JPS6219540A - Production of aromatic fluorine compound - Google Patents

Production of aromatic fluorine compound

Info

Publication number
JPS6219540A
JPS6219540A JP60158323A JP15832385A JPS6219540A JP S6219540 A JPS6219540 A JP S6219540A JP 60158323 A JP60158323 A JP 60158323A JP 15832385 A JP15832385 A JP 15832385A JP S6219540 A JPS6219540 A JP S6219540A
Authority
JP
Japan
Prior art keywords
fluorocyclohexene
compound
reaction
group
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60158323A
Other languages
Japanese (ja)
Other versions
JPH0443891B2 (en
Inventor
Masahiro Tojo
正弘 東條
Shinsuke Fukuoka
伸典 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60158323A priority Critical patent/JPS6219540A/en
Publication of JPS6219540A publication Critical patent/JPS6219540A/en
Publication of JPH0443891B2 publication Critical patent/JPH0443891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce the corresponding aromatic fluorine compound in high yield and selectivity, by reacting a compound having the 1-fluorocyclohexene skeleton in the coexistence of an aromatic nitro compound in the presence of a dehydrogenation catalyst. CONSTITUTION:A compound having the 1-fluorocyclohexene skeleton expressed by formula I (R1-R5 are 1-5C alkyl, acyl, alkoxycarbonyl, aryloxycarbonyl or H), e.g. 1-fluorocyclohexene, is reacted in the coexistence of an aromatic nitro compound, e.g. nitrobenzene or nitrotoluene, preferably at 0.2-1 molar ratio based on the reaction raw material in the presence of a dehydrogenation catalyst, particularly preferably at least one selected from compounds containing Pd, Pt or Ru to afford the aimed aromatic fluorine compound expressed by formula II, e.g. fluorobenzene.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、芳香族弗素化合物の新規な製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a novel method for producing aromatic fluorine compounds.

さらに詳しくは、1−フルオロシクロヘキセン骨格′f
:vする化合物を脱水素触媒および芳香族ニトロ化合物
の存在下に反応させることを特徴とする芳香族弗素化合
物の製造法に関する。
More specifically, 1-fluorocyclohexene skeleton 'f
The present invention relates to a method for producing an aromatic fluorine compound, which is characterized by reacting a compound represented by v in the presence of a dehydrogenation catalyst and an aromatic nitro compound.

(従来の技術) 芳香族弗素化合物の製造法としては、従来、アニリン類
のジアゾニウム塩を熱分解する方法(ジ−マン法)や、
電子吸引性置換基金有するクロロベンゼン銹導体を弗化
アルカリ金属を用いて弗素置換する方法(ハロゲン交換
法)や、分子状弗素によるベンゼン類の直接弗素化、あ
るいは比較的複雑な構造を有する化合物に対する単純脱
水素法等が知られて−る。
(Prior art) Conventional methods for producing aromatic fluorine compounds include a method of thermally decomposing diazonium salts of anilines (Ziemann method),
A method for substituting chlorobenzene conductors with electron-withdrawing substitution funds with fluorine using an alkali metal fluoride (halogen exchange method), direct fluorination of benzenes with molecular fluorine, or a simple method for compounds with relatively complex structures. Dehydrogenation methods and the like are known.

しかしながらこれらの方法は、高価な原料を用いること
や、目的生成物である芳香族弗素化合物の収率が低いと
bう欠点がある。また、ジ−マン法では、不安定で分解
しやすい固体のジアゾニウムを取〕扱わなければならな
り九め、工業的に実施するのは困礁を伴なう、直接弗素
化法では、きわめて反応性の高り分子状弗素を使用する
という点で危険性が高いばか〕でなく、副生成吻も多い
However, these methods have drawbacks such as the use of expensive raw materials and the low yield of the desired product, an aromatic fluorine compound. In addition, the Zieman method requires the handling of unstable and easily decomposed solid diazonium, which is difficult to implement industrially, while the direct fluorination method is extremely reactive. It is not only dangerous in that it uses highly sensitive molecular fluorine, but also has many by-products.

電子吸引性基を置換基として持つ1−フルオロシクロヘ
キセン骨格を有する比較的構造の複雑な化合物に対する
単純な脱水素反応は従来知られている[例えば、ペトロ
フら、ケミカル・アブストラクト、第51巻、7525
9(1957)]。
A simple dehydrogenation reaction for a relatively complex compound having a 1-fluorocyclohexene skeleton with an electron-withdrawing group as a substituent is known [for example, Petrov et al., Chemical Abstracts, Vol. 51, 7525].
9 (1957)].

(発明が解決しようとする問題点) しかしながら、従来の脱水素反応では、反応の選択性が
低いなどの問題点があった。すなわち、1−フルオロシ
クロヘキセン骨格を有する化合物を、脱水素触媒を用い
て単純脱水素反応を行つ次場合、目的とする芳香族弗素
化合物の他に1炭素−弗素結合が開裂した結果生成する
不飽和炭化水素化合物や、不均化反応の結果生成する飽
和炭化水素化合物等が副成する。ま友、炭素−弗素結合
の開裂のため、弗化水素分子が発生する。ま九、単純脱
水素法では、反応速度を向上させる九めに、は高い反応
温度を必要とし、そのため、目的とする化合物の選択性
はさらに低下する。
(Problems to be Solved by the Invention) However, conventional dehydrogenation reactions have had problems such as low reaction selectivity. That is, when a compound having a 1-fluorocyclohexene skeleton is subjected to a simple dehydrogenation reaction using a dehydrogenation catalyst, in addition to the target aromatic fluorine compound, there are Saturated hydrocarbon compounds and saturated hydrocarbon compounds produced as a result of disproportionation reactions are produced as by-products. Well, due to the cleavage of the carbon-fluorine bond, hydrogen fluoride molecules are generated. Ninth, the simple dehydrogenation method requires a high reaction temperature to improve the reaction rate, which further reduces the selectivity of the target compound.

(問題点を解決するための手段) 本発明者らは、上記の欠点を有しない新規な製造法を見
出すため鋭意研究を重ねぇ結果、無置換の1−フルオロ
シクロヘキセンからフルオロベンゼンを製造することの
できる全く新しい方法を見出し、すてIIC特許出願し
九が、さらに検討を進めた結果、この系に芳香族ニトロ
化合物を共存させることKよって、フルオロベンゼンの
収率および選択率が飛躍的に向上することを見出すと共
K、1−フルオロシクロヘキセン以外の置換基を有する
1−フルオロシクロヘキセン誘導体にもこの方法が適用
でき、高収率、高選択率で対応する芳香族弗素化合物を
製造できることを見出し、本発明を完成するに至った。
(Means for Solving the Problems) As a result of intensive research to find a new production method that does not have the above drawbacks, the present inventors have succeeded in producing fluorobenzene from unsubstituted 1-fluorocyclohexene. As a result of further investigation, we found that by coexisting an aromatic nitro compound in this system, the yield and selectivity of fluorobenzene were dramatically increased. When they found that this method improved, they found that this method could also be applied to 1-fluorocyclohexene derivatives having substituents other than co-K and 1-fluorocyclohexene, and that the corresponding aromatic fluorine compounds could be produced with high yield and high selectivity. This discovery led to the completion of the present invention.

すなわち、本発明は、一般式〇) (式中、R1m’R* −Rs 5R4−R1は同一で
も異なってもよい炭素数1〜5のアルキル基、アシル基
、アルコキシカルボニル基、アリールオキシカルボニル
基あるいは水素原子を示す。) でabされる1−フルオロシクロヘキセン+格を有する
化合物を脱水素触媒および芳香族ニトロ比合物の存在下
に反応させることを特徴とする一般(式中、Rs mR
s mRs #R4*R1は前記に同じ。)で表わされ
る芳香族弗素化合物の製造法に関するものである。
That is, the present invention relates to the general formula 〇) (wherein R1m'R* -Rs 5R4-R1 is an alkyl group having 1 to 5 carbon atoms, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, which may be the same or different. or a hydrogen atom) is reacted with a compound having a 1-fluorocyclohexene + group ab in the presence of a dehydrogenation catalyst and an aromatic nitro compound (wherein Rs mR
s mRs #R4*R1 is the same as above. ) The present invention relates to a method for producing an aromatic fluorine compound represented by:

本発明の特徴は、1−フルオロシクロヘキセン骨格を有
する化合物を脱水素して芳香族弗素化合物tM造するK
To:2.t)b脱水素触媒と芳香族ニトロ化合物を反
応系に共存させるととくよシ、従来の単純な脱水素法と
比較して、きわめて高い選択率で目的とする化合物が収
率よく得られることである。
The feature of the present invention is that a compound having a 1-fluorocyclohexene skeleton is dehydrogenated to produce an aromatic fluorine compound tM.
To:2. t)b When a dehydrogenation catalyst and an aromatic nitro compound coexist in the reaction system, the target compound can be obtained with extremely high selectivity and high yield compared to the conventional simple dehydrogenation method. be.

原料トして用いる1−フルオロシクロヘキセン骨格を有
する化合物としては、前記一般式(Dを満尺す公知の化
合物はすべて用いることがてきる。
As the compound having a 1-fluorocyclohexene skeleton used as a raw material, all known compounds having the above general formula (D) can be used.

例、jjtf、1−フルオロシクロヘキセン、メチル−
1−フルオロシクロヘキセン(各異性体)、エチル−1
−フルオロシクロヘキセン(各異性体)、プロピル−1
−フルオロシクロヘキセン(各JI性体)等のモノアル
キル−1−フルオロシクロヘキセン(各異a体) 類や
、ジアルキル−1−フルオロシクロヘキセン(各異性体
)類、トリアルキル−1−フルオロシクロヘキセン(各
異性体)a等のポリアルキル−1−フルオロシクロヘキ
セン類。
Examples, jjtf, 1-fluorocyclohexene, methyl-
1-fluorocyclohexene (each isomer), ethyl-1
-Fluorocyclohexene (each isomer), propyl-1
- Monoalkyl-1-fluorocyclohexene (each isomer) such as fluorocyclohexene (each JI isomer), dialkyl-1-fluorocyclohexene (each isomer), trialkyl-1-fluorocyclohexene (each isomer) polyalkyl-1-fluorocyclohexene such as body) a.

あルinは4−アセチル−1−フルオロシクロヘキセン
等のアシル−1−フルオロシクロヘキセン(各異性体)
類、4−メトキシカルボニル−1−フルオロシクロヘキ
セン等のフルコキシカルポニルー1−フルオロシクロヘ
キセン類ヤアリールオキシカルボニル−1−フルオロシ
クロヘキセン類が好ましく用いられる。さらに好ましく
は、1−フルオロシクロヘキセン、4−フルオロシクロ
ヘキセン−3−カルボン酸アルキルが用いられる。
Al in is acyl-1-fluorocyclohexene (each isomer) such as 4-acetyl-1-fluorocyclohexene
Flucoxycarbonyl-1-fluorocyclohexenes such as 4-methoxycarbonyl-1-fluorocyclohexene and aryloxycarbonyl-1-fluorocyclohexene are preferably used. More preferably, 1-fluorocyclohexene and alkyl 4-fluorocyclohexene-3-carboxylate are used.

本発明において使用される脱水素触媒としては、本発明
の反応条件において脱水素能を有する触媒であればよく
、%に規定されるものではなh0好ましくは、パラジウ
ム、白金、ルテニウム、ニッケル、コバルト、ロジウム
、オスミウム、イリジウム等の白金族金属および白金族
元素を含む化合物の中から選ばれた少なくとも18Iの
触媒が用いられる。さらに好ましくは、パラジウム、白
金、ルテニウム、訃よびパラジウム、白金、ルテニウム
を含む化合物の中から選ばれた少なくとも1種の触媒が
用いられる。
The dehydrogenation catalyst used in the present invention may be any catalyst that has dehydrogenation ability under the reaction conditions of the present invention, and is not specified in terms of percentage. A catalyst of at least 18I selected from platinum group metals such as , rhodium, osmium, iridium, and compounds containing platinum group elements is used. More preferably, at least one catalyst selected from palladium, platinum, ruthenium, and compounds containing palladium, platinum, and ruthenium is used.

芳香族ニトロ化合物としては、例えば、ニトロベンゼン
、ジニトロベンゼン(各n性体)、ニド’ ) k X
−7(各n性体) 、 −)ニトロトルエン(各異性体
)、ニトロピリジン(各異性体)、ジニトロピリジン(
各異性体)、ニトロナフタレン(各異性体)、ジニトロ
ナフタレン(各異性体)類があげられる。
Examples of aromatic nitro compounds include nitrobenzene, dinitrobenzene (each n-mer), nido' ) k
-7 (each n-mer), -) nitrotoluene (each isomer), nitropyridine (each isomer), dinitropyridine (
(isomers), nitronaphthalene (isomers), and dinitronaphthalene (isomers).

また、これらの芳香族ニトロ化合物にお−て、少なくと
4.1個の水素が他の置換基、例えは、ハロゲン原子、
アミノ基、シアノ基、アルキル基、脂環族基、芳香族基
、アラルキル基、アルコキシ基、スルホキシド基、スル
ホン基、カルボニル基、エステル基、アミド基などで置
換されてbてもよい。好ましくは、ニトロベンゼンおよ
−びニトロトルエン(各異性体)が芳香族ニトロ化合物
−とじて使用される。
Furthermore, in these aromatic nitro compounds, at least 4.1 hydrogen atoms are substituted by other substituents, such as halogen atoms,
b may be substituted with an amino group, a cyano group, an alkyl group, an alicyclic group, an aromatic group, an aralkyl group, an alkoxy group, a sulfoxide group, a sulfone group, a carbonyl group, an ester group, an amide group, or the like. Preferably, nitrobenzene and nitrotoluene (in each isomer) are used as the aromatic nitro compounds.

反応の様式としては、流動床式、固定床式、あるいは攪
拌式環、一般に用いられる方法を使用することができる
。ま次、流通式、回分式りずれの方法であってもよい。
As for the reaction mode, commonly used methods such as fluidized bed type, fixed bed type, or stirred ring type can be used. It may be a continuous method, a flow method, or a batch method.

[L反応圧力は特に制限はなく、原料として用いる1−
フルオロシクロヘキセン骨格を有する化合物は、反応系
において液相、気相、あるいは気液混相のいずれであっ
てもよ−。
[L reaction pressure is not particularly limited, and 1-
The compound having a fluorocyclohexene skeleton may be in a liquid phase, a gas phase, or a gas-liquid mixed phase in the reaction system.

反応温度は脱水素反応の平衡の点から、また反応速度を
向上させるためには、高温が有利であるが、副反応等の
問題から、あまシ高一温度は好ましくない。本発明に訃
いては、反応温度は使用する触媒の種類訃よび用いる反
応の様式等によって異なるが、気相反応の場合には、通
常は100〜60’ D 0%好ましくは200〜5o
oCで行われ7、液相反応の場合には、通常は室温〜4
00C,好ましくは50〜300Cで行われる。
A high reaction temperature is advantageous from the viewpoint of equilibrium of the dehydrogenation reaction and to improve the reaction rate, but a relatively high temperature is not preferred due to problems such as side reactions. In the present invention, the reaction temperature varies depending on the type of catalyst used and the reaction method used, but in the case of a gas phase reaction, it is usually 100 to 60%, preferably 200 to 50%.
oC7, and in the case of liquid phase reactions, it is usually room temperature to 4
00C, preferably 50-300C.

また、反応時間は反応温度、触媒の種類、用いる原料の
種類等によシ異なるが、液相反応の場合には2通常は0
.05〜50時間、好ましくは0.1〜20時間が用い
られる。気相流通式反応の場合には、接触時間で表現し
て1通常はQ、1〜100秒、好ましくは0.5〜20
秒が用かられる。
In addition, the reaction time varies depending on the reaction temperature, type of catalyst, type of raw materials used, etc., but in the case of a liquid phase reaction, it is usually 0.
.. 05 to 50 hours, preferably 0.1 to 20 hours. In the case of a gas phase flow reaction, the contact time is expressed as 1, usually Q, 1 to 100 seconds, preferably 0.5 to 20 seconds.
Seconds are used.

反応原料と触媒の量比は、広範8にとることができ、反
応形式が連続式ある騒は回分式の込ずれで実施されるか
によっても異なる。液相回分式の場合で例をあげると、
通常は反応原料に対する触媒の重量比で表現して、0.
0001〜0.5の範囲が用いられ、好ましくは00.
001〜0.1の範囲で使用される。
The quantitative ratio of the reaction raw material to the catalyst can be varied over a wide range of 8, and it also depends on whether the reaction format is continuous or batchwise. For example, in the case of a liquid phase batch method,
Usually expressed as a weight ratio of catalyst to reaction raw materials, 0.
A range of 0001 to 0.5 is used, preferably 00.
It is used in the range of 001 to 0.1.

反応原料と芳香族ニトロ化合物の量比は、目的とする原
料転化率によりても異なるが、反応原料に対する芳香族
ニトロ化合物のモル比で表現して。
The quantitative ratio of the reaction raw material to the aromatic nitro compound varies depending on the desired conversion rate of the raw material, but is expressed as the molar ratio of the aromatic nitro compound to the reaction raw material.

通常は0.05〜10が用いられ、好ましくは0.1〜
2、さらに好ましくは0.2〜1が周込られる。
Usually 0.05 to 10 is used, preferably 0.1 to 10.
2, more preferably 0.2 to 1.

また1反応原料である1−フルオロシクロヘキセン骨格
を有する化合物と芳香族ニトロ化合物訃よび脱水素触媒
の他に、水蒸気、水素、窒素、ヘリウム、アルゴン等の
気体が雰囲気として反応系に存在していてもよく、脱水
素反応に不活性な有機溶媒が反応系に存在していてもよ
い。
Additionally, in addition to the reaction raw materials, a compound with a 1-fluorocyclohexene skeleton, an aromatic nitro compound, and a dehydrogenation catalyst, gases such as water vapor, hydrogen, nitrogen, helium, and argon are present in the reaction system as an atmosphere. Alternatively, an organic solvent inert to the dehydrogenation reaction may be present in the reaction system.

(実施例) 以下に実施例を示し、本発明を具体的に述べる。(Example) EXAMPLES The present invention will be specifically described with reference to Examples below.

実施例1 1−フルオロシクロヘキセン15.Of (0,150
mol )とパラジウム黒2.Of、hよびニトロペン
ゼア 14.8 f (0,120mot)を、予めア
ルゴンガス置換した容量75dのステンレス襄耐圧反応
管に仕込み、150cの油浴中で7時間、振盪加熱する
ととKより反応を行わせた。反応管を冷却後、反応混合
物をガスクロマトゲ2フイー法により分析した結果、フ
ルオロベンゼンが10.89(0,112moA )生
成してbた。また、未反応の1−フルオロシクロヘキセ
ンが5.7 t (0,036mol )残存していた
。さらに1未反応のニトロベンゼンと共に7ニリンが検
出された。
Example 1 1-Fluorocyclohexene 15. Of (0,150
mol ) and palladium black 2. Of, h and 14.8 f (0.120 mot) of nitropenzea were charged into a 75 d capacity stainless steel pressure-resistant reaction tube which had been purged with argon gas in advance, and heated with shaking in a 150 c oil bath for 7 hours. I made it. After cooling the reaction tube, the reaction mixture was analyzed by gas chromatograph 2F method, and as a result, 10.89 (0.112 moA) of fluorobenzene was produced. Further, 5.7 t (0,036 mol) of unreacted 1-fluorocyclohexene remained. Furthermore, 7 nilines were detected along with 1 unreacted nitrobenzene.

上記の値よシ算出した原料の転化率とフルオロベンゼン
の選択率をls1表に示す。
The conversion rate of the raw material and the selectivity of fluorobenzene calculated from the above values are shown in Table Is1.

実施例2〜10 第1表に示す反応条件で行った他は、実施例1と同様の
方法で脱水素反応を行なつ九。結果を第1表に示す。
Examples 2 to 10 Dehydrogenation reactions were carried out in the same manner as in Example 1, except that the reaction conditions shown in Table 1 were used. The results are shown in Table 1.

比較例 芳香族ニトロ化合物を用いなかった他は、実施例6と同
一の反応条件で脱水素反応を行った。結果を第1表に示
す。
Comparative Example A dehydrogenation reaction was carried out under the same reaction conditions as in Example 6, except that no aromatic nitro compound was used. The results are shown in Table 1.

実施例11 原料として4−メトキシカルボニル−1−フルオロシク
ロヘキセン25,7 t (0,150mot)を用い
、反応時間t−2時間とした他は、実施例1と同様の方
法で反応を行った。反応混合物をガスクロマトゲ2フイ
ー法により分析した結果、4−フルオロ安息香酸メチル
が6.9 f (0,048moL)生成していた。ま
た、未反応の4−メトキシカルボニル−1−フルオロシ
クロヘキセン15.8 ?(0,100mot)が存在
して−た。脱水素反応の転化率は55%、4−フルオロ
安息香酸メチルの選択率は96チであつ友。
Example 11 A reaction was carried out in the same manner as in Example 1, except that 25,7 t (0,150 mot) of 4-methoxycarbonyl-1-fluorocyclohexene was used as the raw material and the reaction time was t-2 hours. Analysis of the reaction mixture by gas chromatograph 2F method revealed that 6.9 f (0,048 mol) of methyl 4-fluorobenzoate was produced. Also, 15.8 ? of unreacted 4-methoxycarbonyl-1-fluorocyclohexene? (0,100mot) existed. The conversion rate of the dehydrogenation reaction was 55%, and the selectivity of methyl 4-fluorobenzoate was 96%.

(発明の効果) 本発明のように、一般式(Dで示される1−フルオロシ
クロヘキセン骨格を有する化合物を脱水素して芳香族弗
素化合物を展進するKあたシ、脱水素触媒と芳香族ニト
ロ化合物を反応系に共存させることKより、従来の単純
な脱水素法と比較して。
(Effects of the Invention) As in the present invention, a compound having a 1-fluorocyclohexene skeleton represented by the general formula (D) is dehydrogenated to develop an aromatic fluorine compound, a dehydrogenation catalyst, and an aromatic compound. Compared to the conventional simple dehydrogenation method, since nitro compounds are allowed to coexist in the reaction system.

きわめて高い選択率で目的とする化合物を収車よ〈得る
ことができる。
The target compound can be obtained with extremely high selectivity.

Claims (4)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R_1、R_2、R_3、R_4、R_5は同
一でも異なつてもよい炭素数1〜5のアルキル基、アシ
ル基、アルコキシカルボニル基、アリールオキシカルボ
ニル基あるいは水素原子を示す。) で表わされる1−フルオロシクロヘキセン骨格を有する
化合物を脱水素触媒および芳香族ニトロ化合物の存在下
に反応させることを特徴とする一般式(II) ▲数式、化学式、表等があります▼(II) (式中、R_1、R_2、R_3、R_4、R_5は同
一でも異なつてもよい炭素数1〜5のアルキル基、アシ
ル基、アルコキシカルボニル基、アリールオキシカルボ
ニル基あるいは水素原子を示す。) で表わされる芳香族弗素化合物の製造法。
(1) General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R_1, R_2, R_3, R_4, R_5 are alkyl groups having 1 to 5 carbon atoms, which may be the same or different, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, or a hydrogen atom) in the presence of a dehydrogenation catalyst and an aromatic nitro compound. Formula (II) ▲Mathematical formulas, chemical formulas, tables, etc.▼(II) A method for producing an aromatic fluorine compound represented by a carbonyl group, an aryloxycarbonyl group, or a hydrogen atom.
(2)脱水素触媒が白金族金属および白金属元素を含む
化合物の中から選ばれた少なくとも、種である特許請求
の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the dehydrogenation catalyst is at least a species selected from platinum group metals and compounds containing platinum metal elements.
(3)脱水素触媒がパラジウム、白金、ルテニウム、お
よびパラジウム、白金、ルテニウムを含む化合物の中か
ら選ばれた少なくとも、種である特許請求の範囲第2項
記載の方法。
(3) The method according to claim 2, wherein the dehydrogenation catalyst is at least a species selected from palladium, platinum, ruthenium, and compounds containing palladium, platinum, and ruthenium.
(4)芳香族ニトロ化合物がニトロベンゼンである特許
請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the aromatic nitro compound is nitrobenzene.
JP60158323A 1985-07-19 1985-07-19 Production of aromatic fluorine compound Granted JPS6219540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158323A JPS6219540A (en) 1985-07-19 1985-07-19 Production of aromatic fluorine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158323A JPS6219540A (en) 1985-07-19 1985-07-19 Production of aromatic fluorine compound

Publications (2)

Publication Number Publication Date
JPS6219540A true JPS6219540A (en) 1987-01-28
JPH0443891B2 JPH0443891B2 (en) 1992-07-20

Family

ID=15669126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158323A Granted JPS6219540A (en) 1985-07-19 1985-07-19 Production of aromatic fluorine compound

Country Status (1)

Country Link
JP (1) JPS6219540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026929A (en) * 1990-02-08 1991-06-25 Air Products And Chemicals, Inc. Synthesis of highly fluorinated aromatic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026929A (en) * 1990-02-08 1991-06-25 Air Products And Chemicals, Inc. Synthesis of highly fluorinated aromatic compounds

Also Published As

Publication number Publication date
JPH0443891B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
JPS61275241A (en) Production of deuterated acrylic acid or methacrylic acid
Ragaini et al. [Rh (CO) 4]−,[Rh5 (CO) 15]−, and bimetallic clusters as catalysts for the carbonylation of nitrobenzene to methyl phenylcarbamate
Chen et al. CuCl2 and PdCl2 catalysts for oxidative carbonylation of aniline with methanol
JPS6219540A (en) Production of aromatic fluorine compound
CA1319702C (en) Process for the hydroformylation of certain acrylic acid derivatives
JP2984047B2 (en) Method for producing 1-amino-4-alkoxybenzenes
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
EP0455917A1 (en) Process for the preparation of N-arylsubstituted amides
JPS6219541A (en) Production of fluorobenzene
US6235925B1 (en) Process for synthesizing khi-substituted ring systems
JPS5944303B2 (en) Production method of α-ketoacids
NO166710B (en) PROCEDURE FOR THE PREPARATION OF URETANES.
JP2002539083A (en) Method for producing cyclohexanecarboxylic acid using [2 + 4] Diels-Alder reaction
CN117430542B (en) Synthesis method of trifluoromethyl indole derivative
JPS635071A (en) Manufacture and catalyst system for urea derivative
JPS6261930A (en) Production of aromatic fluorine compound
JPS60178829A (en) Production of fluorine-containing aromatic compound derivative
JP3292559B2 (en) Method for producing catechol derivative
EP0108332B1 (en) Preparation of acetone dicarboxylic acid diester
JPS6318577B2 (en)
US4097524A (en) Process for the preparation of formamides
JPH01261344A (en) Production of 2,2,6,6-tetracyclohexanone
Okamoto et al. Reactions of trinitrotoluenes with sodium borohydride in a phase transfer catalytic system
JPS6030665B2 (en) Method for producing α-ketoamidoimines
JPS62103032A (en) Production of fluorobenzene