JPH04145677A - High efficiency reflector for visible laser beam - Google Patents

High efficiency reflector for visible laser beam

Info

Publication number
JPH04145677A
JPH04145677A JP27004090A JP27004090A JPH04145677A JP H04145677 A JPH04145677 A JP H04145677A JP 27004090 A JP27004090 A JP 27004090A JP 27004090 A JP27004090 A JP 27004090A JP H04145677 A JPH04145677 A JP H04145677A
Authority
JP
Japan
Prior art keywords
refractive index
laser
index material
visible
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27004090A
Other languages
Japanese (ja)
Inventor
Hideharu Ogami
秀晴 大上
Isao Sekiguchi
関口 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP27004090A priority Critical patent/JPH04145677A/en
Publication of JPH04145677A publication Critical patent/JPH04145677A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reflectivity and threshold value of laser damage by using a particular low refractive index substance and two kinds of particularly high refractive index substances to form two kinds of reflecting mirrors by combining the high and low refractive index substances and using the one in the incident side and the other in the substrate side. CONSTITUTION:A reflecting mirror 7 which is formed by alternately stacking a plurality of high refractive index substance Al2O3 which shows less optical absorption in the visible range and a low refractive index substance SiO2 is used in the laser incident side to reflect the greater part of laser energy. The reflectivity is enhanced by realizing a film structure to enhance reflectivity with a reflecting mirror 8 which provides the transmitting light in the side of substrate 1 and is formed by alternately stacking a plurality of high refractive index substances HfO2 and SiO2 and laser damage threshold value can be improved by reducing optical absorption in the visible range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、可視レーザ用高反射鏡に関し、特に、レーザ
発振波長が可視域であるレーザシステムに用いられ、誘
電体多層膜で形成された、反射率の高い可視レーザ用高
反射鏡に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a highly reflective mirror for visible lasers, and in particular is used in a laser system where the laser oscillation wavelength is in the visible range, and is made of a dielectric multilayer film. , relates to a highly reflective mirror for visible lasers with high reflectance.

(従来の技術) 近年、レーザ装置の高出力化に伴い、高出力レーザの使
用に耐えられるレーザ用反射鏡等の誘電体多層膜の研究
が進められている。特に、近赤外域で使用する誘電体多
層膜に比べて可視域で使用する誘電体多層膜は、レーザ
によるダメージを受けやすいことが知られている。これ
は、一般に誘電体膜は近赤外域より可視域の光吸収の方
が高いためである。従来の誘電体多層膜を用いた可視レ
ーザ用高反射鏡は、ガラス、石英の結晶の基板上に、各
1種類の低屈折率物質と高屈折率物質を光学的膜厚nd
(n:膜の屈折率、d:物理的膜厚)λ/4(λ:レー
ザ波長)で交互に積層したものである。例えば、低屈折
率物質にはM g F 2.5i02等が用いられ、高
屈折率物質にはTiO2+ Ta205 、HfO2、
ZrO2、A I 203等が用いられている。さらに
、高反射率を得るためには、通常20層以上交互に積層
したものが用いられる。
(Prior Art) In recent years, with the increase in the output of laser devices, research has been progressing on dielectric multilayer films such as laser reflectors that can withstand the use of high-output lasers. In particular, it is known that dielectric multilayer films used in the visible region are more easily damaged by lasers than dielectric multilayer films used in the near-infrared region. This is because dielectric films generally have higher light absorption in the visible region than in the near-infrared region. Conventional high-reflection mirrors for visible lasers using dielectric multilayer films are made by coating one type of low refractive index material and one type of high refractive index material on a glass or quartz crystal substrate with an optical film thickness of nd.
(n: refractive index of film, d: physical film thickness) λ/4 (λ: laser wavelength) are alternately laminated. For example, M g F 2.5i02 etc. are used as a low refractive index material, and TiO2+ Ta205, HfO2, etc. are used as a high refractive index material.
ZrO2, A I 203, etc. are used. Furthermore, in order to obtain a high reflectance, 20 or more layers are usually alternately laminated.

レーザ高反射鏡の反射率は、−aに、次式で求めること
ができる。
The reflectance of the laser high-reflection mirror can be determined by the following equation for -a.

R−[1−(nH/nL)2P(nH2/n5)2]2
/[1+(no/nL)2P(r+H2/n5)2]2
  −−−(1)ここで、膜層の数は(2P+l)であ
り、nHは高屈折率物質の屈折率であり、ntは低屈折
率物質の屈折率である。ただし、外界媒質は空気(na
lrを1とする)とするものである。
R-[1-(nH/nL)2P(nH2/n5)2]2
/[1+(no/nL)2P(r+H2/n5)2]2
--- (1) Here, the number of film layers is (2P+l), nH is the refractive index of the high refractive index material, and nt is the refractive index of the low refractive index material. However, the external medium is air (na
(lr is 1).

この(1)式から、レーザ高反射鏡の反射率は高屈折率
物質と低屈折率物質との屈折率の差が大きいほど、同一
の膜層の数では反射率が高くなることがわかる。
From this equation (1), it can be seen that the greater the difference in refractive index between the high refractive index material and the low refractive index material, the higher the reflectance of the laser high reflection mirror with the same number of film layers.

(1)式を用い、膜層数を27層に設定し、基板にYA
G (Y3 A15012: n、=1.845)を用
い、低屈折率物質にSiO2(nL=1.45)を用い
、高屈折率物質にHfO2(ng =1.90>を用い
た場合、あるいは高屈折率物質にAL203  (rl
H= 1.65 )を用いた場合の反射率を計算すると
、前者の反射率は、99.9%、後者の反射率は、94
,8%になる。
Using equation (1), the number of film layers was set to 27, and the substrate was YA.
G (Y3 A15012: n, = 1.845), SiO2 (nL = 1.45) as the low refractive index material, and HfO2 (ng = 1.90> as the high refractive index material), or AL203 (rl
When calculating the reflectance when using H=1.65), the former reflectance is 99.9%, and the latter reflectance is 94%.
, 8%.

上記の計算結果からもレーザ反射鏡は、同−膜層数なら
ば高屈折率物質の屈折率低屈折率物質の屈折率の差が大
きいほど高くなることがわかる。
The above calculation results also show that, for the same number of film layers, the larger the difference in the refractive index of the high refractive index material and the low refractive index material, the higher the laser reflecting mirror becomes.

次に、(1)式を用いてレーザ反射鏡の仕様の高反射率
(例えば、反射率99゜5%以上)を得るためには何層
の積層数が必要かを求めると、5t02とHfO2の組
合せでは21層であり、SiO2とAl2O,の組合せ
では45層である。
Next, using equation (1) to find out how many layers are required to obtain the high reflectance specified for the laser reflector (for example, reflectance of 99.5% or more), we find that 5t02 and HfO2 For the combination of SiO2 and Al2O, there are 21 layers, and for the combination of SiO2 and Al2O, there are 45 layers.

上記の計算結果からレーザ反射鏡は、同一の反射率を必
要とするならば、高屈折率物質の屈折率と低屈折率物質
の屈折率の差が大きいほど膜層数が少なくて良いことが
わがる。もちろん、膜層数が少なければ、誘電体多層膜
作成時間が短縮されて製造コストが削減できる。
From the above calculation results, if the same reflectance is required for a laser reflecting mirror, the larger the difference between the refractive index of the high refractive index material and the refractive index of the low refractive index material, the fewer the number of layers is required. I'm selfish. Of course, if the number of layers is small, the time required to create a dielectric multilayer film can be shortened and manufacturing costs can be reduced.

以上の説明から明らかなように、レーザに対するダメー
ジを考慮しないで単に高反射率の誘電体多層膜による可
視レーザ用高反射鏡を作成するには、屈折率の差が大き
い高屈折率物質の屈折率と低屈折率物質の屈折率を組合
せを用いて、少ない膜層数にすることが望ましい。
As is clear from the above explanation, in order to simply create a high-reflection mirror for visible lasers using a dielectric multilayer film with high reflectance without considering damage to the laser, it is necessary to It is desirable to use a combination of index and refractive index of a low refractive index material to reduce the number of film layers.

(発明が解決しようとする課題) 前述のように、反射率の高い誘電体多層膜を用いた可視
レーザ用高反射率鏡を作成する場合、膜層数を少なくす
るためには高屈折率物質として屈折率の高いHfO2を
用いた方がAl2O3を用いるよりよい。高屈折率物質
の中でもHfO2は、TiO2、Ta205 、ZrO
2より可視域の光吸収が小さいが、A 1203はHf
O,よりもさらに小さい。一般に低屈折率物質の5i0
2は、発振波長が可視域のレーザに対して最もレーザダ
メージしきい値が高い物質として知られており、5i0
2と高屈折率物質を交互に積層した高反射鏡では、レー
ザダメージに起因する物質は高屈折率物質である。特に
、レーザダメージしきい値が光吸収に起因すると言われ
ているパルス幅がns程度から連続発振埜でのレーザに
対しては上記の傾向は票著である。即ち、高屈折率物質
はAl2O、を用いた誘電体多層膜の方がHfO2を用
いたものより、レーザダメージしきい値の高いことが予
想できるが高反射率の可視レーザ用高反射鏡を作成する
場合には膜層数が多くなってしまい、生産コストを増加
させる欠点を持つ。
(Problem to be Solved by the Invention) As mentioned above, when creating a high reflectance mirror for visible laser using a dielectric multilayer film with high reflectance, it is necessary to use a high refractive index material in order to reduce the number of film layers. It is better to use HfO2, which has a high refractive index, than to use Al2O3. Among high refractive index materials, HfO2 is similar to TiO2, Ta205, ZrO
Although the light absorption in the visible range is smaller than that of A 1203, Hf
It is even smaller than O. In general, 5i0 of low refractive index materials
2 is known as a material with the highest laser damage threshold for lasers whose oscillation wavelength is in the visible range, and 5i0
In a high-reflection mirror in which 2 and a high refractive index material are alternately laminated, the material that causes laser damage is the high refractive index material. In particular, the above-mentioned tendency is significant for lasers with pulse widths ranging from about ns to continuous oscillation, where the laser damage threshold is said to be due to optical absorption. In other words, a dielectric multilayer film using Al2O as a high refractive index material is expected to have a higher laser damage threshold than one using HfO2, but it is difficult to create a high reflectance mirror for visible lasers with high reflectance. In this case, the number of film layers increases, which has the disadvantage of increasing production costs.

したがって、本発明の目的は、低屈折率及び高屈折率の
誘電体膜を、使用レーザ波長に対する光学的膜厚λ/4
で複数層交互に積層する可視レーザ用高反射鏡において
、可視域において微少な光吸収がありレーザダメージし
きい値はわずかに低いが、屈折率の高い高屈折率物質(
HfO2)と、可視域においてほとんど光吸収がなくレ
ーザダメージしきい値は高いが屈折率のわずかに低い高
屈折率物質(A1203)を組わ合わせて用いる膜構成
により、膜層数が少なく、かつレーザダメージしきい値
の高い可視レーザ用高反射鏡を提供することにある。
Therefore, an object of the present invention is to form a dielectric film having a low refractive index and a high refractive index with an optical film thickness of λ/4 for the laser wavelength used.
In a high-reflection mirror for visible lasers, which is made by laminating multiple layers alternately, there is a slight amount of light absorption in the visible range and the laser damage threshold is slightly low.
The film structure uses a combination of HfO2) and a high refractive index material (A1203) that has almost no light absorption in the visible range, has a high laser damage threshold, but has a slightly low refractive index, and has a small number of film layers. An object of the present invention is to provide a highly reflective mirror for visible lasers with a high laser damage threshold.

(課題を解決するための手段) 前述の目的を達成するために、本発明は、基板上に、低
屈折率および高屈折率の誘電体膜を、使用波長に対する
光学的膜厚λ/4で複数交互に積層する可視レーザ用高
反射鏡において、レーザの発振波長が可視域であり、誘
電体膜として、少なくとも1種類の低屈折率物質と少な
くとも2種類の高屈折率物質を用い、前記2種類の内の
1つの高屈折率物質の誘電体膜と低屈折率物質の誘電体
膜とを交互に積層した積層体をレーザ入射側に用い、前
記2種類の内の他の1つの高屈折率物質の誘電体膜と低
屈折率物質の誘電体膜とを交互に積層した積層体を基板
側に用い、レーザ入射側に用いる前記1つの高屈折率物
質が基板側に用いる前記他の1つの高屈折率物質よりも
光吸収によるダメージに対して強い物質であり、前記1
つの高屈折率物質がA1201であり、前記他の1つの
高屈折率物質がHfO2であり、前記低屈折率物質がS
 i 02である、ことを特徴とするレーザ高反射鏡を
採用するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a dielectric film having a low refractive index and a high refractive index on a substrate with an optical film thickness of λ/4 for the wavelength used. A plurality of high-reflection mirrors for visible lasers are alternately laminated, the oscillation wavelength of the laser is in the visible range, at least one type of low refractive index material and at least two types of high refractive index materials are used as the dielectric film, and the above-mentioned two A laminate in which dielectric films of one of the above two types of high refractive index material and dielectric films of low refractive index material are alternately laminated is used on the laser incidence side, and one of the other high refractive index materials of the above two types is used. A laminate in which a dielectric film of a high refractive index material and a dielectric film of a low refractive index material are alternately laminated is used on the substrate side, and the one high refractive index material used on the laser incidence side is used as the other one used on the substrate side. It is a material that is more resistant to damage due to light absorption than other high refractive index materials, and
one high refractive index material is A1201, the other high refractive index material is HfO2, and the low refractive index material is S
It employs a laser high reflection mirror characterized by i02.

(実施例) 次に、本発明を図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の可視レーザ用高反射鏡の実施例の概
略断面図であり、第2図は、従来の可視レーザ用高反射
鏡の概略断面図である。
FIG. 1 is a schematic cross-sectional view of an embodiment of a high-reflection mirror for a visible laser according to the present invention, and FIG. 2 is a schematic cross-sectional view of a conventional high-reflection mirror for a visible laser.

はじめに、本発明の詳細な説明すると、従来の可視レー
ザ用高反射鏡は1種類の低屈折率物質と1種類の高屈折
率物質を用いる膜構成であったが、本発明の可視レーザ
用高反射鏡は少なくとも1種類の低屈折率物質と少なく
とも2種類の高屈折率物質を用いる膜構成である。この
ように、2種類の高屈折率を用いる理由は、可視域にお
いて微少な光吸収がありレーザダメージしきい値はわず
かに低いが、屈折率の高い高屈折率物質(HfO2)だ
けを用いれば高反射率を得るための膜層数は比較的少な
くできるとしても、レーザダメージしきい値が低いので
、可視域においてほとんど光吸収なくレーザダメージし
きい値は高いが、屈折率のわずかに低い高屈折率物質(
Al□○、)と組わ合わせて用いることにより、レーザ
ダメージしきい値を改善することができるからである。
First, to explain the present invention in detail, a conventional high-reflection mirror for visible lasers had a film configuration using one type of low-refractive index material and one type of high-refractive-index material, but the high-reflection mirror for visible lasers of the present invention The reflecting mirror has a film configuration using at least one type of low refractive index substance and at least two types of high refractive index substance. In this way, the reason for using two types of high refractive index is that there is slight light absorption in the visible range and the laser damage threshold is slightly low, but if only a high refractive index material (HfO2) with a high refractive index is used, Even if the number of film layers to obtain high reflectivity can be relatively small, the laser damage threshold is low, so there is almost no light absorption in the visible range, and the laser damage threshold is high, but the Refractive index material (
This is because by using it in combination with Al□○, ), the laser damage threshold can be improved.

ここで、高屈折率層をレーザダメージしきい値が高いが
、屈折率のわずかに低い高屈折率物質(A1203)1
種類のみで構成しようとすると、高反射率を得るための
膜層数は非常に多くなる欠点がある。
Here, the high refractive index layer is made of a high refractive index material (A1203) 1 that has a high laser damage threshold but has a slightly lower refractive index.
If an attempt is made to configure the structure using only different types, there is a drawback that the number of film layers required to obtain high reflectance becomes extremely large.

そこで、可視域において、可視域においてほとんど光吸
収がなくレーザダメージしきい値は高いが、屈折率のわ
ずかに低い高屈折率物質(A1203 )と低屈折率物
質(SiO2)を複数層交互に積層した反射鏡をレーザ
入射側の数層に用いて、レーザのエネルギーの大部分を
反射させて、それ以降の透過してきた減衰したレーザの
エネルギーを、基板側に用いた、可視域において微少な
光吸収がありレーザダメージしきい値はわずかに低いが
、屈折率の高い高屈折率物質(HfO2)と低屈折率物
質(SiO2)を複数交互に積層した反射鏡により反射
率を高める膜構成にすることで、レーザダメージしきい
値の高い高屈折率物質(A1203)のみと低屈折率物
質(SiO2)で構成した反射鏡と同じレーザダメージ
しきい値を持ちながら、かつ比較的膜層数が少ない可視
し−ザ用高反射鏡が作成可能になる。
Therefore, in the visible range, multiple layers of high refractive index material (A1203) and low refractive index material (SiO2), which have a slightly low refractive index and have a high laser damage threshold with almost no light absorption in the visible range, are laminated alternately. A reflective mirror is used in several layers on the laser incidence side to reflect most of the laser energy, and the attenuated laser energy that passes through is used on the substrate side to create a small amount of light in the visible range. Although the laser damage threshold is slightly low due to absorption, the film has a film structure that increases the reflectance using a reflector that is made by alternately laminating multiple high refractive index materials (HfO2) and low refractive index materials (SiO2). As a result, it has the same laser damage threshold as a reflector made of only a high refractive index material (A1203) with a high laser damage threshold and a low refractive index material (SiO2), but has a relatively small number of film layers. It becomes possible to create a highly reflective mirror for visible light.

ここで、可視レーザ用高反射鏡のレーザ入射側に用いる
レーザダメージしきい値は高いが、屈折率のわずかに低
い高屈折率物質(A1203)と低屈折率物質(SiO
□)の膜層数を選択する目安は、次式により求めること
ができる。
Here, the laser damage threshold used on the laser incidence side of the high reflection mirror for visible laser is high, but a high refractive index material (A1203) with a slightly lower refractive index and a low refractive index material (SiO
The guideline for selecting the number of film layers in □) can be obtained from the following formula.

1−R表面<(D、T、基板) / (D、T、表面)
・・・(2)ただし、R表面はレーザ入射側層の反射率
(レーザダメージしきい値は高いが、屈折率のわずかに
低い高屈折率物質と低屈折率物質の膜層数から、(1)
式により求めることができる反射率)であり、D、T、
基板は、レーザダメージしきい値はわずかに低いが、屈
折率の高い高屈折率のみと低屈折率で構成した可視レー
ザ用高反射鏡のレーザダメージしきい値であり、D、T
、表面は、レーザダメージしきい値は高いが、屈折率の
わずかに低い高屈折率物質で構成した可視レーザ用高反
射鏡のレーザダメージしきい値である。
1-R surface < (D, T, substrate) / (D, T, surface)
... (2) However, the R surface has a reflectance of the layer on the laser incidence side (the laser damage threshold is high, but due to the number of layers of high refractive index material and low refractive index material with slightly lower refractive index, ( 1)
D, T,
The laser damage threshold of the substrate is slightly low, but it is the laser damage threshold of a high reflective mirror for visible lasers composed of only high refractive index and low refractive index, D, T
, the surface has a high laser damage threshold, but is a laser damage threshold of a highly reflective mirror for visible lasers made of a high refractive index material with a slightly low refractive index.

次に、第1図を参照して、本発明の具体的な実施例につ
いて説明する。第1図に示す本発明の可視レーザ用高反
射鏡は、YAG基板上に電子ビーム真空蒸着法により2
9層の積層をしたものであり、低屈折率層のSi○2膜
2、高屈折率層のAl2O3膜3及びHfO2膜、4は
、光学的膜厚λ/4(λは使用レーザ波長)である。5
i02膜5及び5in2膜6は、それぞれ光学的膜厚^
/2のオーバーコート、アンダーコートである。
Next, a specific embodiment of the present invention will be described with reference to FIG. The high-reflection mirror for visible lasers of the present invention shown in FIG.
It is a stack of 9 layers, and the low refractive index layer Si○2 film 2, the high refractive index layer Al2O3 film 3 and HfO2 film 4 have an optical film thickness of λ/4 (λ is the wavelength of the laser used) It is. 5
The i02 film 5 and the 5in2 film 6 each have an optical thickness ^
/2 overcoat and undercoat.

実施例では、可視域のほぼ中間の波長であるNd:YA
G(NdドープY3 A l 5012)レーザの第2
次高調波であるレーザ波長532nm用の可視レーザ用
高反射鏡を作成した。波長532nmにおけるYAG、
Sio2、Al2O,及びHfO2の屈折率は、それぞ
れ1.845.1.44.1.65.1.90である6
図面から明らかなように、レーザ入射側の10層は低屈
折率物質に5i02、高屈折率物質にAl2O3を用い
た膜構成であり、基板側の17層は低屈折率物質に5i
02、高屈折率物質にHfO2を用いた膜構成である。
In the example, Nd:YA, which has a wavelength approximately in the middle of the visible range, is used.
G (Nd doped Y3 A l 5012) laser second
A highly reflective mirror for a visible laser for a laser wavelength of 532 nm, which is the next harmonic, was created. YAG at a wavelength of 532 nm,
The refractive indices of Sio2, Al2O, and HfO2 are 1.845.1.44.1.65.1.90, respectively6
As is clear from the drawing, the 10 layers on the laser incidence side have a film structure using 5i02 as a low refractive index material and Al2O3 as a high refractive index material, and the 17 layers on the substrate side have a film configuration using 5i as a low refractive index material.
02, a film structure using HfO2 as a high refractive index substance.

ここで、実際の作成手順について説明する。基板のYA
Gは、直径30mm、厚さ5mmに研削加工し、超精密
光学研磨を施して表面粗さRM33Å以下の鏡面に仕上
げたものを用いた。この基板をクリーンルーム内で、エ
ツチング後、洗剤、超純水、アルコールにより超音波洗
浄を行った。
Here, the actual creation procedure will be explained. YA of the board
G was ground to a diameter of 30 mm and a thickness of 5 mm, and subjected to ultra-precision optical polishing to give a mirror surface with a surface roughness of RM33 Å or less. After etching this substrate in a clean room, it was subjected to ultrasonic cleaning using detergent, ultrapure water, and alcohol.

この基板を電子ビーム真空蒸着装置内に設置し、2X1
0−6torrまで300°Cに加熱しながら排気した
。蒸着時の酸素分圧は、S i 02、A I 20s
 、Hf 02それぞれ2X10−5torr、lXl
0−’torr、lXl0−’torrである。光学的
膜厚の制御は、光学干渉式膜厚モニターによって行った
。作成した可視レーザ用高反射鏡は、2光束自記分光光
度計により反射率の測定を行った。
This substrate was installed in an electron beam vacuum evaporation device, and
It was evacuated while heating at 300°C to 0-6 torr. The oxygen partial pressure during vapor deposition is S i 02, A I 20s
, Hf 02 respectively 2X10-5torr, lXl
0-'torr, lXl0-'torr. Optical film thickness was controlled using an optical interference film thickness monitor. The reflectance of the produced visible laser high reflection mirror was measured using a two-beam self-recording spectrophotometer.

次に、後述する比較実験のために、第2図で示す従来の
可視レーザ用高反射鏡について概略する。
Next, for a comparative experiment to be described later, a conventional high reflection mirror for visible laser shown in FIG. 2 will be schematically explained.

第2図の可視レーザ用高反射鏡は、YAG基板1上に電
子ビーム真空蒸着法により23層の積層をしたものであ
り、低屈折率層のSiO2膜2、高屈折率層のHfO2
膜4は光学的膜厚λ/4(λは使用レーザ波長)である
。5i02膜5及び5i02膜6は、それぞれ光学的膜
厚λ/2のオーバーコート、アンダーコートである6本
発明の実施例と同様に、レーザ波長532nm用の高反
射鏡を作成した。
The high-reflection mirror for visible laser shown in Fig. 2 has 23 layers laminated by electron beam vacuum evaporation on a YAG substrate 1, consisting of a SiO2 film 2 as a low refractive index layer and an HfO2 film as a high refractive index layer.
The film 4 has an optical thickness of λ/4 (λ is the wavelength of the laser used). The 5i02 film 5 and the 5i02 film 6 are an overcoat and an undercoat having an optical thickness of λ/2, respectively.6 Similarly to the embodiment of the present invention, a high reflection mirror for a laser wavelength of 532 nm was prepared.

比較実験は以下のように行った。第1図に示す本発明の
29層可視レしザ用高反射鏡と第2図に示す従来の23
層可視レしザ用高反射鏡を作成した。この2つの可視レ
ーザ用高反射鏡は、はぼ等しい反射率(計算値99.5
%)である。ところて、5i02とAl2O3の組合せ
で、これらと等しい反射率を得るためには何層の積層数
が必要か求めると、オーバーコート、アンダーコートを
含めて47層になる。
A comparative experiment was conducted as follows. The 29-layer visible laser high reflection mirror of the present invention shown in FIG. 1 and the conventional 23-layer visible laser mirror shown in FIG.
We created a high-reflection mirror for visible layer lasers. These two high-reflection mirrors for visible lasers have approximately the same reflectance (calculated value of 99.5
%). However, in order to obtain the same reflectance as the combination of 5i02 and Al2O3, the number of laminated layers is 47, including the overcoat and undercoat.

本発明の実施例の29層可視レしザ用高反射鏡において
、レーザ入射側の10層(低屈折率物質にSiO2、高
屈折率物質にA I 203を用いた膜構成)では、約
50%のレーザエネルギーが反射され、基板側の最初の
高屈折率物質(HfO2)には、約50%減衰したレー
ザエネルギーのみしか伝達されず、たとえ可視域におい
て微少な光吸収がありレーザダメージしきい値のわずか
に低いHfO2膜をこの位置に用いたとしても、光吸収
によるレーザダメージをかなり抑えることができる。
In the 29-layer visible laser high reflection mirror of the embodiment of the present invention, the 10 layers on the laser incidence side (film configuration using SiO2 as the low refractive index material and A I 203 as the high refractive index material) have approximately 50 % of the laser energy is reflected, and only about 50% attenuated laser energy is transmitted to the first high refractive index material (HfO2) on the substrate side. Even if an HfO2 film with a slightly lower value is used at this position, laser damage due to light absorption can be significantly suppressed.

前述の本発明の29層可視レしザ用高反射鏡と従来の2
3層可視レしザ用高反射鏡のレーザダメージしきい値の
測定を、レーザ波長527nm、パルス幅1.0nsの
レーザを用いて行った。ここで、実施例の使用レーザ5
32nm用のレーザ用高反射鏡を波長527nmのレー
ザを用いてレーザダメージしきい値の測定を行っても、
532nm用のレーザ用高反射鏡の527nmの反射率
が532nmの反射率とほとんど等しいために、532
nmのレーザを用いて測定したレーザダメージしきい値
と等しいと考えても良い。
The above-mentioned 29-layer visible laser high reflection mirror of the present invention and the conventional 2
The laser damage threshold of the three-layer visible laser high reflection mirror was measured using a laser with a laser wavelength of 527 nm and a pulse width of 1.0 ns. Here, the laser used in the example 5
Even if the laser damage threshold is measured using a 32 nm laser high reflection mirror with a 527 nm wavelength laser,
Since the 527nm reflectance of a high-reflection mirror for a 532nm laser is almost equal to the 532nm reflectance, the 532nm
It may be considered to be equal to the laser damage threshold measured using a nm laser.

その結果、本発明の29層可視レしザ用高反射鏡のレー
ザダメージしきい値は、29 J / c m 2であ
り、従来の23層可視レしザ用高反射鏡のレーザダメー
ジしきい値は15J/cm2であった。
As a result, the laser damage threshold of the 29-layer visible laser high-reflection mirror of the present invention is 29 J/cm2, which is higher than the laser damage threshold of the conventional 23-layer visible laser high-reflection mirror. The value was 15 J/cm2.

この結果から明らかなように、本発明の29層可視レし
ザ用高反射鏡は、従来の23層可視レしザ用高反射鏡よ
りもレーザダメージしきい値が約2倍向上している。
As is clear from these results, the 29-layer visible laser high-reflection mirror of the present invention has a laser damage threshold that is approximately twice as high as that of the conventional 23-layer visible laser high-reflection mirror. .

また、A1□O8膜、HfO2膜のアルゴンレーザ(レ
ーザ波長:514nm)における光吸収率を次のような
レーザカロリメータを用いて測定した。合成石英基板上
に光学的膜厚λ/2(λは使用レーザ波長)のAl2O
3膜、HfO2膜を作成し、このサンプルにアルゴンレ
ーザを照射し、膜の光吸収によりレーザのエネルギーが
熱に変換されたエネルギーをサーミスタ温度計で測定し
解析することから、このサンプルの光吸収率を求めた。
Furthermore, the light absorption rates of the A1□O8 film and the HfO2 film using an argon laser (laser wavelength: 514 nm) were measured using the following laser calorimeter. Al2O with an optical thickness of λ/2 (λ is the wavelength of the laser used) on a synthetic quartz substrate.
3, a HfO2 film is created, this sample is irradiated with an argon laser, and the energy that the laser energy is converted into heat due to the film's light absorption is measured and analyzed using a thermistor thermometer. The rate was calculated.

この結果、Al2O3膜、HfO2膜の光吸収率は、そ
れぞれ5ppm、10ppmであった。
As a result, the light absorption rates of the Al2O3 film and the HfO2 film were 5 ppm and 10 ppm, respectively.

この測定では、レーザ波長514nmのアルゴンレーザ
を用いたが、実施例の可視レーザ用高反射鏡のレーザダ
メージしきい値測定に用いたレーザ波長527nmにお
けるAl2O3膜、HfO2膜の光吸収率の関係とほぼ
同じと考えて差し支えない。
In this measurement, an argon laser with a laser wavelength of 514 nm was used, but the relationship between the light absorption rates of the Al2O3 film and the HfO2 film at the laser wavelength of 527 nm used in the laser damage threshold measurement of the high reflection mirror for visible laser in the example It is safe to assume that they are almost the same.

前述のことから、本発明の可視レーザ用高反射鏡は、従
来の可視レーザ用高反射鏡よりもわずかに6層増やすだ
けで、同一の高反射率を得ることができると共に、レー
ザダメージしきい値が約2倍も向上するものである。
From the above, the high reflectance mirror for visible lasers of the present invention can obtain the same high reflectance as the conventional high reflectance mirror for visible lasers by adding only 6 layers, while also lowering the laser damage threshold. The value is improved by about twice.

以上、本発明は可視域のほぼ中間の波長に相当する53
2nm用の可視レーザ用高反射鏡について説明したきた
が、レーザ波長が可視域にあるその他のレーザ及び第2
次高調波用の高反射鏡についても、可視レーザ用高反射
鏡作成時の各層の光学的膜厚を変えることで同様な効果
が期待できる。
As described above, the present invention has a wavelength of 53 cm, which corresponds to a wavelength approximately in the middle of the visible range.
Although we have explained the high reflection mirror for visible lasers for 2 nm, other lasers whose laser wavelength is in the visible range and second
Similar effects can be expected for high-reflection mirrors for harmonics by changing the optical thickness of each layer when creating a high-reflection mirror for visible lasers.

また、レーザの入射角は、レーザの入射表面に垂直以外
でも良い。ただし、この場合は各層の光学的膜厚を入射
角に応じて増加させる必要がある。
Further, the incident angle of the laser may be other than perpendicular to the laser incident surface. However, in this case, it is necessary to increase the optical thickness of each layer according to the angle of incidence.

さらに、可視レーザ用高反射鏡の作成方法についても、
実施例では電子ビーム真空蒸着法を用いたが、このほか
にもスパッタリング、CVD、イオンブレーティング等
の方法でも同様な可視レーザ用高反射鏡を作成できる。
Furthermore, we will also explain how to create a highly reflective mirror for visible lasers.
Although the electron beam vacuum evaporation method was used in the embodiment, a similar high-reflection mirror for visible lasers can also be created by other methods such as sputtering, CVD, and ion blating.

(発明の効果) 以上詳細に説明したように、本発明は、基板上に、低屈
折率及び高屈折率の誘電体層を、レーザ使用波長に対す
る光学的膜厚λ/4で複数交互に積層する可視レーザ用
高反射鏡において、可視域においてほとんど光吸収がな
くレーザダメージしきい値は高いが、屈折率のわずかに
低い高屈折率物質(A1203)と低屈折率物質(Si
O2)を複数交互に積層した反射鏡をレーザ入射側に用
い、可視域において微少な光吸収がありレーザダメージ
しきい値はわずかに低いが、屈折率の高い高屈折率物質
(HfO2)と低屈折率物質(SiO□)を複数交互に
積層した反射鏡を基板側に用いる膜構成を採用すること
で、膜層数がずかに増加するだけで高反射鏡が得られる
と共に、レーザダメージしきい値が向上するものである
(Effects of the Invention) As described above in detail, the present invention provides a substrate in which a plurality of dielectric layers of low refractive index and high refractive index are alternately laminated with an optical thickness of λ/4 corresponding to the wavelength used by the laser. Highly reflective mirrors for visible lasers are made of a high refractive index material (A1203) and a low refractive index material (Si
A reflector made of a plurality of alternating layers of O2) is used on the laser incidence side, and there is a small amount of light absorption in the visible range, and the laser damage threshold is slightly low. By adopting a film configuration in which a reflector made by alternately laminating multiple layers of refractive index material (SiO□) is used on the substrate side, a highly reflective mirror can be obtained with only a slight increase in the number of film layers, while also preventing laser damage. This improves the threshold value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の可視レーザ用高反射鏡の好ましい実
施例の概略断面図である。 第2図は、従来の可視レーザ用高反射鏡の概略断面図で
ある。 1・・・YAG基板、 2・・・5i02膜、 3・・・A1□O5膜、 4・・・HfO2膜、 5・・・オーバーコー)(SiO2膜)6・・・アンダ
ーコート(SiO2膜)熱 図
FIG. 1 is a schematic cross-sectional view of a preferred embodiment of the highly reflective mirror for visible lasers of the present invention. FIG. 2 is a schematic cross-sectional view of a conventional high reflection mirror for visible laser. 1... YAG substrate, 2... 5i02 film, 3... A1□O5 film, 4... HfO2 film, 5... Overcoat (SiO2 film) 6... Undercoat (SiO2 film) ) thermal diagram

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に、低屈折率および高屈折率の誘電体膜を
、使用波長に対する光学的膜厚λ/4で複数交互に積層
する可視レーザ用高反射鏡において、レーザの発振波長
が可視域であり、誘電体膜として、少なくとも1種類の
低屈折率物質と少なくとも2種類の高屈折率物質を用い
、前記2種類の内の1つの高屈折率物質の誘電体膜と低
屈折率物質の誘電体膜とを交互に積層した積層体をレー
ザ入射側に用い、前記2種類の内の他の1つの高屈折率
物質の誘電体膜と低屈折率物質の誘電体膜とを交互に積
層した積層体を基板側に用い、レーザ入射側に用いる前
記1つの高屈折率物質が基板側に用いる前記他の1つの
高屈折率物質よりも光吸収によるダメージに対して強い
物質であり、前記1つの高屈折率物質がAl_2O_3
であり、前記他の1つの高屈折率物質がHfO_2であ
り、前記低屈折率物質がSiO_2である、ことを特徴
とするレーザ高反射鏡。
(1) In a high reflection mirror for visible lasers, in which a plurality of dielectric films with low refractive index and high refractive index are alternately laminated on a substrate with an optical film thickness of λ/4 for the wavelength used, the oscillation wavelength of the laser is visible. At least one type of low refractive index material and at least two types of high refractive index materials are used as the dielectric film, and a dielectric film of one high refractive index material of the two types and a low refractive index material are used. A laminate in which dielectric films of 1 and 2 are alternately laminated is used on the laser incidence side, and a dielectric film of one of the other high refractive index materials and a dielectric film of a low refractive index material of the above two types are alternately stacked. The laminated body is used on the substrate side, and the one high refractive index material used on the laser incidence side is a material that is more resistant to damage due to light absorption than the other one high refractive index material used on the substrate side, The one high refractive index material is Al_2O_3
A laser high reflection mirror characterized in that the other high refractive index substance is HfO_2 and the low refractive index substance is SiO_2.
(2)請求項1記載の可視レーザ用高反射鏡において、
レーザ出力がパルス幅ns程度のパルスから連続発振ま
での高出力レーザに使用するものである、ことを特徴と
するレーザ高反射鏡。
(2) In the visible laser high reflection mirror according to claim 1,
A laser high reflection mirror characterized in that it is used for a high-output laser whose laser output ranges from a pulse with a pulse width of about ns to a continuous wave.
JP27004090A 1990-10-08 1990-10-08 High efficiency reflector for visible laser beam Pending JPH04145677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27004090A JPH04145677A (en) 1990-10-08 1990-10-08 High efficiency reflector for visible laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27004090A JPH04145677A (en) 1990-10-08 1990-10-08 High efficiency reflector for visible laser beam

Publications (1)

Publication Number Publication Date
JPH04145677A true JPH04145677A (en) 1992-05-19

Family

ID=17480696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27004090A Pending JPH04145677A (en) 1990-10-08 1990-10-08 High efficiency reflector for visible laser beam

Country Status (1)

Country Link
JP (1) JPH04145677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181994A (en) * 2008-01-29 2009-08-13 Shimadzu Corp Optical element for solid laser
CN103175886A (en) * 2013-03-20 2013-06-26 同济大学 Detection method of depth distribution of nanometer absorbing center in optical substrate subsurface
CN107783218A (en) * 2016-08-31 2018-03-09 上海兆九光电技术有限公司 A kind of deep ultraviolet bandpass filter and preparation method thereof
WO2019167123A1 (en) * 2018-02-27 2019-09-06 株式会社島津製作所 Dielectric multilayer film mirror

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192189A (en) * 1988-12-05 1990-07-27 Honeywell Inc Ulraviolet-resistant high-reflectivity multilayer dielectric mirror
JPH02204702A (en) * 1989-02-02 1990-08-14 Sumitomo Metal Mining Co Ltd Laser high reflecting mirror

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192189A (en) * 1988-12-05 1990-07-27 Honeywell Inc Ulraviolet-resistant high-reflectivity multilayer dielectric mirror
JPH02204702A (en) * 1989-02-02 1990-08-14 Sumitomo Metal Mining Co Ltd Laser high reflecting mirror

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181994A (en) * 2008-01-29 2009-08-13 Shimadzu Corp Optical element for solid laser
CN103175886A (en) * 2013-03-20 2013-06-26 同济大学 Detection method of depth distribution of nanometer absorbing center in optical substrate subsurface
CN107783218A (en) * 2016-08-31 2018-03-09 上海兆九光电技术有限公司 A kind of deep ultraviolet bandpass filter and preparation method thereof
WO2019167123A1 (en) * 2018-02-27 2019-09-06 株式会社島津製作所 Dielectric multilayer film mirror
JPWO2019167123A1 (en) * 2018-02-27 2020-08-27 株式会社島津製作所 Dielectric multilayer mirror

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
JP2007065232A (en) Ultraviolet and heat-ray reflection multilayer film
EP0729591B1 (en) Coated optical reflector for reflecting radiation having grazing incidence
JP4307921B2 (en) Reflector
JP2001119096A (en) Semiconductor laser
JP4171362B2 (en) Transparent substrate with antireflection film
US5608577A (en) Optical mirror and optical device using the same
JPH04145677A (en) High efficiency reflector for visible laser beam
JP2006259124A (en) Cold mirror
JP2013529318A (en) Dielectric coated mirror
JP5873022B2 (en) Anti-reflection coating for adhesive protection
JPH05127004A (en) Reflecting mirror
CN106443848A (en) Broadband laser film mirror
JP3224316B2 (en) Two-wavelength anti-reflection coating
JPH0296701A (en) Multilayered antireflection film
JPH02204702A (en) Laser high reflecting mirror
US5581395A (en) Non-linear optical crystal element
JPS5926704A (en) Multilayered film reflecting mirror
KR100528857B1 (en) Semiconductor optical device and semiconductor laser module using the semiconductor optical device
JP2007003936A (en) Infrared region reflecting mirror and its manufacturing method
JP2001013304A (en) Optical parts
JP2814595B2 (en) Multilayer reflector
JP3069641B2 (en) Dielectric multilayer film
JP3276182B2 (en) Surface reflector
JP2004085975A (en) Oxide multilayer optical element and manufacturing method therefor