JPH04146632A - Method of mounting semiconductor device - Google Patents

Method of mounting semiconductor device

Info

Publication number
JPH04146632A
JPH04146632A JP2271265A JP27126590A JPH04146632A JP H04146632 A JPH04146632 A JP H04146632A JP 2271265 A JP2271265 A JP 2271265A JP 27126590 A JP27126590 A JP 27126590A JP H04146632 A JPH04146632 A JP H04146632A
Authority
JP
Japan
Prior art keywords
semiconductor device
electrodes
electrode
interval
circuit substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2271265A
Other languages
Japanese (ja)
Inventor
Yasushi Karasawa
康史 柄沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2271265A priority Critical patent/JPH04146632A/en
Publication of JPH04146632A publication Critical patent/JPH04146632A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To make it possible to connect a semiconductor device, having a narrow electrode interval, to an outer circuit by a method wherein two or more surfaces of a semiconductor device electrode, a circuit substrate electrode and conductive particles are covered by a ferromagnetic material, and one or more of the semiconductor electrodes and the circuit substrate electrodes are magnetized and connected. CONSTITUTION:A silicon oxide film is formed on an N-type silicon substrate 1, an Al alloy 2 which is isolated at the prescribed angle and interval, the electrode of a semiconductor device on which an Ni-P layer 4 and a Co-P layer 5, having the prescribed coercive force and residual magnetic flux density, are selectively formed by a electroless plating method, and a circuit substrate, on which layers 5 are selectively formed at the prescribed interval on an insulated substrate 7 wired by copper 6, are magnetized using a magnetic field and also using an ultraviolet-ray hardening adhesive agent 9 on which conductive grains 8, whereon a Co-P layer is formed on resin grains, are dispersed. Through the above-mentioned procedures, the semiconductor device can be electrically mounted at a narrow electrode interval, and the semiconductor device and the circuit substrate can be connected even when they are a little deviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置と回路基板とを電気的に接続する実
装方法に関し、磁気の吸引力を用いた実装方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mounting method for electrically connecting a semiconductor device and a circuit board, and more particularly to a mounting method using magnetic attractive force.

〔従来の技術〕[Conventional technology]

従来、半導体装置と回路基板とを接続する方法には、金
(Au)や銅(Ct>やアルミニウム(At)の細線で
アルミニウムのパッドとリードフレームを接続するワイ
ヤーボンディング法や、アルミニウムのパッド上へ金や
はんだを厚くめっきし、すず(Sn)めっきしたリード
テープに熱圧着スルテープオートメイテッドボンディン
グ(TAB)法がある。
Conventionally, methods for connecting semiconductor devices and circuit boards include wire bonding, which connects aluminum pads and lead frames with thin gold (Au), copper (Ct), or aluminum (At) wires, and wire bonding, which connects aluminum pads to lead frames. There is a through-tape automated bonding (TAB) method in which lead tape is thickly plated with metal or solder and then thermocompressed to a lead tape plated with tin (Sn).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来のワイヤーボンディングやTABは、
AtとAu、AtとOu、AtとAtやAuとSn、は
んだと3nなどの組み合せを外部加熱により熱拡散や融
解で接続するため、接続部分が変形し、狭い電極間隔の
半導体装置は電気特性上短絡しゃすい°とい5課題を有
した。
However, conventional wire bonding and TAB
Because combinations such as At and Au, At and Ou, At and At, Au and Sn, and solder and 3N are connected by thermal diffusion and melting by external heating, the connected parts are deformed and the electrical characteristics of semiconductor devices with narrow electrode spacing deteriorate. There were five tasks, including short circuits.

本発明は以上の課題を解決するものでその目的は、熱拡
散や融解のメカニズムによらない方法で狭い電極間隔の
半導体装置を外部回路に接続する方法を提供するもので
ある。
The present invention has been made to solve the above problems, and its purpose is to provide a method for connecting a semiconductor device with narrow electrode spacing to an external circuit by a method that does not rely on thermal diffusion or melting mechanisms.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の実装方法は、半導体装置の電極と
回路基板の電極とを導電粒子の分散した膜又は接着剤に
より接続する実装方法において、半導体装置の電極又は
回路基板の電極又は導電粒子のいずれか二つ以上が強磁
性体で、且つ、半導体装置の電極又は回路基板の電極の
いずれか一つ以上着磁処理したものを用いて接続するこ
とを特徴とする。
The semiconductor device mounting method of the present invention is a mounting method in which an electrode of a semiconductor device and an electrode of a circuit board are connected by a film or an adhesive in which conductive particles are dispersed. It is characterized in that at least two of them are made of ferromagnetic material, and that at least one of the electrodes of the semiconductor device or the electrodes of the circuit board is magnetized.

本発明の半導体装置の実装方法は、熱を加えずに磁気力
の吸引作用と導電粒子により電気的な接続を実現する方
法である。そのため実装する電極や導電粒子は、吸引す
るため2つ以上強磁性体で且つ、電極のどちらか1つ以
上が着磁させなければならない。もし強磁性体が1つで
あると、磁気作用が期待できない。さらに着磁していな
げれば、強磁性体同志が吸引することもない。また、導
電粒子が着磁していると、接続前に粒子間で吸引して結
合し、接続後電気的短絡が発生する。
The semiconductor device mounting method of the present invention is a method of realizing electrical connection by the attraction effect of magnetic force and conductive particles without applying heat. Therefore, two or more of the electrodes and conductive particles to be mounted must be made of ferromagnetic material in order to attract them, and one or more of the electrodes must be magnetized. If there is only one ferromagnetic material, no magnetic effect can be expected. Furthermore, if it is not magnetized, ferromagnetic materials will not be attracted to each other. Furthermore, if the conductive particles are magnetized, the particles will be attracted to each other and bond together before connection, resulting in an electrical short circuit after connection.

以上の理由から、上蓮した磁性材料と着磁処理が必要な
のである。
For the above reasons, a highly refined magnetic material and magnetization treatment are necessary.

また導電粒子は、基板や電極自身の厚みばらつきによる
電気的接続不良を防ぐため用いた。
The conductive particles were also used to prevent electrical connection failures due to variations in the thickness of the substrate and electrodes themselves.

〔実施例〕〔Example〕

本発明の効果について、以下の実施例に基づいて説明す
る。
The effects of the present invention will be explained based on the following examples.

(実施例1) 第1図は本実施例の実装の断面図である。(Example 1) FIG. 1 is a sectional view of the implementation of this embodiment.

第1図のようにルタイプけい素基板1に酸化けい素IQ
を形成し、50ttmX5Dpm角、50μm間隔に窒
化けい素3で分離したアルミニウム(At)合金2と無
電解めっき法で選択的にニッケルーリン(Nt−p)層
4と保磁力500エルステツド、残留磁束密度1000
0ガウスのコバルト・リン(co−P)層5を合計約5
μm形成した半導体装置の電極と、銅6で配線した絶縁
基板7に選択的に20μm間隔で約5μm前述のCO・
2層5を形成した回路基板とを、樹脂粒子へ前述のCo
−P層を形成した平均粒径約5μmの導電粒子8を分散
させた紫外線硬化接着剤9を用い、第1表のような組み
合せで5000エルステツドの磁場を使い着磁した。
As shown in Fig. 1, silicon oxide IQ is applied to the silicon substrate
Aluminum (At) alloy 2 separated by silicon nitride 3 at 50ttm x 5Dpm square and 50μm intervals and nickel-phosphorus (Nt-p) layer 4 selectively formed by electroless plating with a coercive force of 500 oersted and residual magnetic flux density. 1000
A total of about 5 cobalt-phosphorus (co-P) layers of 0 Gauss
The electrodes of the semiconductor device formed in .mu.m and the insulating substrate 7 wired with copper 6 are selectively coated with about 5 .mu.m at intervals of 20 .mu.m.
The above-mentioned Co
-Using an ultraviolet curing adhesive 9 in which conductive particles 8 having an average particle diameter of about 5 μm and forming a P layer were dispersed, magnetization was performed using a magnetic field of 5000 oersted in combinations as shown in Table 1.

第  1  表 但し、 試料2のみ電極同志が吸引するよ う着磁 した。Table 1 however, Only sample 2 will be suctioned by the electrodes. Magnetization did.

そして次に回路基板上へ半導体装置をのせ、フリップチ
ップボンディングした後、接着剤を硬化させ実装を完成
させた。
Next, the semiconductor device was placed on the circuit board, flip-chip bonding was performed, and the adhesive was cured to complete the mounting.

実施例10半導体装置の電極を非磁性のN1・P層まで
とした以外、実施例1と同様の回路基板と導電粒子を用
い、回路基板の電極のみ着磁したそしてフリップチップ
ボンディシグし、試料4とした。
Example 10 The same circuit board and conductive particles as in Example 1 were used except that the electrodes of the semiconductor device were changed to the non-magnetic N1 and P layers. Only the electrodes of the circuit board were magnetized, and flip-chip bonding was performed to prepare the sample. It was set as 4.

(実施例6) 実施例10回路基板の電極を非磁性金属とした以外、実
施例1と同様の半導体装置の電極と導電粒子を用い、半
導体装置の電極のみ着磁した。そしてフリップチップボ
ンディングし、試料5とした。
(Example 6) Example 10 The same electrodes and conductive particles of a semiconductor device as in Example 1 were used except that the electrodes of the circuit board were made of non-magnetic metal, and only the electrodes of the semiconductor device were magnetized. Then, flip-chip bonding was performed to obtain sample 5.

(実施例4) 実施例1の導電粒子を非磁性の金属で被覆した以外、実
施例1と同様の半導体装置の電極と回路基板の電極を用
い第2表のような組み合せで着磁し、フリップチップボ
ンディング実装した。
(Example 4) The conductive particles of Example 1 were coated with a non-magnetic metal, but the same semiconductor device electrodes and circuit board electrodes as in Example 1 were used to magnetize them in the combinations shown in Table 2. Implemented flip chip bonding.

但し試料7のみ電極同志が吸ジ1するよう着磁した。However, only sample 7 was magnetized so that the electrodes were attracted to each other.

第 表 (比較例1) 実施例1の各電極と導電粒子を着磁せず、フリップチッ
プ実装した。
Table 1 (Comparative Example 1) The electrodes and conductive particles of Example 1 were not magnetized and were flip-chip mounted.

(比較例2) 実施例1の導電粒子を着磁させ、フリップチップ実装し
た。
(Comparative Example 2) The conductive particles of Example 1 were magnetized and flip-chip mounted.

(比較例5) 実施例1の回路基板の電極と導電粒子を非磁性のN1−
Pめっきに変更した以外、半導体装置の電極を着磁して
実施例1と同様の方法によりフリップチップ実装した。
(Comparative Example 5) The electrodes and conductive particles of the circuit board of Example 1 were replaced with non-magnetic N1-
The electrodes of the semiconductor device were magnetized and flip-chip mounted in the same manner as in Example 1, except that the plating was changed to P plating.

以上実施例1から4の試料1から8と比較例1から3の
実装品の電気特性を調べ実装状態を評価した。その結果
、試料1から8は良好な接続であったが、比較例1と5
は電気的に接続されていない部分が現われ、比較例2は
電極間が短絡するという問題を発生させた。
The electrical characteristics of the mounted products of Samples 1 to 8 of Examples 1 to 4 and Comparative Examples 1 to 3 were examined and the mounting state was evaluated. As a result, samples 1 to 8 had good connections, but comparative examples 1 and 5
In Comparative Example 2, there appeared a portion that was not electrically connected, and a problem occurred in which the electrodes were short-circuited.

尚、本実施例以外にも半導体装置の電極や回路基板の電
極や導電粒子の構成が、表面に強磁性体をこれらの電極
等の二つ以上に形成していれば、膜厚や組成が変わって
も効果に変わりがなかつたまたフリップチップボンディ
ングを、導電粒子を分散させた膜や紫外線硬化材料以外
の接着剤に分散させたものを使用しても、効果に変わり
がなかった。
In addition to this example, if the structure of the electrodes of a semiconductor device, the electrodes of a circuit board, or the conductive particles has a ferromagnetic material formed on the surface of two or more of these electrodes, the film thickness and composition may vary. There was no change in effectiveness even when flip-chip bonding was used with a film in which conductive particles were dispersed or in an adhesive other than an ultraviolet curing material.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は強磁性体の形成とその着磁
により、狭い電極間隔でも半導体装置を電気的に実装で
き、しかも磁力により半導体装置と回路基板の電極が若
干ずれても、接続できるという効果を有する。
As described above, by forming a ferromagnetic material and magnetizing it, the present invention enables semiconductor devices to be electrically mounted even with narrow electrode spacing, and even if the electrodes of the semiconductor device and the circuit board are slightly misaligned due to magnetic force, the connection can be maintained. It has the effect of being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に示した実装の断面図である。 1・・・・・・・・・nタイプけい素基板2・・・・・
・・・・アルミニウム合金6・・・・・・・・・窒化け
い素 4・・・・・・・・・ニッケル・リン層5・・・・・・
・・・コバルト・リン層6・・・・・・・・・銅 7・・・・・・・・・絶縁基板 8・−・・・・・・・導電粒子 9・・・・・・・・・紫外線硬化接着剤10・・・・・
・・・・酸化けい素 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a sectional view of a mounting shown in an embodiment of the present invention. 1...N-type silicon substrate 2...
...Aluminum alloy 6...Silicon nitride 4...Nickel phosphorous layer 5...
Cobalt/phosphorus layer 6 Copper 7 Insulating substrate 8 Conductive particles 9・・UV curing adhesive 10・・・・
...Silicon oxide and above Applicant Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims]  半導体装置の電極と回路基板の電極とを導電粒子の分
散した膜又は接着剤により接続する実装方法において、
半導体装置の電極又は回路基板の電極又は導電粒子のい
ずれか二つ以上の表面が強磁性体に覆われ、且つ、半導
体装置の電極又は回路基板の電極のいずれか一つ以上着
磁処理したものを用いて接続することを特徴とする半導
体装置の実装方法。
In a mounting method that connects an electrode of a semiconductor device and an electrode of a circuit board using a film or adhesive in which conductive particles are dispersed,
The surfaces of two or more of the electrodes of the semiconductor device, the electrodes of the circuit board, or conductive particles are covered with a ferromagnetic material, and one or more of the electrodes of the semiconductor device or the electrodes of the circuit board are subjected to magnetization treatment. 1. A method for mounting a semiconductor device, characterized in that connection is made using a semiconductor device.
JP2271265A 1990-10-09 1990-10-09 Method of mounting semiconductor device Pending JPH04146632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271265A JPH04146632A (en) 1990-10-09 1990-10-09 Method of mounting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271265A JPH04146632A (en) 1990-10-09 1990-10-09 Method of mounting semiconductor device

Publications (1)

Publication Number Publication Date
JPH04146632A true JPH04146632A (en) 1992-05-20

Family

ID=17497673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271265A Pending JPH04146632A (en) 1990-10-09 1990-10-09 Method of mounting semiconductor device

Country Status (1)

Country Link
JP (1) JPH04146632A (en)

Similar Documents

Publication Publication Date Title
JP2769491B2 (en) Electrical equipment
US3855693A (en) Method for assembling microelectronic apparatus
US5986348A (en) Magnetic alignment system for bumps on an integrated circuit device
JPH0758148A (en) Electronic element
JPS62230027A (en) Manufacture of semiconductor device
KR20070098369A (en) Anisotropic conductive paste and plasma display panel apparatus
US5453148A (en) Adhesive for connecting a circuit member to a substrate
JPH04146632A (en) Method of mounting semiconductor device
JP4433449B2 (en) Anisotropic conductive film and manufacturing method thereof
JP2001004700A (en) Interposer board
JPS6013044A (en) Solderable stuck thin layer
CN109644561A (en) Circuit board and its manufacturing method
JP2002118210A (en) Interposer for semiconductor device and semiconductor using the same
JP3447569B2 (en) Anisotropic conductive film and electrode connection structure using the same
JP2002280715A (en) Method for lead-less connection of electronic circuit
KR100359789B1 (en) Flip Chip Package
KR20080107589A (en) Flip chip package
JPH02222598A (en) Semiconductor device module
JPH04314386A (en) Method of interconnecting circuit by anisotropic conductive adhesive
JP3045133B2 (en) Ball mounting method and transfer substrate
JPH0430532A (en) Structure and manufacture of projecting electrode bump
JPH0794554A (en) Mounting method of semiconductor device
JPH06222377A (en) Plane type display device
JP2005303335A (en) Method of manufacturing packaging sheet for semiconductor device
JPS61259548A (en) Semiconductor device