JPH0414635A - Information recording member - Google Patents

Information recording member

Info

Publication number
JPH0414635A
JPH0414635A JP2117581A JP11758190A JPH0414635A JP H0414635 A JPH0414635 A JP H0414635A JP 2117581 A JP2117581 A JP 2117581A JP 11758190 A JP11758190 A JP 11758190A JP H0414635 A JPH0414635 A JP H0414635A
Authority
JP
Japan
Prior art keywords
protective layer
recording
thin film
thermal conductivity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2117581A
Other languages
Japanese (ja)
Inventor
Keikichi Ando
安藤 圭吉
Motoyasu Terao
元康 寺尾
Norihito Tamura
礼仁 田村
Yasushi Miyauchi
靖 宮内
Tetsuya Nishida
哲也 西田
Norio Ota
憲雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2117581A priority Critical patent/JPH0414635A/en
Publication of JPH0414635A publication Critical patent/JPH0414635A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent dimensional changes of the substrate surface due to recording laser beam and to prevent decrease in recording sensitivity by providing protective layers essentially comprising oxides, sulfides, carbides, serenides, nitrides, etc., in a multilayer structure adjacent to a recording thin film. CONSTITUTION:The first protective layer 3 is a thin film essentially comprising oxide, nitride, or carbide and has the thermal conductivity between >= 8 W/m.K and <= 60 W/m.K, and more preferably, >= 10 W/m.K and <= 50 W/m.K. The heat generated by irradiation of recording beam is diffused in the first protective layer 3 essentially comprising oxides, nitrides or carbides which have high thermal conductivity. The heat is then shielded by the second protective layer 2 essentially comprising oxides, serenides or sulfides having low thermal conductivity. Therefore, little heat reaches to the grooved resin 7, which prevents deformation or deterioration of the substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明はレーザ光などの記録用エネルギービームによっ
て、たとえば映像や音声などのアナログ信号をFM変調
したものや、電子計算機のデータや、ファクシミリ信号
やディジタルオーディオ信号などのディジタル情報を、
リアルタイムで記録することが可能な情報の記録用薄膜
に関する。 【従来の技術】 公知例(特許公報又は文献名)レーザ
光によって薄膜に記録を行う記録原理は種々あるが、膜
材料の相転移(相変化とも呼ばれる)、フォトダークニ
ングなどの原子配列変化による記録は、膜の形状変化を
ほとんど伴わないので、2枚のディスクを樹脂により直
接貼りあわせた両面ディスクが出来るという長所を持っ
ている。 この種の記録に関連する公知例としては、例えば特願昭
60−226723号が挙げられる。
[Industrial Application Field 1] The present invention is applicable to FM-modulated analog signals such as video and audio using a recording energy beam such as a laser beam, digital data such as computer data, facsimile signals, and digital audio signals. information,
This invention relates to a thin film for recording information that can be recorded in real time. [Prior art] Known examples (patent publications or literature titles) There are various recording principles for recording on thin films with laser light, but there are various recording principles based on changes in atomic arrangement such as phase transition (also called phase change) of the film material and photodarkening. Since recording involves almost no change in the shape of the film, it has the advantage that a double-sided disc can be created by directly bonding two discs together using resin. A known example related to this type of record is, for example, Japanese Patent Application No. 60-226723.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記従来技術のうち、相変化による記録は記録用ビーム
の照射による熱によって膜形状変化をほとんど伴わない
原子配列変化を生じさせるものであるが、記録膜中に発
生し、記録膜に近接した保護層に伝わった熱によって基
板が局部的に温められ、基板が変形すると、ノイズが増
加したりトラッキングが不安定になったりする。 本発明の目的は、記録用ビームのレーザ光によって基板
表面の形状に変化を生じないようにし、且つ記録感度が
低下しにくい記録用部材を提供することにある。
Among the conventional technologies mentioned above, recording by phase change causes a change in atomic arrangement due to heat generated by recording beam irradiation, with almost no change in film shape. The heat transferred to the layers locally warms the substrate and deforms it, leading to increased noise and unstable tracking. An object of the present invention is to provide a recording member in which the shape of the substrate surface is not changed by the laser beam for recording, and the recording sensitivity is less likely to decrease.

【課題を解決するための手段J 上記目的は、基板上に形成された記録用ビームの照射を
受けて変化を生ずる情報記録用薄膜を有する情報記録用
部材において、上記の記録用薄膜に近接して適当な酸化
物、硫化物、炭化物、セレン化物あるいは窒化物を主成
分とする保護層を多層に設けることにより達成される。 本発明の好適な構成の特徴は、基板上に形成された記録
用ビームの照射を受けて変化を生ずる情報記録用薄膜を
有する記録媒体において、上記情報記録用薄膜に近接し
て、もしくは上記の情報記録用薄膜に隣接して熱伝導率
が8W/m・K以上60W/m・K以下の範囲の酸化物
、炭化物あるいは窒化物を主成分とする材料より選ばれ
た少なくとも一者からなり、上記情報記録用薄膜に近い
側に有る第一保護層と、熱伝導率が0.5W/m・K以
上6W/m−K(Kは絶対温度)以下の酸化物、硫化物
あるいはセレン化物を主成分とする材料より選ばれた少
なくとも一者からなる第二保護層を有する点にある。 さらに、上記の保護層を2層とする場合は、記録膜に近
い側の第一保護層としてはAl20□、Ta205. 
Y2O3、Ta2O5、S i、N4. A Q N、
 S i C,およびA Q S i N2など(7)
Al−Si−N系材料およびAN−Si−0−N系材料
より成るA群より選ばれた少なくとも一者に近い材料を
主成分とする薄膜を、記録膜から遠い側の第二保護層と
してはSiO,SiO3、Ta2O5、TiO2,Zr
O,およびZnS。 CdS、In2S3、ZnSe、CdSeおよび工n2
Se、より成るB群より選ばれた少なくとも一者に近い
組成の材料を主成分とする薄膜を用いる。 より好ましくは、第一保護層としてSi3N4.AlS
 i N2あるいはAl2o3に近い組成の材料を、第
二保護層として ZnSまたはZnSとB群の酸化物の
うちの少なくとも一者との混合材料を用いる。 【作用】 上記の第一保護層の酸化物、炭化物、あるいは窒化物を
主成分とする薄膜は、熱伝導率の高い酸化物、炭化物、
あるいは窒化物を主成分とする薄膜であり、上記の記録
用ビームの照射によって記録膜に生じる熱を拡散させる
と共に、外方、特に引っ張り力に対して強い。上記の第
二保護層の酸化物、セレン化物、あるいは硫化物を主成
分とする薄膜は、熱伝導率の低い酸化物、セレン化物。 あるいは硫化物を主成分とする薄膜であり、上記の記録
用ビームの照射によって生じる熱が樹脂層に伝わるのを
防止する。それによって、上記の樹脂に、上記の記録用
ビームの照射の影響で生ずる変質あるいは変形を防止す
ることができる。第一保護層の酸化物、炭化物、あるい
は窒化物を主成分とする薄膜は、熱伝導率が8W/m・
K以上60W/m°に以下の範囲が好ましく、膜厚は1
0nm以上11000n以下の範囲が好ましい。特に、
熱伝導率が10W/m・K以上50W/m・K以下、膜
厚が約50nm以上200nm以下の酸化物、あるいは
窒化物を主成分とする薄膜を用いると、記録感度の低下
が少ない。熱拡散係数は2.3cm”/sec以上6.
9cm”/sec以下が好ましい。上記の第二保護層の
酸化物、セレン化物、あるいは硫化物を主成分とする薄
膜は、熱伝導率が0.5W/m・K以上6W/m−K(
Kは絶対温度)以下の範囲が好ましく、膜厚は10nm
以上11000n以下の範囲が好ましい。特に、熱伝導
率が2W/m・K以上5W/m・K以下、膜厚が約50
nm以上300nm以下の酸化物、セレン化物、あるい
は硫化物を主成分とする薄膜を用いると、上記の記録用
ビームの照射によって生ずる変質あるいは変形を防止す
る効果が顕著である。熱拡散係数は0.46cm2/s
ee以上1.15cm2/seC以下が好ましい。記録
膜の膜厚は20nm以上250nm以下の範囲が記録感
度、S/N比などの点で好ましく、第一保護層および第
二保護層の膜厚と合せて調整することが好ましい。第一
保護層および第二保護層の膜厚の和は10nm以上11
000n以下の範囲が好ましい。この保護層の膜厚は、
光の干渉効果を利用して大きな再生信号を得るために、
上記記録膜の膜厚と合せて調整することが好ましい。 一般に薄膜に光を照射すると、その反射光は薄膜表面か
らの反射光と薄膜裏面からの反射光との重ねあわせにな
るため干渉をおこす。反射率で信号を読み取る場合には
、上記のそれぞれの膜の膜厚を調整して反射率の値が小
さい条件を満たすことが好ましい。これは、信号読みだ
し時のコントラスト比が大きくなり、記録感度も高くな
るからである。第一保護層および第二保護層の総和の特
に好ましい膜厚範囲は80nm以上600nm以下の範
囲である。中間層の屈折率と膜厚の積は50nm以上6
00nm以下、記録膜の屈折率と膜厚の積は1100n
以上600nm以下、第一保護層および第二保護層の屈
折率と膜厚の積の総和は120nm以上、1500nm
以下の範囲が特に好ましい。ただし、記録膜については
、記録膜の少なくとも一部分の屈折率と膜厚の積が上記
の範囲内にあればよい。 第一保護層および第二保護層は使用するレーザ光の消衰
係数kが0.03以上1.0以下であると、記録感度が
高く好ましい。第一保護層および第二保護層とは反対側
(光入射側の反対側)の保護層(反射層を設ける場合は
記録膜と反射層との間の層)にも第一保護層および第二
保護層に用いるものに近い組成の物質を使用でき、また
、同じように多層にすることもできるが、消衰係数は0
゜1以下が好ましいので、例えば酸化物の場合、酸素欠
陥を少なくする方がよい。上記の光入射側とは反対側の
酸化物、硫化物および窒化物を主成分とする薄膜に近接
してさらに上記の第一保護層および第二保護層に使用可
能な材料の層や金属層を設ければさらに強度が増す。 本発明の酸化物等を主成分とする薄膜は、記録膜と基板
との間に形成してもよいし、記録膜の基板とは反対の側
に設けてもよい。両側に設ければさらに好ましい。基板
は光入射側でもその反対側にあっても良い。記録膜の光
入射側と反対側の保護層と、それに隣接する金属層との
間に、W、Mo、Crのうちの少なくとも一元素を主成
分とする接着性改善層を設ければさらに好ましい。この
層の膜厚は1nm以上30nm以下が好ましい。 この層を設けるのは、本発明以外の記録媒体にも有効で
ある。 第一保護層と第二保護層との界面は必ずしも明確である
必要はない。組成が連続的に変化していた方が、界面の
剥離のおそれがない。また、第一保護層および第二保護
層は均一な層でなくてもよく、例えばそれぞれが多層膜
で平均の熱伝導率や屈折率、熱拡散係数が上記の範囲内
にあるものであってもよい。 本発明はディスク状記録媒体ばかりでなく、テープ状、
カード状などの記録媒体にも有効である。 また光磁気記録膜など、他の記録原理による記録媒体に
も有効である。 [実施例1 以下、本発明の一実施例を第1図により説明する。まず
、案内溝を有する基板1(ポリカーボネート、直径13
0 m m 、厚さ1.2mm)に、本発明の第二保護
層として(z n s) so (S z 0z)2゜
に近い組成の薄膜2(約200nm)を積層し、第一保
護層としてAl20.に近い組成の酸化物よりなる薄膜
3(約10100nを積層した後、上記光入射側第二保
護層および第一保護層を介して形成した記録用ビームの
照射を受けてほとんど変形を伴わないで原子配列変化を
生ずるSn−5b−T e糸情報記録用薄膜4(厚さ約
30nm)とAl20.に近い組成の酸化物よりなる中
間層5(厚さ約200nm)を積層し、さらに金属元素
を主成分とする薄膜6としてAl2−Mg合金の薄膜(
約50nm)を積層した後、紫外線の照射により硬化す
る樹脂7を塗布し、真空中(約10Pa)で紫外線に約
2分間露光し、前記金属元素を主成分とする薄膜6とも
う一枚の同じ構造のディスク8を貼りあわせた。 次に、上記の情報記録用薄膜4に基板1側(紙面上で下
方)より記録用レーザビームを照射し、情報の記録を行
った。次に、上記第二保護層の薄膜2と基板との界面付
近を上記基板1側(紙面上で下方)より顕微鏡(x40
0倍)で観察し、上記基板に変質および変形が生じてい
ないことを確認した。本実施例の第二保護層の(ZnS
)s。 (Sin2)2゜の膜厚を変化させたとき、記録に必要
なレーザパワーと100回記録書き換え後の反射率変化
分を補正した雑音レベルは次のように変化した。 膜厚(nm)  記録レーザパワー 雑音レベル、:)
     16mW    −75dBm10    
16 m W    −80d B m50    1
6 m W      83 d B m100   
 17mW     −85dBm300    18
mW     −85dBm1000    20 m
 W    −85d B m1500    22m
W    −85dBmまた。第一保護層の膜厚は10
nm以上11000n以下の範囲で使用可能であったが
、50nm以上200nm以下のとき、雑音レベルが一
85dBm以下、記録パワーマージン上15%以上とな
り、かつ、低いレーザパワーで記録でた。 上記の金属元素を主成分とする薄膜6のAl−Mg合金
の一部または全部をAl、Cu、Ag。 Au、Mg+ si、Ni、Ca、Ti、V、Cr、M
n、’Fe、Co、Z’n、Zr、Nb、Mo。 Rh、Zr、Pd、Sn、Sb、Te、Ta、W。 Ir、Pt、Pb、BiおよびCより成る群より選ばれ
た少なくとも一者を主成分とするもので置き換えても同
様の特性が得られた。例えばNi −Cr合金を用いる
と記録感度が向上した。また、上記の金属元素を主成分
とする薄膜6がAuを主成分とする薄膜などの接着性の
悪い薄膜である場合、この膜と中間層5との間にMo、
W、Crのうちの一者よりなる接着性改良層を設けると
、書き換え可能回数が大幅に向上した。この膜厚はIn
m以上30nm以下が適当であった。 また、上記の第一保護層のAl、01の一部または全部
をTazo6.Y20yt S i3N4.  A Q
 N。 A Q S i N、、 A Q、S i N、、 A
lSi2N3およびSiCより成るA群より選ばれた少
なくとも一者を主成分とするもので置き換え、上記の第
二保護層の(ZnS)、。(S i Ox ) zoの
一部または全部をZnS、CdS、In、S、、Zn5
e、CdSe、In2Se3、Sin、、Sin、Ti
O2およびZrO□より成るB群より選ばれた少なくと
も一者に近い組成の材料を主成分とするもので置き換え
ても同様の結果が得られる。これらのうち、特に第1保
護層に用いられる材料では、前記A群の、An201お
よびAl−Si−N系材料が好ましい。 これらの材料の熱伝導率は例として下記の通りである。 Si O2:   l  W/m  −KznS  :
  2 W/m −K T i O2:   5  W/m −KZrO2: 
  3  W/m  −KS i3N、:  l 8 
 W/ m −KAl203 :  46  W / 
m−KY20a   :  15  W / m−KA
lN  : 30 W/m −K S iC:  8 W/m −K 例えば、上記の第一保護層をA Q S iN z、上
記の第二保護層を(Z n S) sa (S x O
z) 2゜。 または上記の第一保護層をAflSiN2、上記の第二
保護層をZrO3、Ta2O5、あるいは、上記の第一
保護層をAl203、上記の第二保護層をS i O2
、もしくは上記の第一保護層をAl201.上記の第二
保護層をY2O3を少量含むZrO,としても同様の結
果が得られた。 本実施例の第一保護層の酸化物、窒化物、あるいは炭化
物を主成分とする薄膜の熱伝導率は8W/m・K以上6
0W/m・K以下が好ましく、10W/m・K以上50
W/m・K以下が特に好ましい。上記の第二保護層の酸
化物、硫化物、あるいはセレン化物を主成分とする薄膜
の熱伝導率はIW/m・K以上6W/m・K以下が好ま
しい。 熱伝導率の異なる材質を用いた場合、記録レーザパワー
とオーバーライドした時の書き換え可能回数は次のよう
に変化した。 16W      >10’ 16W      >101 05l7     >10’ 17mW     >105 18 m W     > 10 ’ 20mW     3xlO’ 22mW     lX104 また、記録膜の非晶質に近い状態の部分の屈折率と膜厚
の積がloonm以上、600nm以下、中間層の屈折
率と膜厚の積が50nm以上、600nm以下の範囲で
再生信号CN比46dB以上が得られた。記録膜の結晶
状態の部分の屈折率と膜厚の積が上記の範囲内に有るよ
うにしても差し支えない。中間層を形成しない場合は、
記録感度が約50%低下するが、他の特性に大きな変化
は無く、使用可能であった。 第2図に示したように、ガラス基板10上に形成した紫
外線硬化樹脂層11の表面に案内溝を形成し、その上に
第1図のディスクと同様な記録層を順序を逆に(金属元
素を主成分とする薄膜6から)構成し、もう−枚のディ
スクと貼り合せずに使用しても、はぼ同様な効果が得ら
れた。この場合、薄膜2の上にさらに有機物保護膜17
を形成するのが好ましい。ただし5これらの場合はレー
ザ光は基板10とは反対の側から入射させた。 第3図に示すように、従来は105回の情報の書き換尤
によって雑音レベル(図中B)が約10dB増加するが
、本発明の第一保護層を熱伝導率の高い諺化物、窒化物
、あるいは炭化物を主成分とする薄膜にし、上記の第二
保護層に熱伝導率の低い酸化物、セレン化物あるいは硫
化物を主成分とする薄膜を導入することによって、多数
回オーバーライドを行っても雑音レベル(図中A)はほ
とんど変化せず、消え残りも少ないことがわかった。 上記の第一、第二保護層の形成の際、第4図に示したよ
うに、たとえばZnSのターゲットとAU2O,のター
ゲットを並べたものを用い、インラインスパッタ装置で
基板を移動させながらスパッタすると、1つのスパッタ
室で、ZnS層とAl20、層の積層膜が容易に得られ
る。これらの眉間では組成が連続的に変化している。 【発明の効果1 本発明によれば、レーザ光などの記録用ビームを記録用
薄膜に照射して情報を記録しても、上記記録用ビームの
照射によって生ずる熱は、上記第一保護層である熱伝導
率の高い酸化物、窒化物、あるいは炭化物を主成分とす
る薄膜によって拡散され、上記第二保護層である熱伝導
率の低い酸化物、セレン化物、あるいは硫化物を主成分
とする薄膜によって遮断されるため、ディスクの樹脂基
板あるいはガラス基板面に接して設けた溝付き樹脂に伝
播する熱が少ない。また、上記記録用ビームの照射によ
って生ずる熱は、上記金属元素を主成分とする薄膜でも
吸収され、拡散されるため、上記ディスクの貼りあわせ
に用いる樹脂に伝播する熱が少ない。また、ピンホール
が少なく、さらに記録消去時に生ずる応力に対して強く
、樹脂が変質あるいは変形することがない。
[Means for Solving the Problems J] The above object is to provide an information recording member having an information recording thin film formed on a substrate that changes when irradiated with a recording beam. This can be achieved by providing multiple protective layers containing appropriate oxides, sulfides, carbides, selenides, or nitrides as main components. A preferred feature of the present invention is that in a recording medium having an information recording thin film formed on a substrate and which changes when irradiated with a recording beam, the information recording thin film is formed in the vicinity of the information recording thin film, or Adjacent to the information recording thin film, it is made of at least one material selected from the group consisting mainly of oxides, carbides, or nitrides with a thermal conductivity in the range of 8 W/m·K or more and 60 W/m·K or less, The first protective layer on the side closer to the information recording thin film and an oxide, sulfide, or selenide with a thermal conductivity of 0.5 W/m-K or more and 6 W/m-K (K is absolute temperature) or less. It has a second protective layer made of at least one material selected from the main ingredients. Furthermore, when the above-mentioned protective layer is made of two layers, the first protective layer on the side closer to the recording film is Al20□, Ta205.
Y2O3, Ta2O5, Si, N4. AQN,
S i C, and A Q S i N2, etc. (7)
A thin film whose main component is at least one material selected from Group A consisting of Al-Si-N-based materials and AN-Si-0-N-based materials is used as a second protective layer on the side far from the recording film. are SiO, SiO3, Ta2O5, TiO2, Zr
O, and ZnS. CdS, In2S3, ZnSe, CdSe and n2
A thin film whose main component is at least one material selected from Group B consisting of Se is used. More preferably, the first protective layer is Si3N4. AlS
i A material having a composition close to N2 or Al2o3 is used as the second protective layer. ZnS or a mixed material of ZnS and at least one of the oxides of group B is used. [Function] The thin film mainly composed of oxide, carbide, or nitride as the first protective layer is made of oxide, carbide, or nitride with high thermal conductivity.
Alternatively, it is a thin film mainly composed of nitride, which diffuses the heat generated in the recording film by irradiation with the recording beam and is strong against external forces, especially tensile forces. The thin film of the second protective layer whose main component is oxide, selenide, or sulfide is an oxide or selenide with low thermal conductivity. Alternatively, it is a thin film mainly composed of sulfide, which prevents the heat generated by the recording beam irradiation from being transmitted to the resin layer. Thereby, it is possible to prevent the resin from being altered or deformed due to the influence of the recording beam irradiation. The first protective layer, a thin film mainly composed of oxide, carbide, or nitride, has a thermal conductivity of 8 W/m.
The preferred range is K or more and 60 W/m° or less, and the film thickness is 1
The range is preferably from 0 nm to 11000 nm. especially,
If a thin film mainly composed of oxide or nitride with a thermal conductivity of 10 W/m·K or more and 50 W/m·K or less and a film thickness of about 50 nm or more and 200 nm or less is used, the decrease in recording sensitivity is small. Thermal diffusion coefficient is 2.3 cm”/sec or more6.
The thermal conductivity of the second protective layer is preferably 9 cm''/sec or less.
K is absolute temperature) or less, and the film thickness is preferably 10 nm.
A range of 11000n or less is preferable. In particular, the thermal conductivity is 2 W/m・K or more and 5 W/m・K or less, and the film thickness is about 50
When a thin film whose main component is oxide, selenide, or sulfide with a thickness of 300 nm or more is used, the effect of preventing deterioration or deformation caused by the above-mentioned recording beam irradiation is remarkable. Thermal diffusion coefficient is 0.46cm2/s
ee or more and 1.15 cm2/sec or less is preferable. The thickness of the recording film is preferably in the range from 20 nm to 250 nm in terms of recording sensitivity, S/N ratio, etc., and is preferably adjusted in conjunction with the thicknesses of the first protective layer and the second protective layer. The sum of the film thicknesses of the first protective layer and the second protective layer is 10 nm or more11
A range of 000n or less is preferable. The thickness of this protective layer is
In order to obtain a large reproduced signal by utilizing the interference effect of light,
It is preferable to adjust the thickness in accordance with the thickness of the recording film. Generally, when a thin film is irradiated with light, the reflected light is a superposition of reflected light from the surface of the thin film and light reflected from the rear surface of the thin film, causing interference. When reading a signal based on reflectance, it is preferable to adjust the thickness of each of the films described above to satisfy the condition that the reflectance value is small. This is because the contrast ratio at the time of signal reading becomes large and the recording sensitivity also becomes high. A particularly preferable total thickness range of the first protective layer and the second protective layer is 80 nm or more and 600 nm or less. The product of the refractive index and film thickness of the intermediate layer is 50 nm or more6
00nm or less, the product of the refractive index and film thickness of the recording film is 1100n
600 nm or less, and the total product of the refractive index and film thickness of the first protective layer and the second protective layer is 120 nm or more and 1500 nm
The following ranges are particularly preferred. However, regarding the recording film, it is sufficient that the product of the refractive index and the film thickness of at least a portion of the recording film is within the above range. It is preferable that the extinction coefficient k of the laser light used in the first protective layer and the second protective layer is 0.03 or more and 1.0 or less because the recording sensitivity is high. The first protective layer and the protective layer on the side opposite to the first protective layer and the second protective layer (the side opposite to the light incident side) (the layer between the recording film and the reflective layer if a reflective layer is provided) also have the first protective layer and the second protective layer. Materials with compositions similar to those used for the second protective layer can be used, and multiple layers can be similarly formed, but the extinction coefficient is 0.
Since it is preferably less than 1, for example, in the case of an oxide, it is better to reduce the number of oxygen defects. Further adjacent to the thin film mainly composed of oxides, sulfides and nitrides on the side opposite to the light incident side, there is further a layer of material or a metal layer that can be used for the first protective layer and the second protective layer. The strength will be further increased by providing . The thin film containing the oxide or the like of the present invention as a main component may be formed between the recording film and the substrate, or may be provided on the side of the recording film opposite to the substrate. It is more preferable to provide it on both sides. The substrate may be on the light incident side or on the opposite side. It is more preferable to provide an adhesion improving layer containing at least one element among W, Mo, and Cr as a main component between the protective layer on the side opposite to the light incident side of the recording film and the metal layer adjacent thereto. . The thickness of this layer is preferably 1 nm or more and 30 nm or less. Providing this layer is also effective for recording media other than the present invention. The interface between the first protective layer and the second protective layer does not necessarily have to be clear. If the composition changes continuously, there is no risk of peeling at the interface. Furthermore, the first protective layer and the second protective layer do not need to be uniform layers; for example, each of them may be a multilayer film with an average thermal conductivity, refractive index, and thermal diffusion coefficient within the above ranges. Good too. The present invention applies not only to disk-shaped recording media, but also to tape-shaped,
It is also effective for recording media such as cards. It is also effective for recording media based on other recording principles, such as magneto-optical recording films. [Example 1] Hereinafter, an example of the present invention will be described with reference to FIG. First, a substrate 1 (polycarbonate, diameter 13
0 mm, thickness 1.2 mm), a thin film 2 (approximately 200 nm) having a composition close to (z n s) so (S z 0z) 2° is laminated as the second protective layer of the present invention, and the first protective layer is Al20. as a layer. After laminating a thin film 3 (approximately 10,100 nm) made of an oxide with a composition close to A Sn-5b-Te yarn information recording thin film 4 (thickness approximately 30 nm) that causes an atomic arrangement change and an intermediate layer 5 (thickness approximately 200 nm) made of an oxide with a composition close to Al20. A thin film of Al2-Mg alloy (
After laminating a thin film 6 with a thickness of approximately 50 nm), a resin 7 that is cured by irradiation with ultraviolet rays is applied and exposed to ultraviolet rays for approximately 2 minutes in a vacuum (approximately 10 Pa). Discs 8 of the same structure were pasted together. Next, the information recording thin film 4 was irradiated with a recording laser beam from the substrate 1 side (downward on the paper) to record information. Next, the vicinity of the interface between the thin film 2 of the second protective layer and the substrate was examined using a microscope (x40
It was confirmed that the substrate was not altered or deformed. The second protective layer of this example (ZnS
)s. (Sin2) When the film thickness was changed by 2°, the noise level corrected for the laser power required for recording and the change in reflectance after 100 rewrites of recording changed as follows. Film thickness (nm) Recording laser power Noise level, :)
16mW -75dBm10
16 m W -80d B m50 1
6 m W 83 d B m100
17mW -85dBm300 18
mW -85dBm1000 20m
W -85d B m1500 22m
W -85dBm again. The thickness of the first protective layer is 10
It was usable in the range from 50 nm to 11000 nm, but when the wavelength was 50 nm to 200 nm, the noise level was 185 dBm or less, the recording power margin was 15% or more, and recording was possible with low laser power. Part or all of the Al-Mg alloy of the thin film 6 containing the above metal elements as main components is Al, Cu, or Ag. Au, Mg+ si, Ni, Ca, Ti, V, Cr, M
n, 'Fe, Co, Z'n, Zr, Nb, Mo. Rh, Zr, Pd, Sn, Sb, Te, Ta, W. Similar characteristics were obtained even when at least one selected from the group consisting of Ir, Pt, Pb, Bi, and C was replaced with one whose main component was Ir, Pt, Pb, Bi, and C. For example, when a Ni-Cr alloy was used, recording sensitivity was improved. In addition, when the thin film 6 mainly composed of the metal element mentioned above is a thin film with poor adhesiveness, such as a thin film mainly composed of Au, there is a gap between this film and the intermediate layer 5 such as Mo,
When an adhesion improving layer made of one of W and Cr was provided, the number of rewritable times was significantly increased. This film thickness is In
A suitable value was 30 nm or more and 30 nm or less. In addition, a part or all of Al and 01 in the first protective layer may be replaced with Tazo6. Y20yt S i3N4. AQ
N. A Q S i N,, A Q, S i N,, A
lSi2N3 and SiC (ZnS) of the second protective layer is replaced with one whose main component is at least one selected from Group A consisting of SiC. (S i Ox ) ZnS, CdS, In, S, Zn5
e, CdSe, In2Se3, Sin, , Sin, Ti
Similar results can be obtained even if the material is replaced with a material whose main component is at least one material selected from Group B consisting of O2 and ZrO□. Among these materials, An201 and Al-Si-N based materials of Group A are particularly preferred as materials used for the first protective layer. The thermal conductivities of these materials are as follows, by way of example: SiO2: lW/m-KznS:
2 W/m -K T i O2: 5 W/m -KZrO2:
3 W/m-KS i3N,: l 8
W/m-KAl203: 46 W/
m-KY20a: 15 W/m-KA
lN: 30 W/m -K SiC: 8 W/m -K For example, the first protective layer is A Q SiN z and the second protective layer is (Z n S) sa (S x O
z) 2°. Alternatively, the first protective layer is AflSiN2, the second protective layer is ZrO3, Ta2O5, or the first protective layer is Al203, and the second protective layer is SiO2.
Alternatively, the first protective layer may be formed of Al201. Similar results were obtained when the second protective layer was made of ZrO containing a small amount of Y2O3. The thermal conductivity of the thin film mainly composed of oxide, nitride, or carbide of the first protective layer in this example is 8 W/m・K or more 6
0W/m・K or less is preferable, 10W/m・K or more 50
W/m·K or less is particularly preferable. The thermal conductivity of the thin film mainly composed of oxide, sulfide, or selenide of the second protective layer is preferably IW/m·K or more and 6 W/m·K or less. When materials with different thermal conductivities were used, the number of rewrites possible when overriding with the recording laser power changed as follows. 16W >10' 16W >101 05l7 >10' 17mW >105 18 m W >10' 20mW 3xlO' 22mW lX104 In addition, the product of the refractive index and film thickness of the near-amorphous portion of the recording film is loonm or more, A reproduction signal CN ratio of 46 dB or more was obtained when the thickness was 600 nm or less and the product of the refractive index and film thickness of the intermediate layer was 50 nm or more and 600 nm or less. The product of the refractive index and film thickness of the crystalline portion of the recording film may be within the above range. If no intermediate layer is formed,
Although the recording sensitivity decreased by about 50%, there were no major changes in other characteristics, and it was usable. As shown in FIG. 2, a guide groove is formed on the surface of the ultraviolet curable resin layer 11 formed on a glass substrate 10, and a recording layer similar to that of the disk in FIG. A similar effect was obtained even when the disk was composed of a thin film 6 whose main component was a thin film 6) and was used without being bonded to another disk. In this case, an organic protective film 17 is further provided on the thin film 2.
It is preferable to form However, in these cases, the laser light was incident from the side opposite to the substrate 10. As shown in Fig. 3, conventionally, the noise level (B in the figure) increases by about 10 dB due to 105 times of information rewriting, but the first protective layer of the present invention is made of a material with high thermal conductivity, nitride, etc. The second protective layer is overridden multiple times by introducing a thin film mainly composed of oxides, selenides, or sulfides with low thermal conductivity into the second protective layer. It was also found that the noise level (A in the figure) hardly changed and there was little residual noise. When forming the above-mentioned first and second protective layers, as shown in Fig. 4, for example, using a ZnS target and an AU2O target side by side, sputtering is performed while moving the substrate with an in-line sputtering device. , a laminated film of a ZnS layer and an Al20 layer can be easily obtained in one sputtering chamber. The composition of these glabellar areas changes continuously. Effect of the Invention 1 According to the present invention, even if information is recorded by irradiating a recording thin film with a recording beam such as a laser beam, the heat generated by the irradiation with the recording beam is absorbed by the first protective layer. It is diffused by a thin film mainly composed of an oxide, nitride, or carbide with high thermal conductivity, and the second protective layer is mainly composed of an oxide, selenide, or sulfide with low thermal conductivity. Since it is blocked by the thin film, less heat propagates to the grooved resin provided in contact with the resin substrate or glass substrate surface of the disk. Further, the heat generated by the irradiation of the recording beam is also absorbed and diffused by the thin film mainly composed of the metal element, so that less heat is transmitted to the resin used for bonding the disks together. Furthermore, it has fewer pinholes, is resistant to stress generated during recording and erasing, and the resin does not deteriorate or deform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例の記録用部材の構成
を示す断面図、第3図は本発明および従来例の記録用部
材による情報の書換え回数に対する雑音レベルの変化を
示す特性測定図、第4図は本発明の記録用部材を作製す
るスパッタ装置の一例を示す縦断面図である。 符号の説明
FIGS. 1 and 2 are cross-sectional views showing the structure of a recording member according to an embodiment of the present invention, and FIG. 3 shows changes in noise level with respect to the number of times information is rewritten by the recording members of the present invention and a conventional example. The characteristic measurement diagram and FIG. 4 are longitudinal cross-sectional views showing an example of a sputtering apparatus for producing the recording member of the present invention. Explanation of symbols

Claims (1)

【特許請求の範囲】 1、基板上に形成された記録用ビームの照射を受けて変
化を生ずる情報記録用薄膜を有する記録媒体において、
上記情報記録用薄膜に近接して、もしくは上記の情報記
録用薄膜に隣接して熱伝導率が8W/m・K以上60W
/m・K以下の範囲の酸化物、炭化物あるいは窒化物を
主成分とする材料より選ばれた少なくとも一者からなり
、上記情報記録用薄膜に近い側に有る第一保護層と、熱
伝導率が0.5W/m・K以上6W/m・K(Kは絶対
温度)以下の酸化物、硫化物あるいはセレン化物を主成
分とする材料より選ばれた少なくとも一者からなる第二
保護層を有することを特徴とする記録用部材。 2、第一保護層がAl_2O_3、Ta_2O_5、Y
_2O_3、Si_3N_4、AlN、SiC、および
AlSiN_2などのAl−Si−N系材料およびAl
−Si−O−N系材料より成るA群より選ばれた少なく
とも一者に近い組成の材料からなり、第二保護層がSi
O、SiO_2、TiO_2、ZrO_2およびZnS
、CdS、In_2S_3、ZnSe、CdSeおよび
In_2Se_3より成るB群より選ばれた少なくとも
一者に近い組成の材料からなることを特徴とする特許請
求の範囲第1項に記載の記録用部材。
[Claims] 1. A recording medium having an information recording thin film formed on a substrate that changes when irradiated with a recording beam,
Thermal conductivity is 8 W/m・K or more and 60 W in proximity to the above information recording thin film or adjacent to the above information recording thin film.
/m・K or less, the first protective layer is made of at least one material selected from materials mainly composed of oxides, carbides, or nitrides, and is located on the side closer to the information recording thin film, and has a thermal conductivity. A second protective layer made of at least one material selected from materials containing oxides, sulfides, or selenides as a main component whose A recording member comprising: 2. The first protective layer is Al_2O_3, Ta_2O_5, Y
Al-Si-N materials such as _2O_3, Si_3N_4, AlN, SiC, and AlSiN_2 and Al
- The second protective layer is made of a material having a composition close to at least one selected from Group A consisting of Si-O-N based materials, and the second protective layer is made of Si-O-N material.
O, SiO_2, TiO_2, ZrO_2 and ZnS
, CdS, In_2S_3, ZnSe, CdSe, and In_2Se_3.
JP2117581A 1990-05-09 1990-05-09 Information recording member Pending JPH0414635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117581A JPH0414635A (en) 1990-05-09 1990-05-09 Information recording member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117581A JPH0414635A (en) 1990-05-09 1990-05-09 Information recording member

Publications (1)

Publication Number Publication Date
JPH0414635A true JPH0414635A (en) 1992-01-20

Family

ID=14715367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117581A Pending JPH0414635A (en) 1990-05-09 1990-05-09 Information recording member

Country Status (1)

Country Link
JP (1) JPH0414635A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195747A (en) * 1992-11-11 1994-07-15 Nec Corp Optical disc
US7946800B2 (en) 2007-04-06 2011-05-24 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
JP2011202381A (en) * 2010-03-25 2011-10-13 Nobuyuki Sato Joint structure of woody flooring material
US8752449B2 (en) 2007-05-08 2014-06-17 Brooks Automation, Inc. Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195747A (en) * 1992-11-11 1994-07-15 Nec Corp Optical disc
US7946800B2 (en) 2007-04-06 2011-05-24 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
US8651796B2 (en) 2007-04-06 2014-02-18 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
US8752449B2 (en) 2007-05-08 2014-06-17 Brooks Automation, Inc. Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
US10335945B2 (en) 2007-05-08 2019-07-02 Brooks Automation, Inc. Substrate transport appartatus with multiple movable arms utilizing a mechanical switch mechanism
US11801598B2 (en) 2007-05-08 2023-10-31 Brooks Automation Us, Llc Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
JP2011202381A (en) * 2010-03-25 2011-10-13 Nobuyuki Sato Joint structure of woody flooring material

Similar Documents

Publication Publication Date Title
JPS62152786A (en) Information-recording thin film
JP2005071408A (en) Optical information recording medium
JP2005044396A (en) Optical information recording medium
JP2005044397A (en) Optical information recording medium
JP2005071406A (en) Optical information recording medium
JP2005071405A (en) Optical information recording medium
US6638594B1 (en) Rewritable optical information recording medium
JPH0414635A (en) Information recording member
US5585158A (en) Recordable optical element using low absorption materials
JPS60257291A (en) Optical information recording member
JP2749080B2 (en) Information recording materials
JPWO2004032130A1 (en) Optical information recording medium and manufacturing method thereof
JP2915112B2 (en) Information recording member and disk recording medium
JP2865775B2 (en) Information recording materials
JPH0373436A (en) Member for information recording
JPH03272032A (en) Member for information recording
JPH0746442B2 (en) Optical information recording medium
JPH03173684A (en) Data recording member
JPH04321948A (en) Optical information recording medium
JPH04310640A (en) Information recording member
JP2664207B2 (en) Thin film for information recording
JP2713908B2 (en) Information storage medium
KR20110086668A (en) Information recording medium, recording device, reproduction device, and reproduction method
JPH04186537A (en) Member for information recording
JPH01208744A (en) Recording member