JPH0414650B2 - - Google Patents

Info

Publication number
JPH0414650B2
JPH0414650B2 JP60156949A JP15694985A JPH0414650B2 JP H0414650 B2 JPH0414650 B2 JP H0414650B2 JP 60156949 A JP60156949 A JP 60156949A JP 15694985 A JP15694985 A JP 15694985A JP H0414650 B2 JPH0414650 B2 JP H0414650B2
Authority
JP
Japan
Prior art keywords
reaction
present
fluorobenzene
platinum
fluorocyclohexene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60156949A
Other languages
Japanese (ja)
Other versions
JPS6219541A (en
Inventor
Masahiro Tojo
Shinsuke Fukuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60156949A priority Critical patent/JPS6219541A/en
Publication of JPS6219541A publication Critical patent/JPS6219541A/en
Publication of JPH0414650B2 publication Critical patent/JPH0414650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、フルオロベンゼンの新規な製造法に
関する。 (従来の技術) フルオロベンゼンの製造法としては、従来、ア
ニリンのジアゾニウム塩を熱分解する方法(シー
マン法)や、分子状弗素によるベンゼンの直接弗
素化、あるいはシクロペンタンジエンに対するフ
ルオロカルベン付加を経る方法(特公昭60−7976
号公報)等が知られている。 (発明が解決しようとする問題点) 前記従来の方法は、高価な原料を用いること
や、目的生成物であるフルオロベンゼンの収率が
低いという欠点がある。また、シーマン法では、
不安定で分解しやすい固体のジアゾニウム塩を取
り扱わなければならないため、工業的に実施する
のは困難を伴なう。直接弗素化法では、きわめて
反応性の高い分子状弗素を使用するという点で危
険性が高いばかりでなく、副生成物も多い。シク
ロペンタジエンに対するフルオロカルベン付加を
経る方法では、酸受容体と発生する酸との付加物
が副生するという欠点がある。したがつて、この
ような欠点を解消する製造法の出現が望まれてい
た。 (問題点を解決するための手段) 本発明者らは、上記の欠点を有しない新規な製
造法を見出すため鋭意研究を重ねた結果、1−フ
ルオロシクロヘキセンを脱水素触媒の存在下に反
応させることにより、フルオロベンゼンが得られ
ることを見出し、本発明を完成するに至つた。 すなわち、本発明は、1−フルオロシクロヘキ
センを脱水素触媒の存在下に反応させることを特
徴とするフルロオベンゼンの製造法に関するもの
である。 本発明は、フルオロベンゼンの新規な製造法を
提供するものである。 原料として用いる1−フルオロシクロヘキセン
は公知であり、どのような合成法で製造されたも
のであつても使用することができる。 本発明において使用される脱水素触媒として
は、本発明の反応条件において脱水素能を有する
触媒であればよく、特に限定されるものではな
い。好ましくは、パラジウム、白金、ルテニウ
ム、ニツケル、コバルト、ロジウム、オスミウ
ム、イリジウム等の白金族金属および白金族元素
を含む化合物の中から選ばれた少なくも1種の触
媒が用いられる。さらに好ましくは、パラジウ
ム、白金、ルテニウム、およびパラジウム、白
金、ルテニウムを含む化合物の中から選ばれた少
なくとも1種の触媒が用いられる。 反応の様式としては、流動床式、固定床式、あ
るいは撹拌式等、一般に用いられる方法を使用す
ることができる。また、流通式、回分式いずれの
方法であつてもよい。 反応圧力は特に制限はなく、原料として用いる
1−フルオロシクロヘキセンは、反応系において
液相、気相あるいは気液混相のいずれであつても
よい。 反応温度は脱水素反応の平衡の点から、また、
反応速度を向上させるためには、高温が有利であ
るが、副反応等の問題から、あまり高い温度は好
ましくない。本発明においては、反応温度は使用
する触媒の種類および用いる反応の様式等によつ
て異なるが、気相反応の場合には、通常は100〜
600℃、好ましくは200〜500℃で行われ、液相反
応の場合には、通常は室温〜400℃、好ましくは
50〜300℃で行われる。 また、反応時間は反応温度、触媒の種類、用い
る原料の種類等により異なるが、液相反応の場合
には、通常は0.05〜50時間、好ましくは0.1〜20
時間が用いられる。気相流通式反応の場合には、
接触時間で表現して通常は0.1〜100秒、好ましく
は0.3〜20秒が用いられる。 反応原料と触媒の量比は、広範囲にとることが
でき、反応形式が連続式あるいは回分式のいずれ
で実施されるかによつても異なる。液相回分式の
場合で例をあげると、通常は反応原料に対する触
媒の重量比で表現して、0.0001〜0.5の範囲が用
いられ、好ましくは0.001〜0.1の範囲で使用され
る。 反応原料である1−フルオロシクロヘキセンと
脱水素触媒の他に、水蒸気、水素、窒素、ヘリウ
ム、アルゴン等の気体が雰囲気として反応系に存
在していてもよく、脱水素反応に不活性な有機溶
媒が反応系に存在していてもよい。 (実施例) 以下に実施例を示し、本発明を具体的に述べ
る。 実施例 1 1−フルオロシクロヘキセン18.8gとパラジウ
ム黒2.0gを、予めアルゴンガス置換した容量50
mlのステンレス製耐圧反応管に仕込み、150℃の
油浴中で15分間振盪加熱することにより反応を行
わせた。反応管を冷却後、反応混合物をガスクロ
マトグラフイー法により分析した結果、フルオロ
ベンゼンが0.7g生成していた。 実施例 2〜5 実施例1と同様に、次表に示す反応条件によ
り、1−フルオロシクロヘキセンの脱水素反応を
行つた。結果次表に示す。
(Industrial Application Field) The present invention relates to a novel method for producing fluorobenzene. (Prior art) Conventional methods for producing fluorobenzene include thermal decomposition of a diazonium salt of aniline (Siemann method), direct fluorination of benzene with molecular fluorine, or addition of fluorocarbene to cyclopentanediene. Method (Tokuko Showa 60-7976
Publication No.) etc. are known. (Problems to be Solved by the Invention) The conventional methods have drawbacks such as the use of expensive raw materials and the low yield of the desired product, fluorobenzene. In addition, in the Seaman method,
It is difficult to implement this method industrially because it requires handling solid diazonium salts, which are unstable and easily decomposed. The direct fluorination method is not only risky because it uses highly reactive molecular fluorine, but also produces many by-products. The method involving addition of fluorocarbene to cyclopentadiene has the disadvantage that an adduct of the acid acceptor and the generated acid is produced as a by-product. Therefore, it has been desired to develop a manufacturing method that eliminates these drawbacks. (Means for Solving the Problems) As a result of intensive research to find a new production method that does not have the above drawbacks, the present inventors have discovered that 1-fluorocyclohexene is reacted in the presence of a dehydrogenation catalyst. It was discovered that fluorobenzene can be obtained by this method, and the present invention was completed. That is, the present invention relates to a method for producing fluorobenzene, which is characterized by reacting 1-fluorocyclohexene in the presence of a dehydrogenation catalyst. The present invention provides a novel method for producing fluorobenzene. 1-fluorocyclohexene used as a raw material is publicly known, and any synthetic method produced can be used. The dehydrogenation catalyst used in the present invention is not particularly limited as long as it has dehydrogenation ability under the reaction conditions of the present invention. Preferably, at least one catalyst selected from platinum group metals such as palladium, platinum, ruthenium, nickel, cobalt, rhodium, osmium, and iridium and compounds containing platinum group elements is used. More preferably, at least one catalyst selected from palladium, platinum, ruthenium, and compounds containing palladium, platinum, and ruthenium is used. As the reaction mode, commonly used methods such as fluidized bed type, fixed bed type, or stirring type can be used. Further, either a flow method or a batch method may be used. The reaction pressure is not particularly limited, and the 1-fluorocyclohexene used as a raw material may be in any of a liquid phase, a gas phase, or a gas-liquid mixed phase in the reaction system. The reaction temperature is determined from the viewpoint of equilibrium of the dehydrogenation reaction, and
Although high temperatures are advantageous in order to improve the reaction rate, too high temperatures are not preferred due to problems such as side reactions. In the present invention, the reaction temperature varies depending on the type of catalyst used and the reaction method used, but in the case of a gas phase reaction, it is usually 100 -
It is carried out at 600°C, preferably 200-500°C, and in the case of a liquid phase reaction, it is usually carried out at room temperature - 400°C, preferably
It is carried out at 50-300℃. The reaction time varies depending on the reaction temperature, type of catalyst, type of raw materials used, etc., but in the case of liquid phase reaction, it is usually 0.05 to 50 hours, preferably 0.1 to 20 hours.
Time is used. In the case of gas phase flow reaction,
Expressed in terms of contact time, usually 0.1 to 100 seconds, preferably 0.3 to 20 seconds is used. The quantitative ratio of the reaction raw materials to the catalyst can be varied over a wide range, and will also vary depending on whether the reaction format is continuous or batchwise. For example, in the case of a liquid phase batch system, the weight ratio of the catalyst to the reaction raw material is usually in the range of 0.0001 to 0.5, preferably in the range of 0.001 to 0.1. In addition to the reaction raw materials 1-fluorocyclohexene and the dehydrogenation catalyst, a gas such as water vapor, hydrogen, nitrogen, helium, or argon may be present in the reaction system as an atmosphere, and an organic solvent inert to the dehydrogenation reaction. may be present in the reaction system. (Example) Examples are shown below to specifically describe the present invention. Example 1 18.8 g of 1-fluorocyclohexene and 2.0 g of palladium black were placed in a 50-volume container in which argon gas was replaced in advance.
The mixture was charged into a 1.5 ml stainless steel pressure-resistant reaction tube, and the reaction was carried out by heating with shaking in a 150° C. oil bath for 15 minutes. After cooling the reaction tube, analysis of the reaction mixture by gas chromatography revealed that 0.7 g of fluorobenzene had been produced. Examples 2 to 5 In the same manner as in Example 1, the dehydrogenation reaction of 1-fluorocyclohexene was carried out under the reaction conditions shown in the following table. The results are shown in the table below.

【表】 (発明の効果) 本発明は、フルオロベンゼンを製造する新規な
方法を提供するものである。そして、本発明によ
れば、高価な原料を用いることなく、従来よりも
高い収率でフルオロベンゼンを得ることができ
る。
[Table] (Effects of the Invention) The present invention provides a novel method for producing fluorobenzene. According to the present invention, fluorobenzene can be obtained in a higher yield than conventionally without using expensive raw materials.

Claims (1)

【特許請求の範囲】 1 1−フルオロシクロヘキセンを脱水素触媒の
存在下に反応させることを特徴とするフルオロベ
ンゼンの製造法。 2 脱水素触媒が白金族金属および白金族元素を
含む化合物の中から選ばれた少なくとも1種であ
る特許請求の範囲第1項記載の方法。 3 脱水素触媒がパラジウム、白金、ルテニウ
ム、およびパラジウム、白金、ルテニウムを含む
化合物の中から選ばれた少なくとも1種である特
許請求の範囲第2項記載の方法。
[Scope of Claims] 1. A method for producing fluorobenzene, which comprises reacting 1-fluorocyclohexene in the presence of a dehydrogenation catalyst. 2. The method according to claim 1, wherein the dehydrogenation catalyst is at least one selected from platinum group metals and compounds containing platinum group elements. 3. The method according to claim 2, wherein the dehydrogenation catalyst is at least one selected from palladium, platinum, ruthenium, and a compound containing palladium, platinum, and ruthenium.
JP60156949A 1985-07-18 1985-07-18 Production of fluorobenzene Granted JPS6219541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60156949A JPS6219541A (en) 1985-07-18 1985-07-18 Production of fluorobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60156949A JPS6219541A (en) 1985-07-18 1985-07-18 Production of fluorobenzene

Publications (2)

Publication Number Publication Date
JPS6219541A JPS6219541A (en) 1987-01-28
JPH0414650B2 true JPH0414650B2 (en) 1992-03-13

Family

ID=15638855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60156949A Granted JPS6219541A (en) 1985-07-18 1985-07-18 Production of fluorobenzene

Country Status (1)

Country Link
JP (1) JPS6219541A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749249B2 (en) * 2006-03-31 2011-08-17 三洋電機株式会社 Disinfection unit
JP4744374B2 (en) * 2006-06-30 2011-08-10 三洋電機株式会社 Sanitization device for air around storage

Also Published As

Publication number Publication date
JPS6219541A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US4661337A (en) Preparation of hydrogen peroxide
US4683329A (en) Beneficial use of water in catalytic conversion of formamides to isocyanates
US4885389A (en) Process for manufacturing p-aminophenol
JPH0587495B2 (en)
EP0006999B1 (en) A process for the production of 2-chlorobenzonitrile derivatives
JPH0414650B2 (en)
Alami et al. Stereoselective manganese-catalyzed coupling reaction of conjugated chloroenynes and chlorodienes with Grignard reagents
US5241113A (en) Process for producing trifluoroacetyl chloride
US3639482A (en) Preparation of fluoroanilines
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
JPH0710808A (en) Preparation of methyl ester of chlorine-free cyclo- propanecarboxylic acid
US4918251A (en) Preparation of 2-halofluorobenzene
JPS6153287A (en) Manufacture of bicyclic amide acetal
JPS58213724A (en) Preparation of alpha-ketoamide
JPS6219540A (en) Production of aromatic fluorine compound
US3149161A (en) Catalytic reduction of 3-chloronitro benzene
US3020280A (en) Quinoline synthesis
CA1229098A (en) Process for the production of unsaturated dichloroisobutenes
JPH066595B2 (en) Method for oxidizing 2-hydroxy-ethylphosphonic acid dialkyl ester
US4485243A (en) Process for the preparation of a 2-alkylpyrrole
US4222959A (en) Process for the preparation of aromatic formamides
CA1289573C (en) Synthesis of high purity 5-chloroisophthaloyl chloride
JP2613515B2 (en) Method for producing sodioformylacetone
JPS6157532A (en) Manufacture of phenylacetic acid and derivatives of same by catalytic rearrangement of benzyl formate and derivatives ofsame
JPS606345B2 (en) Method for simultaneously producing methyl acetate and methyl formate