JPH0331218B2 - - Google Patents
Info
- Publication number
- JPH0331218B2 JPH0331218B2 JP7148683A JP7148683A JPH0331218B2 JP H0331218 B2 JPH0331218 B2 JP H0331218B2 JP 7148683 A JP7148683 A JP 7148683A JP 7148683 A JP7148683 A JP 7148683A JP H0331218 B2 JPH0331218 B2 JP H0331218B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- cell
- sample
- optical
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 239000000523 sample Substances 0.000 claims description 18
- 238000010521 absorption reaction Methods 0.000 claims description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 230000002745 absorbent Effects 0.000 claims description 8
- 239000002250 absorbent Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 230000031700 light absorption Effects 0.000 claims description 4
- 239000013074 reference sample Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000155 isotopic effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- -1 is measured Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
各種の安定同位体、例えば 2H、 15N、 18O、
13Cなどが標識として用いられ、これらのトレー
サー利用は、農学、医学などの分野で分析手段と
して広く利用されている。[Detailed description of the invention] Industrial application field Various stable isotopes, such as 2 H, 15 N, 18 O,
13 C and the like are used as labels, and the use of these tracers is widely used as an analysis tool in fields such as agriculture and medicine.
本発明は、これら同位体のうち 13Cを標識した
化合物を試料に投与し、これらより得られる目的
物を 13CO2の気体とし、 12CO2と 13CO2との光
の吸収のちがいにより各種試料の分析を行う装置
に関するものである。 In the present invention, a compound labeled with 13 C among these isotopes is administered to a sample, and the target product obtained from these is a gas of 13 CO 2. Based on the difference in light absorption between 12 CO 2 and 13 CO 2 , The present invention relates to an apparatus for analyzing various samples.
これは、例えば炭素の同位体で標識した化合物
を生体に投与した後、最終代謝産物である呼気中
二酸化炭素中の標識二酸化炭素を測定したり、血
液等を燃焼させてこの燃焼ガスの測定する方法に
用いられたり、あるいは植物の光合成の特性解
析、あるいは炭素同位体標識化学成分を土壌に添
加し、植物の取り込んだ 13Cの解析など各方面に
利用されるものである。 For example, after administering a compound labeled with a carbon isotope to a living body, the labeled carbon dioxide in exhaled breath carbon dioxide, which is the final metabolite, is measured, or blood, etc. is burned and this combustion gas is measured. It is used in a variety of fields, including the analysis of the characteristics of photosynthesis in plants, and the analysis of 13 C taken up by plants by adding carbon isotope-labeled chemical components to soil.
従来技術
放射性同位体である 14Cをラベルした化合物を
試料に投与し、シンチレーシヨンカウンターによ
りトレーサー測定を行つていたが、放射性同位体
の取り扱いの点で難点があり、安定同位体 13Cを
トレーサーとして用いた測定法が望まれていた。Conventional technology Compounds labeled with the radioactive isotope 14 C were administered to the sample and tracer measurements were performed using a scintillation counter, but there were difficulties in handling the radioactive isotope, and stable isotope 13 C was used. A measurement method using a tracer was desired.
そこで安定同位体 13Cを標識した化合物を試料
に投与し、これより得られる目的物を 13CO2と
し、 12CO2と 13CO2との比を質量分析計により
求める方法が開発されて来た。 Therefore, a method has been developed in which a compound labeled with the stable isotope 13 C is administered to a sample, the target product obtained from this is 13 CO 2 , and the ratio of 12 CO 2 and 13 CO 2 is determined using a mass spectrometer. Ta.
しかしながら、質量分析装置を用いて測定を行
う方法は、真空系を必要とし、装置の取り扱か
い、保守の困難性、分析結果の解析の複雑性、あ
るいは高価格という欠点のため、安易に使用でき
ない問題があつた。 However, the measurement method using a mass spectrometer requires a vacuum system, is difficult to handle and maintain, is complex to analyze the analysis results, and is expensive, so it is not easy to use. There was a problem that I couldn't solve.
かかる問題を解決するため、安定同位体
13CO2と 12CO2との光の吸収のちがいによる測定
方法を発明し、特願昭51−11563号、特願昭51−
116564号として出願をした。 To solve this problem, stable isotopes
Invented a measurement method based on the difference in light absorption between 13 CO 2 and 12 CO 2 , and filed patent application No. 11563, 1983,
The application was filed as No. 116564.
特願昭51−11563号においては、 13CO2と
12CO2の比を測定するのに、自然界存在中での
13CO2と 12CO2の存在比での赤外吸収量が等しく
なる波数( 12CO2は2390mm-1、 13CO2は2270cm
-1)で、両者の吸収強度の測定を行なう方法が開
示されている。又特願昭651−116564号において
は、自然界存在中での 13CO2と 12CO2存在比で
赤外吸収量が等しくなるように長短2本のセルを
設け、 13CO2の変化を測定する方法が開示され
ている。 In patent application No. 11563/1983, 13 CO 2 and
12 To measure the ratio of CO 2 ,
The wavenumber at which the amount of infrared absorption becomes equal at the abundance ratio of 13 CO 2 and 12 CO 2 ( 12 CO 2 is 2390 mm -1 , 13 CO 2 is 2270 cm
-1 ) discloses a method for measuring the absorption intensity of both. In addition, in Japanese Patent Application No. 116564/1983, two long and short cells were installed so that the amount of infrared absorption was equal to the abundance ratio of 13 CO 2 and 12 CO 2 in the natural world, and changes in 13 CO 2 were measured. A method is disclosed.
13Cの自然界存在比は 12Cの約1%であり
13CO2の赤外吸収は 12CO2に比較して70cm-1の同
位体シフトを生じ、その吸収量も 12CO2に比較
してきわめて小さいため、 13CO2の赤外吸収対
12CO2の赤外吸収比を感度良く測定することが非
常に重要な技術となる。The natural abundance of 13 C is about 1% of 12 C.
The infrared absorption of 13 CO 2 causes an isotopic shift of 70 cm -1 compared to 12 CO 2 , and the absorption amount is also extremely small compared to 12 CO 2 .
12 Measuring the infrared absorption ratio of CO 2 with high sensitivity is a very important technology.
ところで、この感度を制限する大きな問題は光
源から検知器までの光の光路に存在する空気中の
CO2のために吸収がおこり光源のエネルギー損失
がおこりS/N比をいちぢるしく悪くする。従つ
て、光学系を箱の赤に入れ、箱中のCO2のガスを
取り除くため箱のなかを真空にすることによりセ
ル以外の光路に存在するCO2による吸収をなく
し、S/Nの良好な測定が期待できる。 By the way, a major problem that limits this sensitivity is the presence of air in the optical path from the light source to the detector.
Absorption occurs due to CO 2 and energy loss occurs in the light source, significantly worsening the S/N ratio. Therefore, by placing the optical system in the red box and creating a vacuum inside the box to remove the CO 2 gas in the box, absorption by CO 2 existing in the optical path other than the cell is eliminated, resulting in a good S/N ratio. We can expect accurate measurements.
しかしながら、箱(分光器)を真空もれのない
ようにし、しかも分光器内部を減圧にして分光器
のゆがみを生じさせないためには極めて頑丈なケ
ースを必要とし、しかも光学系の調整は非常に大
変になる。更に温度の変化により光学素子の位置
がずれ、 12CO2と 13CO2のベースライン、ある
いはスパンドリフトが生じ感度を高めるのに限界
があつた。 However, in order to prevent vacuum leaks in the box (spectroscope) and to reduce the pressure inside the spectrometer to prevent distortion of the spectrometer, an extremely sturdy case is required, and the adjustment of the optical system is extremely difficult. It's going to be difficult. Furthermore, the position of the optical element shifts due to changes in temperature, resulting in baseline or span drift between 12 CO 2 and 13 CO 2 , which limits the ability to increase sensitivity.
発明の目的
本発明の目的は、 13CO2および 12CO2が感度
良く測定でき、しかも安定した性能の良い炭素同
位体ガス分析装置を提供することにある。OBJECTS OF THE INVENTION An object of the present invention is to provide a carbon isotope gas analyzer that can measure 13 CO 2 and 12 CO 2 with high sensitivity, and has stable and good performance.
発明の構成
光学式炭素同位体ガス分析装置は、測定試料で
ある 13CO2と参照試料である 12CO2を導入して、
光源からの光の吸収を測定するための試料セルと
参照セルを有し、二枚の反射鏡光学素子により、
光源からの光を2光路に分けて試料セルと参照セ
ルを透過させ、セクターミラーで試料セル側の光
と参照セル側の光を交互に同一進行光路に導き、
該光を分光器に入射させ、試料セル及び参照セル
を透過した光の赤外波域での吸収が等しくなるよ
うな異なる波長に分光し、それぞれに対応する
別々の出射スリツトを出射させ、出射光を光学素
子により1個の検出器に照射させ、 12CO2と
13CO2の吸収の比を、参照セルを透過した出力信
号が一定になるように自動利得制御方式を採用す
ることによつて測定することにより測定原理が成
り立ち、前記の目的を達成するため、光源、測定
セル、基準セル、光学素子、分光手段、検出器等
の各素子を密閉ケース箱(分光器)に収納し、こ
の密閉ケースと 12CO2の吸収剤を収納したカラ
ムの容器を循環ポンプと管で連結し、密閉ケース
内の空気を該ケースとカラムの容器のあいだで循
環させることにより、密閉ケース内の空気中から
12CO2を除去するように構成されている。Structure of the Invention The optical carbon isotope gas analyzer introduces 13 CO 2 as a measurement sample and 12 CO 2 as a reference sample, and
It has a sample cell and a reference cell for measuring the absorption of light from a light source, and uses two reflective mirror optical elements.
The light from the light source is divided into two optical paths and transmitted through the sample cell and reference cell, and a sector mirror alternately guides the light from the sample cell side and the light from the reference cell side to the same traveling optical path.
The light is input to a spectrometer, and the light that has passed through the sample cell and the reference cell is separated into different wavelengths such that the absorption in the infrared region is equal, and the light is emitted through separate output slits corresponding to each wavelength. The emitted light is irradiated onto one detector using an optical element, and 12 CO 2 and
13 The measurement principle is established by measuring the ratio of absorption of CO 2 by adopting an automatic gain control method so that the output signal transmitted through the reference cell is constant, and in order to achieve the above purpose, The light source, measurement cell, reference cell, optical element, spectroscopic means, detector, and other elements are housed in a sealed case box (spectrometer), and this sealed case and the column container containing the 12 CO 2 absorbent are circulated. By connecting the pump with a pipe and circulating the air in the sealed case between the case and the column container, the air in the sealed case is removed.
12 Configured to remove CO2 .
実施例
以下本発明の好適な実施例を図面に沿つてさら
に詳しく説明する。Embodiments Preferred embodiments of the present invention will be described in more detail below with reference to the drawings.
第1図に示すようにCO2の赤外吸収は2350cm-1
付近にあり、P−branchとR−branchからなつ
ている。 12CO2は2390cm-1から2290cm-1に、
13CO2は2320cm-1から2290cm-1に吸収がある70cm
-1の同位体シフトが生じる。この 13CO2の同位体
の赤外吸収と 12CO2の赤外吸収の比を測定する
光学式炭素同位体ガス分析装置である。 As shown in Figure 1, the infrared absorption of CO 2 is 2350 cm -1
It is located nearby and consists of P-branch and R-branch. 12 CO 2 goes from 2390cm -1 to 2290cm -1
13 CO 2 is absorbed from 2320cm -1 to 2290cm -1 at 70cm
-1 isotopic shift occurs. This is an optical carbon isotope gas analyzer that measures the ratio of the infrared absorption of this 13 CO 2 isotope to the infrared absorption of 12 CO 2 .
第2図は、本発明による同位体ガス分析装置の
構成図である。 FIG. 2 is a configuration diagram of an isotope gas analyzer according to the present invention.
11は箱(分光器)である。12は吸収剤カラ
ムである。13は恒温槽、14は光源、15,1
6はバルブ、17は循環ポンプである。 11 is a box (spectroscope). 12 is an absorbent column. 13 is a constant temperature bath, 14 is a light source, 15,1
6 is a valve, and 17 is a circulation pump.
11の分光器の一端より内部の空気を取り出し
循環ポンプ17で他端より送入する。この途中に
吸収剤(ソーダーライム)を入れた塔12を組み
入れ空気中のCO2を吸収させCO2が除かれた空気
を循環させる。さらに吸収剤の入つた塔(カラ
ム)12を恒温槽13の中に入れ循環する空気の
温度を一定に保つようにする。 The air inside the spectrometer 11 is taken out from one end and fed into the spectrometer from the other end by a circulation pump 17. A tower 12 containing an absorbent (soder lime) is installed in the middle of the tower to absorb CO 2 in the air and circulate the air from which CO 2 has been removed. Furthermore, the column 12 containing the absorbent is placed in a constant temperature bath 13 to keep the temperature of the circulating air constant.
本発明の光学系及び電気系の全体図を第3図に
示す。 FIG. 3 shows an overall diagram of the optical system and electrical system of the present invention.
21は光源、22,23は凹面鏡、24は光源
の電源、25は試料セル、26は参照セル、27
はチヨツパのモーターで、29のセクターミラー
及び43のチヨツパを同期させて回転させてい
る。30,31は両セルからの光をセクターミラ
ーで交互に切り換つた後光路が一定になるように
するミラー、211は、凹面鏡34,36、回折
格子35で、光を別々の波長でスリツト38に出
射するようにしてある。平面鏡39,40でそれ
ぞれ出射光を検出器46に入射するように平面鏡
41,42凹面鏡44,45で焦光される光学系
になつている。平面鏡39,40から反射された
光は光路途中にチヨツパ43で、セクターミラー
29と同期して光をチヨツピングするように構成
されている。 21 is a light source, 22 and 23 are concave mirrors, 24 is a power source for the light source, 25 is a sample cell, 26 is a reference cell, 27
is a tipper motor that rotates 29 sector mirrors and 43 tippers in synchronization. 30 and 31 are mirrors that keep the optical path constant after alternately switching the light from both cells with sector mirrors; 211 is a concave mirror 34 and 36, and a diffraction grating 35, which slits 38 the light at different wavelengths; It is designed to emit light at It is an optical system in which plane mirrors 41 and 42 are focused by plane mirrors 41 and 42 and concave mirrors 44 and 45 so that the emitted light is incident on a detector 46 by plane mirrors 39 and 40, respectively. The light reflected from the plane mirrors 39 and 40 is configured to be chopped at a chopper 43 in the middle of the optical path in synchronization with the sector mirror 29.
212は、各素子を収納した密閉ケースであ
り、第2図の11の箱(分光器)に対応してい
る。第3図では、第2図の吸収剤カラム12、恒
温槽13や配管を省略してある。 Reference numeral 212 is a sealed case that houses each element, and corresponds to box 11 (spectroscope) in FIG. In FIG. 3, the absorbent column 12, constant temperature bath 13, and piping shown in FIG. 2 are omitted.
検出器46の出力は、前置増巾器、増巾器で増
巾され、参照光の信号出力が常に一定値になるよ
うに自動利得制御が増巾器48に行なわれる。そ
の結果、試料光の信号出力は赤外吸収の時間的変
化に比例した変化を示す。49は、自動利得制御
を行うサンプルホールド回路であり、その出力が
対数増巾器50,51で増巾され、二本のペン記
録器に記録され、同じ信号がデータープロセツサ
ーで処理される。54は 13CO2を試料より発生
させる燃焼装置で試料セル25に 13CO2のガス
が流れるようになつている。 The output of the detector 46 is amplified by a preamplifier and an amplifier, and automatic gain control is applied to the amplifier 48 so that the signal output of the reference light always remains at a constant value. As a result, the signal output of the sample light shows a change proportional to the temporal change in infrared absorption. 49 is a sample hold circuit that performs automatic gain control, the output of which is amplified by logarithmic amplifiers 50 and 51, recorded on two pen recorders, and the same signal is processed by a data processor. . Reference numeral 54 denotes a combustion device for generating 13 CO 2 from the sample, and the gas of 13 CO 2 flows into the sample cell 25 .
発明の効果
光学系を入れてある箱(ケース)の中に存在す
る自然界の炭酸ガス300ppmを除くことにより、
2300cm-1付近の参照セル以外の光路中の炭酸ガス
吸収をなくす方法である従来のケース内を真空に
減圧する方法で、 13CO2が4%存在する炭酸ガ
スを試料セルに導入した場合のドリフトを調べる
ため出力を記録したものを第4図に示す。Effects of the invention By removing 300 ppm of natural carbon dioxide that exists in the box (case) containing the optical system,
When carbon dioxide containing 4% 13 CO 2 is introduced into the sample cell using the conventional method of reducing the pressure inside the case to vacuum, which is a method of eliminating carbon dioxide absorption in the optical path other than the reference cell near 2300 cm -1. Figure 4 shows the output recorded to check for drift.
同じく本発明によるドリフトを調べた出力を記
録したものを第5図に示す。横軸は時間、縦軸は
出力値を示す。これより従来方法では、ベースラ
インの変動係数は0.3%であるのに比較し、本発
明を用いた装置では0.03%となり、安定性が約1
桁良くなつている。 Similarly, FIG. 5 shows the recorded output of the drift investigation according to the present invention. The horizontal axis shows time, and the vertical axis shows output value. Compared to the baseline variation coefficient of 0.3% in the conventional method, it is 0.03% in the device using the present invention, and the stability is approximately 1%.
It's getting much better.
これは、光学系を入れてある箱(ケース)を真
空にするとケースの歪みが生じドリフトが大きく
なる。又ケースの環境の温度変化があると温度変
化による歪みがやはりドリフトを大きくするた
め、温度変化が少ない事が条件であつた。本発明
の装置は、ケース内は常圧のためケースの歪みが
生ぜず、又吸収剤を入れた塔を恒温槽の中に入れ
て、炭酸ガスを除かれた空気が一定温度でケース
内を循環するため、室内の温度変化にも耐えるこ
とができ、充分実用に供する装置となつた。 This is because when the box (case) containing the optical system is evacuated, the case becomes distorted and the drift becomes large. Furthermore, if there is a temperature change in the case environment, the distortion caused by the temperature change will increase the drift, so it was necessary that the temperature change be small. In the device of the present invention, the inside of the case is at normal pressure, so no distortion occurs in the case, and the tower containing the absorbent is placed in a constant temperature bath, so that the air from which carbon dioxide has been removed flows inside the case at a constant temperature. Because it circulates, it can withstand indoor temperature changes, making it a device that can be put to practical use.
第1図は自然界存在比で 13CO2と 12CO2が存
在している場合の二酸化炭素の吸収スペクトルを
示す図であり、第2図は本発明の実施するための
模式図である。第3図は、本発明の光学系及び電
気系の実施例を示し、第4図はケース内を真空に
減圧した場合の出力変動を示す図であり第5図
は、本発明を用いた場合の出力変動を示す図であ
る。
FIG. 1 is a diagram showing the absorption spectrum of carbon dioxide when 13 CO 2 and 12 CO 2 exist in the natural abundance ratio, and FIG. 2 is a schematic diagram for implementing the present invention. Fig. 3 shows an example of the optical system and electrical system of the present invention, Fig. 4 shows the output fluctuation when the inside of the case is reduced to vacuum, and Fig. 5 shows the case where the present invention is used. FIG. 3 is a diagram showing output fluctuations.
Claims (1)
12CO2を導入して、光源からの光の吸収を測定す
るための試料セルと参照セルを有し、光学素子に
より光源からの光を2光路に分けて試料セルと参
照セルを透過させ、別の光学素子により透過させ
た光を同一進行光路に導き、該同一進行光路の試
料セル及び参照セルを透過した光の赤外波長域で
の吸収が等しくなるような異なる波長に分光手段
により分光し、分光した光を検出器にて検出し
て、 12CO2と 13CO2の吸収の比を測定する炭素
同位体ガス分析装置において、上記、光源、測定
セル、参照セル、光学素子、分光手段、検出器等
の各素子を、密閉ケース内に収納し、該密閉ケー
スと 12CO2の吸収剤を収納したカラムの容器を、
循環ポンプと管で連結し、密閉ケース内の空気を
該ケースとカラムの容器の間で循環させることに
より、密閉ケース内の空気中から 12CO2を除去
したことを特徴とする光学式炭素同位体ガス分析
装置。 2 炭酸ガスの吸収剤を入れたカラムを恒温槽の
中に入れて一定温度としたことを特徴とする特許
請求の範囲1の光学式炭素同位体ガス分析装置。[Claims] 1. 13 CO 2 which is a measurement sample and a reference sample
12 It has a sample cell and a reference cell for measuring the absorption of light from the light source by introducing CO 2 , and an optical element divides the light from the light source into two optical paths and transmits the sample cell and the reference cell. The light transmitted by another optical element is guided to the same traveling optical path, and the light transmitted through the sample cell and the reference cell on the same traveling optical path is separated into different wavelengths by a spectroscopic means so that the absorption in the infrared wavelength region is equal. In a carbon isotope gas analyzer that detects the separated light with a detector and measures the absorption ratio of 12 CO 2 and 13 CO 2 , the above-mentioned light source, measurement cell, reference cell, optical element, spectrometer are used. Each element such as the means and the detector is housed in a sealed case, and the sealed case and the column container containing the CO 2 absorbent are combined.
An optical carbon isotope characterized in that 12 CO 2 is removed from the air in the sealed case by connecting it to a circulation pump with a pipe and circulating the air in the sealed case between the case and the column container. Body gas analyzer. 2. The optical carbon isotope gas analyzer according to claim 1, wherein the column containing a carbon dioxide absorbent is placed in a constant temperature bath to maintain a constant temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58071486A JPS59197837A (en) | 1983-04-25 | 1983-04-25 | Optical isotope gas analyzing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58071486A JPS59197837A (en) | 1983-04-25 | 1983-04-25 | Optical isotope gas analyzing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59197837A JPS59197837A (en) | 1984-11-09 |
JPH0331218B2 true JPH0331218B2 (en) | 1991-05-02 |
Family
ID=13462025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58071486A Granted JPS59197837A (en) | 1983-04-25 | 1983-04-25 | Optical isotope gas analyzing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59197837A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4114276C2 (en) * | 1991-05-02 | 1996-09-19 | Spectro Analytical Instr | Gas filled UV spectrometer |
JP2522865B2 (en) * | 1991-06-12 | 1996-08-07 | 日本無線株式会社 | Carbon isotope analyzer |
DE4419458C2 (en) * | 1994-06-03 | 2003-11-27 | Fisher Rosemount Gmbh & Co Ges | Method for measuring the purity of carbon dioxide |
CN106062536A (en) | 2014-09-22 | 2016-10-26 | 株式会社东芝 | Exhalation diagnostic device |
CN104819949A (en) * | 2015-03-27 | 2015-08-05 | 安徽养和医疗器械设备有限公司 | Infrared spectrometer |
CN111448456A (en) * | 2017-11-02 | 2020-07-24 | 乔治洛德方法研究和开发液化空气有限公司 | Use of stable isotopes for certifying the certification of a manufacturing site |
DE102017010766A1 (en) | 2017-11-21 | 2019-06-13 | OBLF Ges. für Elektronik u. Feinwerktechnik mbH | Transparency control of optical emission spectrometers |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50118774A (en) * | 1974-02-28 | 1975-09-17 |
-
1983
- 1983-04-25 JP JP58071486A patent/JPS59197837A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50118774A (en) * | 1974-02-28 | 1975-09-17 |
Also Published As
Publication number | Publication date |
---|---|
JPS59197837A (en) | 1984-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4684805A (en) | Method and apparatus for measuring stable isotopes | |
JP4729215B2 (en) | Infrared spectrometer for measuring isotope ratios | |
US3792272A (en) | Breath test device for organic components, including alcohol | |
KR102291810B1 (en) | Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption | |
JP2000512757A (en) | NDIR apparatus and method for measuring isotope ratios in gaseous samples | |
JPH08304282A (en) | Gas analyzer | |
US5559333A (en) | Apparatus of non-dispersive infrared analyzer | |
US4794255A (en) | Absorption analyzer | |
Van Wagenen et al. | Dedicated monitoring of anesthetic and respiratory gases by Raman scattering | |
US4027972A (en) | Gas analyzer method and apparatus | |
JPH0331218B2 (en) | ||
US4192996A (en) | Measurement of oxygen by differential absorption of UV radiation | |
JPS6142219B2 (en) | ||
US4462686A (en) | Laser isotope detection and measurement | |
US4329048A (en) | Light absorption spectrum analyzer | |
JPH0217446A (en) | Process evaluation by isotope enrichment | |
JPS6142220B2 (en) | ||
Ling | Sensitive simple mercury photometer using mercury resonance lamp as a monochromatic source | |
Hirano et al. | A simple infrared spectroscopic method for the measurement of expired 13CO2 | |
JPH0416749A (en) | Method and apparatus for measuring ozone concentration | |
Alobaidi et al. | A helium-neon laser infrared analyser for alcohol vapour in the breath | |
US2585901A (en) | Method of isotope analysis | |
RU2044303C1 (en) | Gas analyzer | |
JPS59162424A (en) | Phase compensating type ratio spectrophotometer | |
Anderson et al. | Comparison of dark-field and bright-field incident illumination for in vivo measurements of reduced pyridine nucleotides |