスを用いなければなら
ない。ところが、石英ガラスの曲げ強度が強くな
いために、シール材料は弾性に富む材料を用いる
必要がある。代表的なものは、PTFE(ポリテト
ラフルオロエチレン)、シリコンゴム等であるが、
これらの材料は実炉の285℃という温度条件での
長時間使用はできない。一方、石英窓側面をメタ
ライズ加工して溶接する方法は、温度には耐える
が、強度を期待できない。そこで、本発明では、
285℃での使用を可能とするために次の様な構成
とする。
Measuring the ultraviolet absorbance of high-temperature water requires a window that allows light to pass through the high-temperature, high-pressure water. When targeting the above wavelengths, quartz glass must be used. However, since the bending strength of quartz glass is not strong, it is necessary to use a highly elastic sealing material. Typical examples include PTFE (polytetrafluoroethylene) and silicone rubber.
These materials cannot be used for long periods at the temperature of 285°C in an actual furnace. On the other hand, the method of metallizing the side surface of a quartz window and welding it can withstand high temperatures, but cannot be expected to be strong. Therefore, in the present invention,
The following configuration is used to enable use at 285℃.

(1) 石英窓を2段構造とし、炉水に接する第1段
目は、メタライズ加工のうえ溶接する。
(1) The quartz window has a two-stage structure, and the first stage that comes into contact with the reactor water is metallized and then welded.

(2) 第2段目は、PTFE等の弾性に富むシールと
する。
(2) The second stage should be a highly elastic seal such as PTFE.

(3) 石英窓間の雰囲気は、対象とする波長範囲に
吸収をもたないガスとし、これを炉水圧力に等
しくなるように加圧する。
(3) The atmosphere between the quartz windows should be a gas that does not absorb in the target wavelength range, and this should be pressurized to be equal to the reactor water pressure.

(4) 第2段目の石英窓のシール部は、温度が高く
ならないように、水冷、空冷その他の手段によ
り冷却する。
(4) The sealing part of the second stage quartz window shall be cooled by water cooling, air cooling, or other means to prevent the temperature from becoming too high.

すなわち、一段目で耐熱性を、2段目で気密性
を確保することが基本的なねらいである。
That is, the basic aim is to ensure heat resistance in the first stage and airtightness in the second stage.

第2図に示したように、炉水中の過酸化水素
は、一次冷却系内で10〜数100ppbの濃度になる
と推測されるが、この濃度領域に対して紫外吸光
分析は、第4図に示すように、十分な感度をも
つ。
As shown in Figure 2, hydrogen peroxide in the reactor water is estimated to have a concentration of 10 to several 100 ppb in the primary cooling system. As shown, it has sufficient sensitivity.

以上述べてきたように、波長190〜300nmの紫
外光の吸光度を、前記構成の紫外光透過窓を用い
て測定すれば、炉水中の過酸化水素を妨害なく測
定できる。
As described above, by measuring the absorbance of ultraviolet light with a wavelength of 190 to 300 nm using the ultraviolet light transmitting window having the above configuration, hydrogen peroxide in reactor water can be measured without interference.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明す
る。本実施例では炉水中の光路は、小径配管にま
たは大口径配管からのバイパス管2に交叉する方
向に形成される。炉水は、ベローズ4とメタライ
ズ溶接した石英窓3に接する。石英窓3の内側の
ガス加圧部13は、配管2の内圧と均衡するよう
ガスを加圧してあり、微少な差圧の変動は、ベロ
ーズ4により吸収する。ガスは、対象とする波長
範囲の吸光がなるべく少ないものが望ましい。過
酸化水素の例では酸素ガスその他のガスでよい。
ガス加圧部13は、外周に放熱フイン5を設ける
等の手段で冷却し、2段目の石英窓7のシール材
料8,9の温度を十分低く保つようにする。
PTFEの場合は、200℃以下まで下げれば十分で
ある。なお、9はここではOリングである。2段
目の石英窓7の外側はさらに光路を形成し、内部
にハーフミラー10を配する。対象とする波長範
囲に、雰囲気の吸収がなければ、この部分は必ず
しも外気と隔離して光路を形成する必要はない。
また、内部をガス封入でなく真空にしてもよい。
3段目の光路は、ハーフミラー10によつて光が
反射される方向に石英窓11を設ける。他方の石
英窓12には光源を、石英窓11の外部には受光
部を設ける。
An embodiment of the present invention will be described below with reference to FIG. In this embodiment, the optical path in the reactor water is formed in a direction that intersects the small-diameter pipe or the bypass pipe 2 from the large-diameter pipe. The reactor water comes into contact with the bellows 4 and the quartz window 3 which is metallized and welded. The gas pressurizing section 13 inside the quartz window 3 pressurizes the gas so as to be balanced with the internal pressure of the pipe 2, and minute fluctuations in differential pressure are absorbed by the bellows 4. It is desirable that the gas absorbs as little light as possible in the target wavelength range. In the case of hydrogen peroxide, oxygen gas or other gas may be used.
The gas pressurizing section 13 is cooled by means such as providing heat dissipation fins 5 on its outer periphery to keep the temperature of the sealing materials 8 and 9 of the second stage quartz window 7 sufficiently low.
In the case of PTFE, it is sufficient to lower the temperature to below 200°C. Note that 9 is an O-ring here. The outside of the second stage quartz window 7 further forms an optical path, and a half mirror 10 is arranged inside. If there is no atmospheric absorption in the target wavelength range, this part does not necessarily need to be isolated from the outside air to form an optical path.
Moreover, the inside may be vacuumed instead of being filled with gas.
In the third stage optical path, a quartz window 11 is provided in the direction in which the light is reflected by the half mirror 10. The other quartz window 12 is provided with a light source, and the outside of the quartz window 11 is provided with a light receiving section.

測定する場合は、窓12から光パルスを入射さ
せる。光パルスはハーフミラー10、窓7,3を
通過し、ミラー1により反射されて、再び窓3,
7を通過し、ハーフミラー10により反射され、
窓11から受光部に至る。窓11,12の外側に
は直接光源と受光部を設けてもよいし、光フアイ
バー等で光路を延長してもよい。また、3段目の
ハーフミラー10を内蔵する構造は、ガスを加圧
する窓3の外側に直接連結した構造をとつてもよ
い。光をパルス状に送るのは、入射光と反射光の
光路が共通であるため連続光では干渉を起こすか
らである。
When measuring, a light pulse is made to enter through the window 12. The light pulse passes through the half mirror 10, the windows 7 and 3, is reflected by the mirror 1, and then passes through the windows 3 and 3 again.
7 and is reflected by the half mirror 10,
It reaches from the window 11 to the light receiving section. A light source and a light receiving section may be provided directly outside the windows 11 and 12, or the optical path may be extended using an optical fiber or the like. Further, the structure in which the third stage half mirror 10 is built-in may be such that it is directly connected to the outside of the window 3 that pressurizes the gas. The reason why the light is sent in a pulsed manner is that since the incident light and reflected light share a common optical path, continuous light would cause interference.

第5図は、第1図に示した光学セルを用いて炉
水の吸光度を測定する場合の計測系を示したもの
で、全体としてはよく用いられる手法である。紫
外光源17から放射された光は、分光器18によ
り対象とする波長成分の一部又は全てをとり出さ
れ、メカニカルチヨツパ19によりパルス光に変
調される。パルス光は、光フアイバ16を介して
第1図で詳細に説明した光学セルに入射する。第
5図では、簡単のために、光学セルの構造を簡略
化して示した。反射光は光フアイバ23を通つて
受光部24に至る。受光部24の信号はケーブル
22を介してロツクインアツプ20に入力され
る。ロツクインアンプ20には、メカニカルチヨ
ツパ19(回転円板に一定間隔ごとにスリツトが
はいつているもの)の回転周波数が参照信号とし
て入力され、パルス光の周波数に合致する周波数
を持つ入力信号のみが増幅される。こうしてS/
N比をあげた出力により、炉水中の過酸化水素濃
度を高感度測定できる。なお、21はレコーダで
ある。
FIG. 5 shows a measurement system for measuring the absorbance of reactor water using the optical cell shown in FIG. 1, which is a commonly used method as a whole. Part or all of the target wavelength components of the light emitted from the ultraviolet light source 17 are extracted by a spectroscope 18 and modulated into pulsed light by a mechanical chopper 19 . The pulsed light enters the optical cell described in detail in FIG. 1 via optical fiber 16. In FIG. 5, the structure of the optical cell is shown in a simplified manner for the sake of simplicity. The reflected light passes through the optical fiber 23 and reaches the light receiving section 24 . The signal from the light receiving section 24 is input to the lock-in up 20 via the cable 22. The lock-in amplifier 20 receives the rotational frequency of the mechanical chopper 19 (a rotating disk with slits at regular intervals) as a reference signal, and inputs a frequency that matches the frequency of the pulsed light. Only the signal is amplified. Thus S/
The output with increased N ratio makes it possible to measure the hydrogen peroxide concentration in reactor water with high sensitivity. Note that 21 is a recorder.

第6図は既存配管にバイパス管2を設けた場合
の最初の通水方法を説明するための図である。バ
イパス管2に最初から高温高圧水を通水すると、
光学セルの第1段目の窓にかかる差圧が大きくな
りすぎ、溶接部が破損するおそれがある。そこ
で、そのような場合には、バイパス管2の上流に
冷却器25、流調弁26を設け、光学セル27の
部分の温度と圧力を徐々に上げるようにする。そ
の時、圧力計28の信号により流調弁31,32
の開度を演算・制御装置30で決め、加圧装置2
9からのガスの流入量またはセル27からガスの
放出量を調節する。
FIG. 6 is a diagram for explaining the initial water flow method when the bypass pipe 2 is provided in the existing pipe. When high-temperature, high-pressure water is passed through the bypass pipe 2 from the beginning,
The differential pressure applied to the first stage window of the optical cell becomes too large, and there is a risk that the welded portion will be damaged. Therefore, in such a case, a cooler 25 and a flow control valve 26 are provided upstream of the bypass pipe 2 to gradually increase the temperature and pressure of the optical cell 27 portion. At that time, the flow control valves 31 and 32 are
The arithmetic/control device 30 determines the opening degree of the pressurizing device 2.
The amount of gas flowing in from cell 9 or the amount of gas released from cell 27 is adjusted.

第7図は、ガス充填加圧部13のガス圧制御装
置の例を詳細に示したものである。制御装置30
には、入力信号として炉水圧力計28及び加圧部
13の圧力計33からの信号が供給される。加圧
部13の圧力が炉水圧力より大きくなつた場合
は、流調弁32を開きガスをパージする。この
時、急激な圧力変化を避けるため、弁32の開度
は、ガス加圧部13と炉水との差圧が小さいほど
小さくなるように制御する。ガス加圧装置35
は、制御装置30からの信号をうけて、サージタ
ンク34の内圧を炉水より常に高く保ち、ガス加
圧部13の圧力が炉水より小さくなつた時、弁3
1を開き、加圧部31の内圧を高める。
FIG. 7 shows an example of a gas pressure control device for the gas filling pressurizing section 13 in detail. Control device 30
is supplied with signals from the reactor water pressure gauge 28 and the pressure gauge 33 of the pressurizing section 13 as input signals. When the pressure in the pressurizing section 13 becomes higher than the reactor water pressure, the flow control valve 32 is opened to purge the gas. At this time, in order to avoid sudden pressure changes, the opening degree of the valve 32 is controlled so that it becomes smaller as the differential pressure between the gas pressurizing part 13 and the reactor water becomes smaller. Gas pressurization device 35
receives a signal from the control device 30, keeps the internal pressure of the surge tank 34 higher than the reactor water, and when the pressure of the gas pressurizing section 13 becomes lower than the reactor water, the valve 3
1 to increase the internal pressure of the pressurizing section 31.

第8図は、本発明の別な実施例を示す。第8図
では、光入射部と光受光部とを別な光学セルとし
対向させて設けてある。セルは複雑になるが、連
続光を使えるので、信号処理系が単純になるほ
か、ミラーが不必要であるから、ミラーによる光
の減衰がないという利点がある。第8図に示した
構造は直線部の長さがある程度必要になる。
FIG. 8 shows another embodiment of the invention. In FIG. 8, the light incident part and the light receiving part are provided as separate optical cells and are opposed to each other. Although the cell is more complex, since continuous light can be used, the signal processing system is simpler, and since mirrors are not required, there is no attenuation of light by mirrors. The structure shown in FIG. 8 requires a certain length of the straight portion.

そうしたスペースが確保できない場合には、第
9図のように、ミラー1を1枚だけ用い、入射
光、反射光に対応する位置に窓3,7を設ける。
第9図の場合、バイパス管2は紙面に直交してい
る。
If such a space cannot be secured, as shown in FIG. 9, only one mirror 1 is used and windows 3 and 7 are provided at positions corresponding to the incident light and reflected light.
In the case of FIG. 9, the bypass pipe 2 is perpendicular to the plane of the paper.

タンク構造等、バイパス配管を用いて計測する
のが適当でない場合には、第10図のような構造
とする。第10図に示した装置は、吸光部39を
タンク壁42を介して炉水43内に浸漬するもの
で、タンク内の必要な位置の過酸化水素濃度を測
定することを目的とする。吸光部39の周囲には
スリツト38を設け、周囲の炉水43との通水を
確保する。第10図の例では、初段の窓3と、冷
却部の窓7との間隔が長くなる場合のために、緩
衝窓40を設け、窓40の周囲にはオリフイス4
1を設ける。このようにして窓3と窓40の間の
ガス部分で圧力の急変動分を吸収するとともに、
オリフイス41を介して通気を確保し、圧力の緩
い変動に追従できるようにする。
If it is not appropriate to measure using bypass piping, such as a tank structure, use a structure as shown in FIG. 10. The apparatus shown in FIG. 10 has a light absorbing section 39 immersed in reactor water 43 through a tank wall 42, and is intended to measure the hydrogen peroxide concentration at a required position within the tank. A slit 38 is provided around the light absorbing portion 39 to ensure water passage with surrounding reactor water 43. In the example shown in FIG. 10, a buffer window 40 is provided in case the distance between the first stage window 3 and the window 7 of the cooling section becomes long, and an orifice 4 is provided around the window 40.
1 will be provided. In this way, the gas portion between the windows 3 and 40 absorbs sudden changes in pressure, and
Ventilation is ensured through the orifice 41 so that gradual fluctuations in pressure can be followed.

光の入射部の窓と透過光の窓との光学的連結に
はこれまでの例では光フアイバを用いていたが、
紫外の低波長側ではフアイバが長くなると減衰が
大きくなる。そのような場合は、第11図に示す
ように、光透過性のよい配管を用意して光路を形
成する。すなわち、内面を研磨したアルミニウム
管、または、内面にアルミ蒸着したパイプ44を
コネクタ45により接続して光路を形成する。配
管の曲がり部分は、ベローズ50内に半固定した
ミラー49により光を反射させる。ミラー49の
角度の微調整は、支柱46,50の間に取付けた
支持環47のスリツト内で固定子48の位置を変
えて調整する。
In previous examples, optical fibers were used to optically connect the light incident window and the transmitted light window.
On the low wavelength side of the ultraviolet spectrum, the longer the fiber, the greater the attenuation. In such a case, as shown in FIG. 11, a pipe with good optical transparency is prepared to form an optical path. That is, an optical path is formed by connecting an aluminum tube with a polished inner surface or a pipe 44 whose inner surface is vapor-deposited with aluminum through a connector 45 . A mirror 49 semi-fixed within the bellows 50 reflects light at the bent portion of the pipe. The angle of the mirror 49 can be finely adjusted by changing the position of the stator 48 within the slit of the support ring 47 attached between the supports 46 and 50.

さて、本発明の構造は、高い耐熱性と気密性と
を同時に満すシール材料を用いれば、さらに単純
化できる。すなわちガスバランス方式が不要とな
るため、第12図に示すように、吸光部39に、
ハーフミラー10を含む常圧の光学系を直結でき
る。
Now, the structure of the present invention can be further simplified by using a sealing material that satisfies high heat resistance and airtightness at the same time. In other words, since the gas balance method is not necessary, as shown in FIG.
A normal pressure optical system including the half mirror 10 can be directly connected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉炉水中の過酸化水素を
直接測定できるので、原子炉水質の高信頼制御が
可能になり、原子炉の安全と稼働率向上に大きな
効果がある過酸化水素濃度測定装置が得られる。
According to the present invention, since hydrogen peroxide in reactor water can be directly measured, highly reliable control of reactor water quality is possible, and hydrogen peroxide concentration measurement is highly effective in improving reactor safety and availability. A device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は
理論解析により求めた水の放射線分解生成物の原
子炉一次冷却系内の濃度分布を示す図、第3図は
水の放射線分解生成物の吸光スペクトルを示す
図、第4図は過酸化水素濃度と吸光度の実測値の
関係を示す図、第5図は本発明の光学系を用いる
場合の信号処理系の一例を示すブロツク図、第6
図は高温配管に本発明の装置を接続する場合の装
置および操作の説明図、第7図はガス圧制御装置
を示す図、第8図、第9図は本発明の他の実施例
を示す図、第10図はタンク内の過酸化水素濃度
を測定する場合の本発明の変形例を示す図、第1
1図は本発明の測定装置に接続する配管光路の一
例を示す図、第12図は本発明の応用例を示す図
である。 1……ミラー、2……炉水配管、3……光学
窓、4……ベローズ、5……冷却フアン、6……
ガス配管、7……光学窓、8……シール、9……
シール、(Oリング)、10……ハーフミラー、1
1……光学窓、12……光学窓、13……ガス加
圧部(光路)、14……光路、15……ガス配管、
16……光フアイバ、17……紫外光源、18…
…分光器、19……チヨツパ、20……ロツクイ
ンアンプ、21……レコーダ、22……信号ケー
ブル、23……光フアイバ、24……受光部(フ
オトマル等)、25……冷却器、26……流調弁、
27……光学セル、28……圧力計、29……加
圧装置、30……演算・制御装置、31……流調
弁、32……流調弁、33……圧力計、34……
ガスサージタンク、35……加圧装置、36……
ガス供給管、37……ガスリリース管、38……
スリツト、39……吸光部、40……光学窓、4
1……オリフイス、42……タンク壁、43……
炉水、44……光路配管、45……コネクタ、4
6……支柱、47……支持環、48……固定子、
49……ミラー、50……ベローズ。
Figure 1 is a cross-sectional view of one embodiment of the present invention, Figure 2 is a diagram showing the concentration distribution of radiolysis products of water in the reactor primary cooling system determined by theoretical analysis, and Figure 3 is a diagram showing the radiation of water in the reactor primary cooling system. Figure 4 is a diagram showing the absorption spectrum of decomposition products, Figure 4 is a diagram showing the relationship between hydrogen peroxide concentration and measured absorbance, and Figure 5 is a block diagram showing an example of a signal processing system when using the optical system of the present invention. Figure, 6th
The figure is an explanatory diagram of the device and operation when the device of the present invention is connected to high-temperature piping, FIG. 7 is a diagram showing a gas pressure control device, and FIGS. 8 and 9 show other embodiments of the present invention. Figure 10 is a diagram showing a modification of the present invention when measuring the hydrogen peroxide concentration in a tank.
FIG. 1 is a diagram showing an example of a pipe optical path connected to the measuring device of the present invention, and FIG. 12 is a diagram showing an example of application of the present invention. 1... Mirror, 2... Reactor water piping, 3... Optical window, 4... Bellows, 5... Cooling fan, 6...
Gas piping, 7...optical window, 8...seal, 9...
Seal, (O ring), 10...Half mirror, 1
DESCRIPTION OF SYMBOLS 1... Optical window, 12... Optical window, 13... Gas pressurization part (light path), 14... Optical path, 15... Gas piping,
16... Optical fiber, 17... Ultraviolet light source, 18...
... Spectrometer, 19 ... Chipper, 20 ... Lock-in amplifier, 21 ... Recorder, 22 ... Signal cable, 23 ... Optical fiber, 24 ... Light receiving part (photomar etc.), 25 ... Cooler, 26 ...flow control valve,
27... Optical cell, 28... Pressure gauge, 29... Pressure device, 30... Arithmetic/control device, 31... Flow control valve, 32... Flow control valve, 33... Pressure gauge, 34...
Gas surge tank, 35... Pressurization device, 36...
Gas supply pipe, 37...Gas release pipe, 38...
Slit, 39...Light absorption part, 40...Optical window, 4
1... Orifice, 42... Tank wall, 43...
Reactor water, 44... Optical path piping, 45... Connector, 4
6... Support column, 47... Support ring, 48... Stator,
49...mirror, 50...bellows.

Claims (1)

【特許請求の範囲】 1 炉水中に溶存して原子炉構造物内を循環し配
管等の構造材料の腐食因子となる過酸化水素の濃
度測定方法において、配管等に設けた光学窓から
炉水に光を照射し、波長190nm〜300nmの紫外光
の吸光度により実炉環境下で過酸化水素濃度を測
定することを特徴とする過酸化水素濃度測定方
法。 2 炉水中に溶存して原子炉構造物内を循環し配
管等の構造材料の腐食因子となる過酸化水素の濃
度測定装置において、配管等の壁面に設けられ少
なくとも紫外光を透過させる光学窓と、この窓か
ら炉水に紫外光を照射する紫外光照射系と、炉水
中を通過した紫外光のうち波長190nm〜300nmの
成分を受光しその強度から炉水の吸光度を計測す
る紫外光吸光度測定系とからなり、この吸光度に
より過酸化水素濃度を測定することを特徴とする
過酸化水素濃度測定装置。 3 特許請求の範囲第2項において、前記光学窓
が、少なくとも2段の紫外光透過素材からなるこ
とを特徴とする過酸化水素濃度測定装置。 4 特許請求の範囲第3項において、前記紫外光
透過素材の第1段がメタライズされ窓枠に溶接固
定された石英ガラスであり、第2段素材が窓枠に
弾性体を介してシールされた石英ガラスであるこ
とを特徴とする過酸化水素濃度測定装置。 5 特許請求の範囲第4項において、第1段と第
2段のガラス間の密封空間に紫外光透過性ガスを
加圧供給する加圧装置を備え、この空間の圧力を
配管等の内部圧力と近くすることを特徴とする過
酸化水素濃度測定装置。 6 特許請求の範囲第5項において、前記密封空
間の周囲の器壁が冷却器を備えたことを特徴とす
る過酸化水素濃度測定装置。 7 特許請求の範囲第2項〜第6項のいずれか一
項において、紫外光照射系が照射すべき光を変調
するメカニカルチヨツパを備える一方、紫外光吸
光度測定系がこのチヨツパに同期し透過光を増幅
するロツクインアンプを備え、変調された紫外光
のみを検出することを特徴とする過酸化水素濃度
測定装置。 8 特許請求の範囲第2項〜第7項のいずれか一
項において、紫外光照射系が、光学窓から照射さ
れた紫外光をその光学窓方向に反射すべく炉水中
に置かれたミラーを含むことを特徴とする過酸化
水素濃度測定装置。 9 特許請求の範囲第2項〜第7項のいずれか一
項において、紫外光照射系と紫外光吸光度測定系
の受光部とが、配管等の直径方向に対向して置か
れたことを特徴とする過酸化水素濃度測定装置。
[Claims] 1. In a method for measuring the concentration of hydrogen peroxide, which is dissolved in reactor water and circulates within reactor structures and becomes a corrosive factor for structural materials such as piping, reactor water is measured through an optical window provided in piping, etc. A method for measuring hydrogen peroxide concentration, characterized in that the hydrogen peroxide concentration is measured in an actual furnace environment by irradiating light with ultraviolet light having a wavelength of 190 nm to 300 nm. 2. In a device for measuring the concentration of hydrogen peroxide, which is dissolved in reactor water and circulates within the reactor structure and becomes a corrosive factor for structural materials such as piping, an optical window installed on the wall of the piping etc. that transmits at least ultraviolet light. , an ultraviolet light irradiation system that irradiates the reactor water with ultraviolet light through this window, and an ultraviolet light absorbance measurement that receives components with wavelengths of 190 nm to 300 nm from the ultraviolet light that has passed through the reactor water and measures the absorbance of the reactor water from its intensity. 1. A hydrogen peroxide concentration measuring device comprising: a system for measuring hydrogen peroxide concentration based on this absorbance; 3. The hydrogen peroxide concentration measuring device according to claim 2, wherein the optical window is made of at least two stages of ultraviolet light transmitting material. 4. In claim 3, the first stage of the ultraviolet light transmitting material is metalized quartz glass fixed to the window frame by welding, and the second stage material is sealed to the window frame via an elastic body. A hydrogen peroxide concentration measuring device characterized by being made of quartz glass. 5 In claim 4, a pressurizing device is provided to supply ultraviolet light transparent gas under pressure to the sealed space between the first and second glass, and the pressure in this space is adjusted to the internal pressure of piping, etc. A hydrogen peroxide concentration measuring device characterized by measuring the concentration of hydrogen peroxide. 6. The hydrogen peroxide concentration measuring device according to claim 5, characterized in that a wall around the sealed space is equipped with a cooler. 7 In any one of claims 2 to 6, the ultraviolet light irradiation system includes a mechanical chopper that modulates the light to be irradiated, and the ultraviolet light absorbance measurement system is synchronized with this chopper. A hydrogen peroxide concentration measuring device equipped with a lock-in amplifier that amplifies transmitted light and detects only modulated ultraviolet light. 8. In any one of claims 2 to 7, the ultraviolet light irradiation system includes a mirror placed in the reactor water to reflect the ultraviolet light irradiated from the optical window in the direction of the optical window. A hydrogen peroxide concentration measuring device comprising: 9. In any one of claims 2 to 7, the ultraviolet light irradiation system and the light receiving part of the ultraviolet light absorbance measurement system are placed opposite to each other in the diameter direction of the pipe, etc. Hydrogen peroxide concentration measuring device.
JP60219488A 1985-10-02 1985-10-02 Method and apparatus for measuring concentration of hydrogen peroxide Granted JPS6279331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219488A JPS6279331A (en) 1985-10-02 1985-10-02 Method and apparatus for measuring concentration of hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219488A JPS6279331A (en) 1985-10-02 1985-10-02 Method and apparatus for measuring concentration of hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS6279331A JPS6279331A (en) 1987-04-11
JPH0414743B2 true JPH0414743B2 (en) 1992-03-13

Family

ID=16736228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219488A Granted JPS6279331A (en) 1985-10-02 1985-10-02 Method and apparatus for measuring concentration of hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS6279331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171395A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Detector for substance dissolved in water and method for measuring substance dissolve in water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872359A (en) * 1995-07-27 1999-02-16 American Sterilizer Company Real-time monitor and control system and method for hydrogen peroxide vapor decontamination
AU753047B2 (en) * 1997-11-14 2002-10-03 Ethicon Inc. Method for measuring the concentration of hydrogen peroxide vapor
JP4642211B2 (en) * 2000-11-06 2011-03-02 倉敷紡績株式会社 Measuring method of measured component concentration
JP2007263824A (en) * 2006-03-29 2007-10-11 Japan Atomic Energy Agency Real-time on-the-spot measurement method and device of chemical substance in water under radiation environment
JP4715759B2 (en) * 2006-04-25 2011-07-06 株式会社島津製作所 Moisture meter
JP2008008750A (en) * 2006-06-29 2008-01-17 Tohoku Univ Corrosive environment determination method of nuclear reactor cooling water, and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171395A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Detector for substance dissolved in water and method for measuring substance dissolve in water

Also Published As

Publication number Publication date
JPS6279331A (en) 1987-04-11

Similar Documents

Publication Publication Date Title
US3649829A (en) Laminar flow cell
CN104280362B (en) A kind of superheated vapor laser spectrum on-line detecting system
KR100984020B1 (en) An apparatus for detecting the leakage of heavy water in a nuclear reactor system and the detection method
CN106153573B (en) A kind of high temperature and pressure optics cavity and its application method for absorption coefficient calibration
CA2219101C (en) Active cladding scintillating-fiber radiation detector
CN109444074B (en) Laser spectrum absorption probe device with self-calibration function and measurement method thereof
US20180156715A1 (en) Hollow fibre waveguide gas cells
CN107167428A (en) A kind of absorption cell detected for gas
US5078493A (en) Flow cell resistant to corrosive environments for fiber optic spectroscopy
JPH0414743B2 (en)
JPH0625733B2 (en) Optical sampling probe, optical sampling method, and light reflection optical probe element
CN106124407A (en) A kind of optical cavity, the aerosol extinction instrument with this optical cavity and the measuring method of Aerosol Extinction
US9063083B2 (en) Method and sensor device for measuring a carbon dioxide content in a fluid
CN113029986B (en) On-line measurement liquid phase analyzer
CN207147951U (en) A kind of absorption cell for gas detection
JPH0324441A (en) Method and apparatus for measuring concentration
JPH0331218B2 (en)
Berthold et al. Fibre optic sensor system for void fraction measurement in aqueous two-phase fluids
CA2259275A1 (en) Device for measuring the partial pressure of gases dissolved in liquids
JPS6197552A (en) Measurement of concentration level for uranium
CN219532274U (en) Optical fiber spectrometer
Carroll et al. Techniques for In-Pile Measurements of Fission-Gas Release
CN109342344B (en) Calibration-free device of mercury analyzer and determination method thereof
US20240118193A1 (en) Apparatus for the measurement of light transmittance through a liquid sample using multiple led light sources
JPS641740B2 (en)