JPH04145276A - Valve driving part - Google Patents

Valve driving part

Info

Publication number
JPH04145276A
JPH04145276A JP32377089A JP32377089A JPH04145276A JP H04145276 A JPH04145276 A JP H04145276A JP 32377089 A JP32377089 A JP 32377089A JP 32377089 A JP32377089 A JP 32377089A JP H04145276 A JPH04145276 A JP H04145276A
Authority
JP
Japan
Prior art keywords
valve
piston
magnet
compression spring
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32377089A
Other languages
Japanese (ja)
Other versions
JPH0663579B2 (en
Inventor
Kunishige Ohira
大平 邦重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DAIYABARUBU KK
Original Assignee
NIPPON DAIYABARUBU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DAIYABARUBU KK filed Critical NIPPON DAIYABARUBU KK
Priority to JP1323770A priority Critical patent/JPH0663579B2/en
Publication of JPH04145276A publication Critical patent/JPH04145276A/en
Publication of JPH0663579B2 publication Critical patent/JPH0663579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To secure such a valve driving part as large in valve-close holding power as compared with a size of the valve driving part by forming a piston with a ferromagnetic material, and setting up a magnet, being opposed to the piston reaching the limit of reciprocation and exerting its suction force on it, in a body. CONSTITUTION:A magnet 50 is attached to an inner bottom surface of a cylinder 32 with a bolt 55, and a piston 40 is formed with a ferromagnetic material. When pressure air is taken into a gateway 43 installed on the inner bottom surface of the cylinder 32, the piston 40 is pushed upward together with a valve stem 15, whereby a diaphragm 20 separates from a valve seat 12, so that a passage 11 is opened and a valve is opened. When the pressure air is discharged, a compression spring 45 depresses the piston 40 together with the valve stem 15, and the diaphragm 20 sticks close to the valve seat 12, thus the valve is closed. At time of valve opening 0% when the valve is fully closed, elastic resilient force of the compression spring becomes reduced, but magnet suction force being exerted on the piston 40 of the magnet 50 is suddenly increased in proportion as the piston 40 approaches the magnet 50, thus a valve driving part thrust depressing the piston 40 composed with these elements, namely, valve-close holding power is reinforced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は弁を開閉させる駆動部に関するものであり、さ
らに詳しく述べると、ピストンを介して弁軸に圧縮ばね
の弾性反発力を加え、その弾性反発力に抗する作動流体
圧をピストンに加えて弁を開くか又は閉じる弁駆動部の
改良に係るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a drive unit that opens and closes a valve.More specifically, the present invention relates to a drive unit that opens and closes a valve. This invention relates to an improvement in a valve drive unit that opens or closes a valve by applying a working fluid pressure to a piston that resists elastic repulsive force.

[従来の技術] ピストンを介して圧縮ばねの弾性反発力で弁を全閉又は
全開の状態に保持し、その弁を作動流体圧で開くか又は
閉じる弁駆動部は公知である0例えば、弁軸を上下させ
る弁駆動部は特公昭61−60314号に、弁軸を回転
させる弁駆動部は特開昭83−266287号に開示さ
れている。この公知の弁駆動部はシリンダを含む本体と
、そのシリンダに軸方向往復可能に内股されたピストン
と、シリンダ内に流体を出入させる作動流体圧回路と、
本体とピストンの間に配置された圧縮ばねを備え、弁軸
が上下して開閉する弁は弁軸がピストンに直結され、弁
軸が回転して開閉する弁はピストンと弁軸の間に直線運
動を回転運動に変換する伝達機構が設けられ、作動流体
圧をシリンダ内へ導入するとピストンが摺動して弁を開
くか又は閉じ、作動流体圧をシリンダから排出すると圧
縮ばねがピストンを戻して弁を閉じるか又は開く。
[Prior Art] A valve drive unit that holds a valve in a fully closed or fully open state using the elastic repulsive force of a compression spring via a piston and opens or closes the valve using working fluid pressure is well-known. A valve drive unit that moves the shaft up and down is disclosed in Japanese Patent Publication No. 61-60314, and a valve drive unit that rotates the valve shaft is disclosed in Japanese Patent Application Laid-Open No. 83-266287. This known valve drive unit includes a main body including a cylinder, a piston housed within the cylinder so as to be able to reciprocate in the axial direction, and a working fluid pressure circuit for moving fluid into and out of the cylinder.
For valves that have a compression spring placed between the main body and the piston, and whose valve shaft moves up and down to open and close, the valve shaft is directly connected to the piston, and for valves whose valve shaft rotates to open and close, there is a straight line between the piston and the valve shaft. A transmission mechanism is provided to convert the motion into rotational motion, such that when working fluid pressure is introduced into the cylinder, the piston slides to open or close the valve, and when working fluid pressure is removed from the cylinder, a compression spring moves the piston back. Close or open the valve.

例えば、空気圧で弁を開く場合、ピストンの片側に圧力
空気を導入してピストンを反対側へ摺動させて弁軸を一
方に直進又は回転させて弁を開くが、このときピストン
の反対側の圧縮ばねは圧縮されて弾性反発力が強くなる
。この圧力空気を抜くと、圧縮ばねの弾性反発力でピス
トンは押戻され、弁軸は逆方向に摺動又は回転して弁を
閉じる。弁が閉じたとき、圧縮ばねは伸張しその弾性反
発力は最小になるが、その最小弾性反発力で弁を開こう
とする弁内流体の圧力に抗して弁を閉止状態に保持しな
ければならない、他方、空気圧で弁を閉じる場合、弁が
閉じたとき、圧縮ばねは圧縮して最大の弾性反発力にな
るので、弁を閉止状態に保持するためには、その最大骨
性反発力と弁内流体の圧力の和に打ちかつ高い空気圧が
必要である。
For example, when opening a valve using air pressure, pressurized air is introduced into one side of the piston, the piston slides to the other side, and the valve stem moves straight or rotates in one direction to open the valve. A compression spring is compressed and its elastic repulsive force becomes stronger. When this pressurized air is released, the piston is pushed back by the elastic repulsive force of the compression spring, and the valve shaft slides or rotates in the opposite direction to close the valve. When the valve closes, the compression spring stretches and its elastic repulsive force is minimized, but this minimum elastic repulsive force must be used to keep the valve closed against the pressure of the fluid inside the valve that tries to open the valve. On the other hand, when closing a valve with air pressure, the compression spring compresses to its maximum elastic repulsion force when the valve closes, so in order to keep the valve closed, its maximum bony repulsion force must be A high air pressure is required to overcome the sum of the pressure of the fluid in the valve and the pressure of the fluid in the valve.

[発明が解決しようとする課題] 弁の流体使用圧力を高くすると、全閉時に流体が弁を開
こうとする力が大きくなるから、弁閉保持力も大きくし
なれればならない、このために弁駆動部の圧縮ばねの弾
性反発力又は作動流体圧を増大すると、それに応じて弁
駆動部も大きく頑丈なものになる。この大きくて頑丈な
弁駆動部は高価である上に設置スペースを制約するとい
う問題を生ずる。さらに、これは弁小型化の要望に逆行
する。
[Problem to be solved by the invention] When the fluid working pressure of the valve is increased, the force with which the fluid tries to open the valve when it is fully closed increases, so the force to keep the valve closed must also be increased. Increasing the elastic repulsion force of the compression spring or the working fluid pressure of the valve drive part becomes correspondingly larger and more robust. This large, sturdy valve drive is expensive and creates space constraints. Furthermore, this runs counter to the desire for valve miniaturization.

本発明はこれらの問題を解決するためになされたもので
あり、その目的とするところは、弁駆動部の大きさに比
べて弁閉保持力が従来よりも大きな弁駆動部を提供する
ことにある。
The present invention has been made to solve these problems, and its purpose is to provide a valve drive section that has a larger valve closing force than conventional valve drive sections compared to the size of the valve drive section. be.

[課題を解決するための手段] 前記目的を達成するため、本発明が採用する手段は、シ
リンダを含む本体と、そのシリンダに往復動可能に挿入
されたピストンと、そのピストンに直接又は伝達機構を
介して連結された弁軸と、本体とピストンの間に配設さ
れた圧縮ばねと、その圧縮ばねに抗してピストンを往復
動させる作動流体圧回路とを備えた弁駆動部において、
ピストンを強磁性体から形成し、往復動の限度にきたピ
ストンに対面してそれに吸引力を及ぼす磁石を本体に配
置したことにある。
[Means for Solving the Problems] In order to achieve the above object, the means adopted by the present invention includes a main body including a cylinder, a piston inserted into the cylinder so as to be able to reciprocate, and a transmission mechanism directly connected to the piston or a transmission mechanism. A valve drive unit including a valve shaft connected via a valve shaft, a compression spring disposed between the main body and the piston, and a working fluid pressure circuit that reciprocates the piston against the compression spring,
The piston is made of a ferromagnetic material, and a magnet is placed in the main body to face the piston and apply an attractive force to it when it reaches the limit of its reciprocating motion.

磁石は永久磁石でも励磁制御可能な電磁石でもよい、磁
石の磁力線をピストンに集中させるため、ピストン以外
の部品は非磁性体又は弱磁性体とすることが望ましい。
The magnet may be a permanent magnet or an electromagnet whose excitation can be controlled. In order to concentrate the lines of magnetic force of the magnet on the piston, it is desirable that components other than the piston be made of non-magnetic or weakly magnetic materials.

[作用] 空気圧等の作動流体圧をシリンダ内に導入すると、ピス
トンは圧縮ばねに抗して一方の限度から他方の限度まで
移動して弁を全開するか又は全閉し、空気圧を排出する
と、ピストンは圧縮ばねの弾性反発力により他方の限度
から一方の限度へ戻って弁を全閉するか又は全開する0
本発明の弁駆動部は、ピストンが他方の限度まで移動す
ると、本体に設けた磁石が強磁性体のピストンに弁が閉
じる方向に磁石吸引力を及ぼす、このように、作動流体
圧で弁を開く場合は圧縮ばねの弾性反発力に磁石吸引力
を加重したものが弁閉保持力となり、作動流体圧で弁を
閉じる場合は、作動流体圧の推力に磁石吸引力を加重し
たものが弁閉保持力となるから、従来の圧縮ばねの最小
弾性反発力又は作動流体圧のみに依存していたものに比
べると弁閉保持力は大幅に増加する。したがって、圧縮
ばねの大きさ又は作動流体圧が従来のものと同一であれ
ば、すなわち弁駆動部の大きさが従来と同一であれば、
使用可能な流体圧はより高くなり、使用流体圧が同一で
あればより小さな圧縮ばね又は作動流体圧を使用するこ
とすなわち弁駆動部をより小型化することができる。
[Operation] When working fluid pressure such as air pressure is introduced into the cylinder, the piston moves from one limit to the other limit against the compression spring to fully open or close the valve, and when the air pressure is discharged, The piston returns from the other limit to one limit due to the elastic repulsive force of the compression spring, fully closing or opening the valve.
In the valve drive unit of the present invention, when the piston moves to the other limit, the magnet provided in the main body exerts a magnetic attraction force on the ferromagnetic piston in the direction in which the valve closes.In this way, the valve is driven by the working fluid pressure. When opening the valve, the elastic repulsive force of the compression spring plus the magnetic attraction force is the force that keeps the valve closed; when the valve is closed by working fluid pressure, the thrust force of the working fluid pressure plus the magnetic attraction force is the force that keeps the valve closed. Therefore, the valve-closing holding force is significantly increased compared to conventional compression springs that depend only on the minimum elastic repulsion force or the working fluid pressure. Therefore, if the size of the compression spring or the working fluid pressure is the same as that of the conventional one, that is, if the size of the valve drive part is the same as that of the conventional one,
The available fluid pressure is higher, and for the same fluid pressure, a smaller compression spring or actuating fluid pressure can be used, ie the valve drive can be made more compact.

[実施例] 本発明の弁駆動部を図面に示す実施例に基づいて具体的
に説明する。
[Example] The valve drive unit of the present invention will be specifically described based on an example shown in the drawings.

第1図及び第2図の第1実施例は、弁を空気で開き圧縮
ばねで閉じるダイヤフラム弁である。その弁は内部に流
路11とそれを二分する弁座12を備えた弁体10と、
その弁座12の上面開口を覆うダイヤフラム20と、そ
のダイヤフラムの周辺を弁体lOに密着固定させるボン
ネット31と、コンプレッサ16を介してダイヤフラム
20の上面中央に下端部が係止された弁軸15と、ボン
ネット31の上面に接続固定されたシリンダ32と、そ
のシリンダの上面に接続固定されたキャップ33と、弁
軸15にステムロッド、13を介して嵌着されたピスト
ン40と、そのピストンの外周面に設けられたOリング
41と、ピストン40の上面とキャップ33の内上面と
の間に配置された圧縮ばね45を備える。ボンネット3
1とシリンダ32とキャップ33は弁駆動部の本体30
を形成する。ここまでの構成は従来と同じであるが、従
来のものとは異なり、シリンダ32の内底面に磁石50
がポルト55によって取付けられる。磁石50は永久磁
石でも、励磁制御可能な電磁石でもよいが、ピストン4
0は強磁性体でなければならない、この磁石50とピス
トン40の近くにあるシリンダ32と弁軸15の材質は
アルミ、ステンレス等の非磁性体又は弱磁性体である。
The first embodiment shown in FIGS. 1 and 2 is a diaphragm valve that opens with air and closes with a compression spring. The valve includes a valve body 10 that includes a flow path 11 and a valve seat 12 that divides the flow path into two;
A diaphragm 20 that covers the upper opening of the valve seat 12, a bonnet 31 that tightly fixes the periphery of the diaphragm to the valve body lO, and a valve shaft 15 whose lower end is locked to the center of the upper surface of the diaphragm 20 via the compressor 16. , a cylinder 32 connected and fixed to the upper surface of the bonnet 31, a cap 33 connected and fixed to the upper surface of the cylinder, a piston 40 fitted to the valve shaft 15 via the stem rod 13, and the piston. It includes an O-ring 41 provided on the outer peripheral surface and a compression spring 45 disposed between the upper surface of the piston 40 and the inner upper surface of the cap 33. bonnet 3
1, the cylinder 32, and the cap 33 are the main body 30 of the valve drive unit.
form. The configuration up to this point is the same as the conventional one, but unlike the conventional one, there is a magnet 50 on the inner bottom surface of the cylinder 32.
is attached by Porto 55. The magnet 50 may be a permanent magnet or an electromagnet whose excitation can be controlled, but the piston 4
0 must be a ferromagnetic material. The material of the cylinder 32 and valve stem 15 near the magnet 50 and the piston 40 is a non-magnetic material such as aluminum or stainless steel, or a weak magnetic material.

シリンダ32の内底面には圧力空気の出入口43が設け
られ、第2図に示すように、圧力空気を導入すると、ピ
ストン40は弁軸15と共に押上げられ、ダイヤフラム
20は弁座12から離れるから流路11は開通し弁は開
く、第3図に示すように、弁開度100%のとき、圧縮
ばねは圧縮されて弾性反発力は例えば最大の100Kg
fになる。圧力空気を排出すると、第1図に示すように
、圧縮ばね45がピストン40を弁軸15と共に押下げ
、ダイヤフラム20は弁座12に密着するから、弁は閉
じる。第3図に示すように、弁が全閉した弁開度0%の
とき、圧縮ばねの弾性反発力は最小50Kgfになるが
、磁石のピストンに及ぼす磁石吸引力はピストンが磁石
に近づくにつれて急増するから、それらを合成したピス
トンを押下げる弁駆動部推力すなわち弁閉保持力は圧縮
ばねの最大弾性反発力と同じ100Kgfになる。
A pressure air inlet/outlet 43 is provided on the inner bottom surface of the cylinder 32, and as shown in FIG. The flow path 11 is open and the valve is open. As shown in Fig. 3, when the valve opening is 100%, the compression spring is compressed and the elastic repulsive force is the maximum of 100 kg, for example.
It becomes f. When the pressurized air is discharged, as shown in FIG. 1, the compression spring 45 pushes down the piston 40 together with the valve shaft 15, and the diaphragm 20 comes into close contact with the valve seat 12, so that the valve is closed. As shown in Figure 3, when the valve is fully closed and the valve opening is 0%, the elastic repulsive force of the compression spring is a minimum of 50 Kgf, but the magnetic attraction force exerted on the magnet piston increases rapidly as the piston approaches the magnet. Therefore, the thrust force of the valve drive unit that pushes down the piston, that is, the force that holds the valve closed, is 100 Kgf, which is the same as the maximum elastic repulsion force of the compression spring.

このように磁石50で補強した第1実施例は従来の圧縮
ばねのみのものに比べると、弁駆動部本体30の大きさ
は同一であるが、弁閉保持力が2倍であるから、流体の
使用圧力も2倍にすることができる。
In the first embodiment reinforced with the magnet 50, the size of the valve drive unit main body 30 is the same, but the valve closing force is twice as large as that of the conventional one using only a compression spring. The working pressure can also be doubled.

第4図に示す第2実施例は圧縮ばねで弁を開き、空気圧
で弁を閉じるダイヤフラム弁である。
The second embodiment shown in FIG. 4 is a diaphragm valve that opens the valve using a compression spring and closes the valve using air pressure.

この第2実施例は圧縮ばね45がピストン40の下側に
設けられる。キャップ33は密封され、その内部に出入
口43を通じて圧力空気が導入される。これら以外の構
成は第1実施例のものと同じであり、磁石50はポルト
55によりシリンダ32に固定される。圧力空気を導入
して弁が閉じたとき、圧縮ばね45は最大の弾性反発力
を持ち、その弾性反発力と弁内流体の圧力を加えた推力
で弁軸15を押上げようとするが、ピストン40と磁石
50の間の吸引力がその推力を減するから、弁閉保持力
に必要な空気圧を従来よりも軽減することができる。し
たがって、従来と作動空気圧が同じ場合は、すなわち、
弁駆動部本体30の大きさが同じ場合は、流体使用圧力
を従来よりも高めることが可能であり、流体使用圧力が
従来と同じ場合は、作動空気圧を下げること、すなわち
弁駆動部本体30をより小型にすることができる。
In this second embodiment, a compression spring 45 is provided below the piston 40. The cap 33 is sealed, and pressurized air is introduced into its interior through an inlet/outlet 43. The structure other than these is the same as that of the first embodiment, and the magnet 50 is fixed to the cylinder 32 by a port 55. When the valve is closed by introducing pressurized air, the compression spring 45 has the maximum elastic repulsion force, and tries to push up the valve stem 15 with the thrust force that is the sum of the elastic repulsion force and the pressure of the fluid in the valve. Since the attractive force between the piston 40 and the magnet 50 reduces the thrust, the air pressure required to keep the valve closed can be reduced compared to the conventional case. Therefore, if the operating air pressure is the same as before, that is,
If the size of the valve drive unit main body 30 is the same, it is possible to increase the fluid working pressure compared to the conventional one, and if the fluid working pressure is the same as before, it is possible to lower the operating air pressure, that is, to increase the valve drive unit main body 30. It can be made smaller.

第5図の第3実施例に示すように、磁石50.51を本
体30のシリンダ32とキャップ33の両方にそれぞれ
ポルト55.56を介して取付けてもよい、磁石50の
弁閉保持力を補強する作用は第4図の第2実施例と全く
同一である。磁石51は全開時に接近するピストン40
に磁石吸引力を及ぼして弁軸15を村上げることにより
弁閉保持力を補強する。
As shown in the third embodiment of FIG. 5, magnets 50 and 51 may be attached to both the cylinder 32 and the cap 33 of the main body 30 through ports 55 and 56, respectively. The reinforcing action is exactly the same as the second embodiment shown in FIG. The magnet 51 is the piston 40 that approaches when fully opened.
By applying a magnetic attraction force to the valve shaft 15 and raising the valve stem 15, the force for holding the valve closed is reinforced.

第6図及び第7図の第4実施例は、弁軸を90度回転さ
せて弁を開閉するポール弁、/曳タフライ弁等に用いら
れる弁駆動部である。その弁駆動部は本体30の中央に
弁軸に直結する駆動軸18が軸受けされ、その駆動軸に
カム22が固定される。カム22のカム溝23にカムピ
ン24が挿入され、そのカムピンはシリンダ32内を往
復するスライダ25に軸着される。スライダ25は同じ
くシリンダ32に往復可能に挿入されたピストン40に
固定され、シ1ノンダ32の両側には左右のキャップ3
3が固定される。ビストン40の外面とキャップ33の
内面の間には圧縮ばね45が配置され、シリンダ32の
中央に圧力空気の出入口(図示せず)が設けられる。シ
リンダ32内に圧力空気を入れると、ピストン40がス
ライダ25と共に左右の限度まで進行し、そのスライダ
と一体のカムピン24がカム溝23を介してカム22を
90度回転させて弁を開く、圧力空気を抜くと、左右の
圧縮ばね45の弾性反発力でピストン40が内側の限度
まで進行し、カム22を90度逆転させて弁を閉じる。
The fourth embodiment shown in FIGS. 6 and 7 is a valve drive unit used in a pole valve, a pull-toughfly valve, etc., which opens and closes the valve by rotating the valve shaft by 90 degrees. In the valve drive section, a drive shaft 18 directly connected to the valve shaft is supported in the center of the main body 30, and a cam 22 is fixed to the drive shaft. A cam pin 24 is inserted into the cam groove 23 of the cam 22, and the cam pin is pivotally attached to a slider 25 that reciprocates within the cylinder 32. The slider 25 is also fixed to a piston 40 that is reciprocably inserted into the cylinder 32, and left and right caps 3 are provided on both sides of the cylinder 32.
3 is fixed. A compression spring 45 is disposed between the outer surface of the piston 40 and the inner surface of the cap 33, and a pressurized air outlet (not shown) is provided in the center of the cylinder 32. When pressurized air is introduced into the cylinder 32, the piston 40 moves to the left and right limits together with the slider 25, and the cam pin 24 integrated with the slider rotates the cam 22 90 degrees through the cam groove 23 to open the valve. When the air is released, the piston 40 moves to its inner limit due to the elastic repulsive force of the left and right compression springs 45, and the cam 22 is reversed by 90 degrees to close the valve.

これまでの構成は従来のものと同じであるが、従来のも
のとは異なり、左右のピストン40は強磁性体であり、
その外面には同じく強磁性体の底付きスリーブ48が同
軸固定される。キャップ33にはスリーブ48の底を貫
通するロッド34が固定される。ロッド34の内端部に
、ピストン40が内側の限度位置にあるときにはスリー
ブ48の内底面に、ピストン40が外側の限度位置にあ
るときにはピストン40の外面にそれぞれ対接する磁石
50を取付ける。又、ピストン40が外側の限度にきた
ときに、スリーブ48の外底面に対面する磁石51をキ
ャー2プ33の内底面に付設する。
The configuration so far is the same as the conventional one, but unlike the conventional one, the left and right pistons 40 are made of ferromagnetic material,
A bottomed sleeve 48 also made of ferromagnetic material is coaxially fixed to its outer surface. A rod 34 passing through the bottom of the sleeve 48 is fixed to the cap 33. A magnet 50 is attached to the inner end of the rod 34, which contacts the inner bottom surface of the sleeve 48 when the piston 40 is in the inner limit position and the outer surface of the piston 40 when the piston 40 is in the outer limit position. Also, a magnet 51 is attached to the inner bottom surface of the cap 33, which faces the outer bottom surface of the sleeve 48 when the piston 40 reaches its outer limit.

弁が閉じたとき、圧縮ばね45は伸びて弾性反発力は最
小であるが、それを磁石50とスリーブ48の内底面の
間の吸引力で補強するから、弁閉保持力は従来の伸びた
圧縮ばねの最小弾性反発力のみに依存していたときより
も格段に大きくなる。したがって、その分、流体使用圧
力を高めることができる。逆に、流体使用圧力が同じで
あれば、従来よりも弁駆動部を小型にすることができる
。弁を開いたとき、圧縮ばねの最大弾性反発力は弁を閉
じる方向に作用して弁開保持力を弱めるが、ピストン4
0とロッド34先端の磁石50との間の磁石吸引力、さ
らにキャップ33の内底面の磁石51とスリーブ48の
外底面の間の磁石吸引力が弁開保持力を補強するから、
弁開保持力に必要な圧力空気の圧力を低下することもで
きる。
When the valve closes, the compression spring 45 stretches and the elastic repulsive force is minimal, but this is reinforced by the attractive force between the magnet 50 and the inner bottom surface of the sleeve 48, so the valve closing force is greater than that of the conventional stretched force. This is much larger than when relying only on the minimum elastic repulsion force of the compression spring. Therefore, the fluid working pressure can be increased accordingly. Conversely, if the fluid working pressure is the same, the valve drive unit can be made smaller than before. When the valve is opened, the maximum elastic repulsive force of the compression spring acts in the direction of closing the valve, weakening the force that holds the valve open, but the piston 4
0 and the magnet 50 at the tip of the rod 34, as well as the magnetic attraction force between the magnet 51 on the inner bottom surface of the cap 33 and the outer bottom surface of the sleeve 48, reinforcing the valve opening holding force.
It is also possible to reduce the pressure of pressurized air required to maintain the valve open.

[発明の効果] 上記のとおり、本発明の弁駆動部は、本体に磁石が付設
され、その磁石は弁閉時に強磁性体のピストンに弁が閉
じる方向の磁石吸引力を及ぼして圧縮ばね又は作動流体
圧の弁閉保持力を補強するから、従来の圧縮ばね又は作
動流体圧のみに依存していたものとは異なり弁閉保持力
は大幅に強くなる。したがって、本発明の弁駆動部は、
従来のものと大きさが同じであれば、流体使用圧力をよ
り高くすることが可能であり、流体使用圧力が同じであ
れば、弁駆動部をより小型にすることが可能であるとい
う優れた効果を奏する。
[Effects of the Invention] As described above, in the valve drive unit of the present invention, a magnet is attached to the main body, and when the valve is closed, the magnet exerts a magnetic attraction force on the ferromagnetic piston in the direction in which the valve closes, thereby causing the compression spring or Since the force to keep the valve closed is reinforced by the working fluid pressure, the force to keep the valve closed is significantly stronger, unlike conventional systems that rely only on compression springs or working fluid pressure. Therefore, the valve drive section of the present invention is
If the size is the same as the conventional one, it is possible to increase the fluid working pressure, and if the fluid working pressure is the same, it is possible to make the valve drive part smaller. be effective.

又、ピストン往復動の両限度において、それぞれピスト
ンに磁石吸引力を及ぼす磁石を本体に設けたものは、弁
駆動部の弁閉保持力にのみならず弁開保持力も補強する
という効果を生ずる。
Furthermore, the structure in which the main body is provided with magnets that apply magnetic attraction force to the piston at both limits of the piston reciprocating motion has the effect of reinforcing not only the force of the valve driving section to keep the valve closed but also the force to keep the valve open.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明弁駆動部の第1実施例を備え
たダイヤフラム弁の弁閉時及び弁開時の状態をそれぞれ
示す断面図、 第3図は第1実施例の弁軸に作用する推力を示すグラフ
。 第4図及び第5図は第2及び第3実施例の第1図及び第
2図に相当する図、 第6図及び第7図は弁軸が回転する第4実施例弁駆動部
の弁閉時及び弁開時をそれぞれ示す半断面図である。 図において、符号15は弁軸、20はダイヤフラム、2
2はカム、23はカム溝、24はカムピン、25はスラ
イダ、30は本体、31はボンネッと、32はシリンダ
、33はキャップ、34はロッド、40はピストン、4
5は圧縮ばね、48はスリーブ、50.51は磁石をそ
れぞれ示す。 出願人 日本ダイヤバルブ株式会社 手続補正書 平成3年 4月
1 and 2 are cross-sectional views showing the closed and opened states of a diaphragm valve equipped with a first embodiment of the valve drive unit of the present invention, respectively, and FIG. 3 is a valve shaft of the first embodiment. A graph showing the thrust force acting on. Figures 4 and 5 are views corresponding to Figures 1 and 2 of the second and third embodiments, Figures 6 and 7 are valves of the valve drive unit of the fourth embodiment in which the valve shaft rotates. FIG. 3 is a half-sectional view showing the valve when it is closed and when it is open. In the figure, numeral 15 is a valve stem, 20 is a diaphragm, 2
2 is a cam, 23 is a cam groove, 24 is a cam pin, 25 is a slider, 30 is a main body, 31 is a bonnet, 32 is a cylinder, 33 is a cap, 34 is a rod, 40 is a piston, 4
5 is a compression spring, 48 is a sleeve, and 50.51 is a magnet, respectively. Applicant Nippon Dia Valve Co., Ltd. Procedural Amendment April 1991

Claims (1)

【特許請求の範囲】 1)シリンダ(32)を含む本体(30)と、前記シリ
ンダに往復摺動自在に挿入されたピストン(40)と、
前記ピストンに直接又は伝達機構を介して連結された弁
軸(15)と、前記ピストンと前記本体の間に設けられ
た圧縮ばね(45)と、前記ピストンを前記圧縮ばねに
抗して摺動させる作動流体圧回路(43)とを備えた弁
駆動部において、前記ピストンを強磁性体から形成し、
往復動の少なくとも弁が閉じる方向の限度にきた前記ピ
ストンに対面して吸引力を及ぼす磁石(50)を前記本
体に設けたことを特徴とする弁駆動部。 2)往復動の両限にきたピストン(40)に対してそれ
ぞれ吸引力を及ぼす磁石(50、51)を本体(30)
に設けたことを特徴とする請求項1に記載の弁駆動部。
[Scope of Claims] 1) a main body (30) including a cylinder (32), a piston (40) inserted into the cylinder so as to be able to reciprocate and slide;
A valve shaft (15) connected to the piston directly or via a transmission mechanism, a compression spring (45) provided between the piston and the main body, and a compression spring (45) for sliding the piston against the compression spring. The piston is formed from a ferromagnetic material, and the piston is formed of a ferromagnetic material,
A valve drive unit characterized in that the main body is provided with a magnet (50) that applies an attractive force to the piston when it reaches the limit of reciprocating motion, at least in the direction in which the valve closes. 2) The main body (30) has magnets (50, 51) each exerting an attractive force on the piston (40) that has reached both limits of reciprocating motion.
2. The valve drive unit according to claim 1, wherein the valve drive unit is provided in the valve drive unit.
JP1323770A 1989-12-15 1989-12-15 Valve drive Expired - Lifetime JPH0663579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1323770A JPH0663579B2 (en) 1989-12-15 1989-12-15 Valve drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1323770A JPH0663579B2 (en) 1989-12-15 1989-12-15 Valve drive

Publications (2)

Publication Number Publication Date
JPH04145276A true JPH04145276A (en) 1992-05-19
JPH0663579B2 JPH0663579B2 (en) 1994-08-22

Family

ID=18158432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1323770A Expired - Lifetime JPH0663579B2 (en) 1989-12-15 1989-12-15 Valve drive

Country Status (1)

Country Link
JP (1) JPH0663579B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503155A (en) * 2013-01-14 2016-02-01 デイコ アイピー ホールディングス, エルエルシーDayco Ip Holdings, Llc Piston actuator for controlling a valve and method for its operation
WO2021053708A1 (en) * 2019-09-17 2021-03-25 トリニティ工業株式会社 Valve module, valve device, and valve system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104847904A (en) * 2015-05-26 2015-08-19 杨舟 Pneumatic cut-off valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214877U (en) * 1988-07-13 1990-01-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214877U (en) * 1988-07-13 1990-01-30

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503155A (en) * 2013-01-14 2016-02-01 デイコ アイピー ホールディングス, エルエルシーDayco Ip Holdings, Llc Piston actuator for controlling a valve and method for its operation
WO2021053708A1 (en) * 2019-09-17 2021-03-25 トリニティ工業株式会社 Valve module, valve device, and valve system
JPWO2021053708A1 (en) * 2019-09-17 2021-03-25
CN114286908A (en) * 2019-09-17 2022-04-05 得立鼎工业株式会社 Valve module, valve device, valve system
US11885431B2 (en) 2019-09-17 2024-01-30 Trinity Industrial Corporation Valve module, valve device, valve system
CN114286908B (en) * 2019-09-17 2024-05-14 得立鼎工业株式会社 Valve module, valve device and valve system

Also Published As

Publication number Publication date
JPH0663579B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US7819131B2 (en) Springless compressor valve
KR900000605A (en) Pneumatic actuator with permanent magnet control valve latch mechanism
JP2003525412A (en) Valves for controlling large cross-section flows such as compressors
EP0565786A1 (en) Vacuum gate valve
GB2430246A (en) Valve
EP0382970A3 (en) Gate valve with supplemental actuator
JPH02236007A (en) Bistable type electronic control type fluid drive transducer
US4875441A (en) Enhanced efficiency valve actuator
JPH04145276A (en) Valve driving part
US5003938A (en) Pneumatically powered valve actuator
EP0377252A1 (en) Electro-pneumatic actuator
US20040028545A1 (en) Cylinder assembly for a mini air compressor
US6190143B1 (en) Piston pump with zero to negative clearance valve
JP2504869B2 (en) Valve drive
KR100239350B1 (en) Oil supplier of linear compressor
JP3281396B2 (en) Valve assembly
JPH0893718A (en) Speed reducing air cylinder
JP3578652B2 (en) Pump device
JPH06129564A (en) Valve actuator
JPH07787Y2 (en) solenoid valve
RU2205294C2 (en) Magnetic pump
JP2000218232A (en) Reciprocating vibration exciter
KR200267901Y1 (en) A discharge valve apparatus for hermetic compressor
JP2815743B2 (en) Hydraulic power transmission coupling
JP2665071B2 (en) Liquid control valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 16