JPH04144970A - Burned structure of piezoelectric ceramics - Google Patents

Burned structure of piezoelectric ceramics

Info

Publication number
JPH04144970A
JPH04144970A JP2269284A JP26928490A JPH04144970A JP H04144970 A JPH04144970 A JP H04144970A JP 2269284 A JP2269284 A JP 2269284A JP 26928490 A JP26928490 A JP 26928490A JP H04144970 A JPH04144970 A JP H04144970A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
molded body
firing
ceramic molded
compacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2269284A
Other languages
Japanese (ja)
Inventor
Takuya Shimizu
拓也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2269284A priority Critical patent/JPH04144970A/en
Publication of JPH04144970A publication Critical patent/JPH04144970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To suppress deformation of piezoelectric ceramic sintered compacts by arranging piezoelectric ceramic compacts in a gap between a pair of holding plates oppositely through specific spacers and burning the aforementioned compacts. CONSTITUTION:A pair of holding plates 3 are arranged oppositely through a pair of spacers 2, having a larger thickness than that of piezoelectric ceramic compacts 1 before burning and providing a smaller thickness than that of the compacts 1 with a higher shrinkage factor than that of the compacts 1 after the burning and the compacts 1 are placed in the gap between the holding plates 3. The resultant sandwich is then arranged in a sheath and heated to reduce the thickness of the spacers 2 from that of the compacts 1 and a load of the holding plates 3 is applied to carry out the burning.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、圧電積層体などに使用される圧電セラミック
スの成形体を焼成する圧電セラミックスの焼成構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a piezoelectric ceramic firing structure for firing a piezoelectric ceramic molded body used for a piezoelectric laminate or the like.

[従来の技術] 圧電セラミックスは、所定のセラミックス粉末を薄板状
に成形された後焼成されて形成される。
[Prior Art] Piezoelectric ceramics are formed by forming a predetermined ceramic powder into a thin plate shape and then firing it.

この焼成時にこのセラミックス成形体は反りや変形がお
きやすい。この反りや変形を防ぐためには、焼成初期の
昇温速度を遅くしたり、成形体の回りにいわゆる潤滑剤
の役目の敷粉を存在させて焼成するなどの方法がとられ
ている。
During firing, this ceramic molded body is likely to warp or deform. In order to prevent this warping and deformation, methods are used such as slowing down the rate of temperature rise in the initial stage of firing, and baking with a bedding powder that acts as a so-called lubricant around the molded body.

たとえば、特開平’l −18474号公報には、敷粉
を用いて焼成する際に成形体の重量の0.5〜2倍の重
量を敷粉を介してセラミックス成形体に加重を負荷して
焼成し、反りや変形を防ぐ方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 18474 discloses that, when firing using bed powder, a weight of 0.5 to 2 times the weight of the molded body is applied to the ceramic molded body through the bed powder. A method of firing and preventing warping and deformation is disclosed.

[発明が解決しようとする課題] 上記の方法では圧電セラミックスの厚み方向の変形は抑
制できるが、長さ方向についてはむしろ変形がおきやす
くなる。これは焼成初期に敷粉がセラミックス成形体の
表面にくいこみ凹凸ができる、このためこの凹凸により
長さ方向の収縮が局部的に妨げられるため、変形がおき
、場合によっては焼成体が割れる。
[Problems to be Solved by the Invention] Although the above method can suppress deformation of the piezoelectric ceramic in the thickness direction, deformation is more likely to occur in the length direction. This is because, in the early stages of firing, the bedding powder sinks into the surface of the ceramic molded body, creating unevenness, which locally prevents shrinkage in the length direction, causing deformation and, in some cases, cracking of the fired body.

本発明は上記の事情に鑑みてなされたもので、反りや変
形を抑制した圧電セラミックス焼成体とすることを目的
とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fired piezoelectric ceramic body that suppresses warping and deformation.

[課題を解決するための手段] 本発明の圧電セラミックスの焼成構造は、焼成される圧
電セラミックス成形体と、対向する一対の板で該圧電セ
ラミックス成形体をその間隔内に保持する保持板と、該
保持板の間隔内に配置され該圧電セラミックス成形体の
焼成時に該保持板の間隔の大きさを調整する少なくとも
一対のスペサと、からなる圧電セラミックスの焼成構造
であって、該スペーサは、焼成前においては該圧電セラ
ミックス成形体の厚みより大きく、焼成後においては該
圧電セラミックス成形体の厚み以下となり、該圧電セラ
ミックス成形体の収縮率より大きい収縮率をもつことを
特徴とする。
[Means for Solving the Problems] The piezoelectric ceramic firing structure of the present invention includes: a piezoelectric ceramic molded body to be fired; a pair of opposing plates holding the piezoelectric ceramic molded body within a space therebetween; A piezoelectric ceramic firing structure comprising at least a pair of spacers arranged within a gap between the retaining plates and adjusting the size of the interval between the retaining plates during firing of the piezoelectric ceramic molded body, the spacer comprising: The thickness of the piezoelectric ceramic molded body is greater than the thickness of the piezoelectric ceramic molded body before firing, and is less than the thickness of the piezoelectric ceramic molded body after firing, and has a shrinkage rate that is greater than the contraction rate of the piezoelectric ceramic molded body.

この圧電セラミックスの焼成構造は、焼成中に圧電セラ
ミックスに負荷される荷重をスペーサの厚みの変化によ
って調整することにより、圧電セラミックス焼成体の変
形を抑制することにある。
This piezoelectric ceramic firing structure suppresses deformation of the piezoelectric ceramic fired body by adjusting the load applied to the piezoelectric ceramic during firing by changing the thickness of the spacer.

このスペーサは、圧電セラミックス成形体とは収縮率が
異なるセラミックスの成形体で形成されており、焼成開
始時は厚みが圧電セラミックス成形体より大ぎく、焼成
終了時には厚みが圧電セラミックス成形体より小さくな
るものを用いる。
This spacer is made of a ceramic molded body that has a shrinkage rate different from that of the piezoelectric ceramic molded body, and is thicker than the piezoelectric ceramic molded body at the start of firing, and smaller than the piezoelectric ceramic molded body at the end of firing. use something

すなわち、寸法変化の大きい焼成初期段階では、圧電セ
ラミックス成形体の厚みより大きいスペーサにより保持
板が支持されており、圧電セラミックス成形体には直接
荷重が負荷されず、自由に収縮できる。焼成が進行する
とスペーサを構成しているセラミックス成形体の収縮率
が圧電セラミックス成形体より大きいので、途中でスペ
ーサの厚みが圧電セラミックス成形体のそれより小さく
なり、荷重が直接圧電セラミックス成形体に負荷された
状態で焼成が進行する。そして全体の収縮が少なくなっ
た領域では、荷重が負荷された状態となっているので、
得られる焼成体は変形することはない。
That is, at the initial stage of firing when dimensional changes are large, the holding plate is supported by a spacer that is larger than the thickness of the piezoelectric ceramic molded body, and no direct load is applied to the piezoelectric ceramic molded body, so that it can freely contract. As firing progresses, the shrinkage rate of the ceramic molded body making up the spacer is greater than that of the piezoelectric ceramic molded body, so the thickness of the spacer becomes smaller than that of the piezoelectric ceramic molded body midway through, and the load is directly applied to the piezoelectric ceramic molded body. Firing proceeds in this state. In the area where the overall contraction has decreased, the load is applied, so
The obtained fired body will not be deformed.

このためにスペーサは、圧電セラミックス成形体よりも
大きい収縮率をもっていることが必要である。これを実
現するにはたとえば、セラミックス粉末を用いて成形時
の圧力を低くして成形すると成形圧力を高くして成形し
たものより収縮率を大きくすることができる。すなわち
、成形圧力を低くして成形すると成形体内の粒子間隔が
広がった状態であり、焼成時に粒子間隔が挟まり成形体
の寸法に比べて大きく収縮する。またセラミックス成形
体に配合する結合剤の量を多くすることによっても成形
体の収縮率を大きくすることができる。
For this reason, the spacer needs to have a higher shrinkage rate than the piezoelectric ceramic molded body. To achieve this, for example, if ceramic powder is used and molded at a low pressure during molding, the shrinkage rate can be made larger than when molded at a high molding pressure. That is, when molding is performed at a low molding pressure, the distance between particles within the molded object is widened, and during firing, the distance between the particles is narrowed and the molded object shrinks significantly compared to the dimensions of the molded object. The shrinkage rate of the ceramic molded body can also be increased by increasing the amount of binder added to the ceramic molded body.

スペーサは、好ましくは圧電セラミックスと同じセラミ
ックス粉末を用い、その成形時の成形圧力を圧電セラミ
ックス成形体よりも低くして成形するか、または結合剤
の使用量を圧電セラミックス成形体よりも多くすること
で形成できる。
The spacer is preferably formed using the same ceramic powder as the piezoelectric ceramic, and the molding pressure is lower than that of the piezoelectric ceramic molded body, or the amount of binder used is larger than that of the piezoelectric ceramic molded body. It can be formed by

圧電セラミックスとしては、圧電効果を有するものであ
れば特に限定されず、たとえば、ペロブスカイト結晶a
造の3aT i 03とPbT i 03またはCaT
 + 03との固溶体、PbZrO3とPbT i 0
3の固溶体(PZT)などが使用できる。
Piezoelectric ceramics are not particularly limited as long as they have a piezoelectric effect; for example, perovskite crystal a
3aT i 03 and PbT i 03 or CaT
Solid solution with + 03, PbZrO3 and PbT i 0
A solid solution of No. 3 (PZT) can be used.

スペーサで支持される保持板は、耐熱性でたとえば、板
状で焼成温度で変形せず圧電セラミックス成形体に荷重
を負荷でき圧電セラミックス成形体と反応しないもので
あればよい。
The holding plate supported by the spacer may be heat resistant, for example, plate-shaped, not deformed at the firing temperature, capable of applying a load to the piezoelectric ceramic molded body, and not reacting with the piezoelectric ceramic molded body.

[作用] この焼成構造は、焼成時に圧電セラミックス成形体に負
荷する荷重を支えるスペーサをセラミックス成形体と同
種のセラミックス粉末で形成し、その厚みが圧電セラミ
ックス成形体より大きく、焼成による収縮率が大きいも
のが用いられる。焼成初期の収縮の大きいときには、圧
電セラミックス成形体は荷重の負荷を受けず自由に収縮
する。
[Function] In this firing structure, the spacer that supports the load applied to the piezoelectric ceramic molded body during firing is formed from the same type of ceramic powder as the ceramic molded body, and its thickness is larger than that of the piezoelectric ceramic molded body, and the shrinkage rate due to firing is large. things are used. When the contraction is large in the early stage of firing, the piezoelectric ceramic molded body is not subjected to any load and freely contracts.

したがって、長さ方向の収縮が妨げられないので割れな
どが防止できる。そして、焼成後期にはスペーサの厚み
が圧電セラミックス成形体と同じかそれより小さくなる
ので、荷重を負荷した状態で焼成される。その結果、得
られる焼成体は反りや変形が抑制できる。
Therefore, since shrinkage in the length direction is not hindered, cracks and the like can be prevented. Then, in the latter stage of firing, the thickness of the spacer becomes equal to or smaller than that of the piezoelectric ceramic molded body, so the spacer is fired under a load. As a result, warpage and deformation of the obtained fired body can be suppressed.

[実施例] 以下、実施例により具体的に説明する。[Example] Hereinafter, this will be explained in detail using examples.

第1図にこの焼成構造の焼成前の側断面図を、第2図に
焼成初期の側断面図を、第3図に焼成後期の側断面図を
示す。
FIG. 1 shows a side sectional view of this firing structure before firing, FIG. 2 shows a side sectional view at an early stage of firing, and FIG. 3 shows a side sectional view at a later stage of firing.

焼成する圧電セラミックス成形体1と、対向する一対の
板で圧電セラミックス成形体1をその間隔内で保持する
保持板3と、保持板3の間隔内に配置され圧電セラミッ
クス成形体1の焼成時に保持板3の間隔の大きさを調整
する少なくとも一対のスペーサ2と、から構成されてい
る。スペーサ2の厚みは圧電セラミックス成形体1の厚
さより大きい。
A piezoelectric ceramic molded body 1 to be fired, a holding plate 3 that holds the piezoelectric ceramic molded body 1 within the interval between a pair of opposing plates, and a holding plate 3 arranged within the interval between the holding plates 3 to hold the piezoelectric ceramic molded body 1 during firing. It is comprised of at least a pair of spacers 2 for adjusting the size of the interval between the plates 3. The thickness of the spacer 2 is greater than the thickness of the piezoelectric ceramic molded body 1.

保持板3、圧電セラミックス成形体1、スペーサ2は以
下のようにして作製した。
The holding plate 3, the piezoelectric ceramic molded body 1, and the spacer 2 were manufactured as follows.

保持板3は、平均粒径が1.00μmのZrO2と、平
均粒径が30μmのPZT粉末を8=2の重量比に混合
し、これにポリビニルアルコール(PVA)0.2重量
%添加したものを金型プレスにより150X150X5
anの大きざに成形し、1250℃で5時間焼成して形
成した。
The holding plate 3 is made by mixing ZrO2 with an average particle size of 1.00 μm and PZT powder with an average particle size of 30 μm at a weight ratio of 8=2, and adding 0.2% by weight of polyvinyl alcohol (PVA) to this. 150X150X5 by mold press
It was formed by molding it into a size of 100 mm and baking it at 1250° C. for 5 hours.

圧電セラミックス成形体1は、Pb (Zro 。The piezoelectric ceramic molded body 1 is made of Pb (Zro).

s 2Tioo、4B >03の組成となるようにPb
o、ZrO2、TiO2の各粉体を秤量し、ボールミル
中で水と共に24時時間式混合をおこなった。これを乾
燥後、800℃で6時間仮焼しPZT化した。次いでボ
ールミルで平均粒径が1μmとなるまで粉砕した。これ
に結合剤のPVAを0.5重量%添加し、造粒し金型プ
レスにより1゜5ton/Cl7tの圧力で、直径が1
8All!、厚さ11IInの形状に成形した。
s 2Tioo, 4B Pb so that the composition is >03
Each powder of ZrO2, ZrO2, and TiO2 was weighed and mixed with water 24 hours a day in a ball mill. After drying, this was calcined at 800° C. for 6 hours to form PZT. Then, it was ground in a ball mill until the average particle size was 1 μm. Add 0.5% by weight of PVA as a binder to this, granulate it, and press it with a mold press at a pressure of 1°5 tons/7t of Cl to reduce the diameter to 1.
8All! , and a thickness of 11IIn.

スペーサ2は、上記の圧電セラミックスと仮焼までは同
じ工程である。次いでボールミルで平均粒径1.0μm
となるように粉砕し、PVA0゜5重量%添加し、造粒
後金型プレスにより0.5ton/CIAの圧力で直径
18all+1.厚さ1.2Bmに成形した。
The spacer 2 undergoes the same process as the piezoelectric ceramic described above up to calcination. Next, the average particle size was 1.0 μm using a ball mill.
PVA was added in an amount of 0.5% by weight, and after granulation, the diameter was 18all+1. It was molded to a thickness of 1.2 Bm.

上記のようにして形成した保持板3、スペーサ2、圧電
セラミックス成形体1を第1図に示すように保持して、
これをアルミナ製のサヤ中で1250’Cで2時間焼成
して圧電セラミックス焼成体を得た。
The holding plate 3, spacer 2, and piezoelectric ceramic molded body 1 formed as described above are held as shown in FIG.
This was fired in an alumina pod at 1250'C for 2 hours to obtain a piezoelectric ceramic fired body.

焼成前は、保持板3をスペーサ2が支持している。焼成
初期はまだスペーサ2の厚みの方が大きく、圧電セラミ
ックス成形体1は自由に収縮できる。焼成後期ではスペ
ーサ2の厚みが圧電セラミックス成形体1より小さくな
り保持板3の荷重が負荷されて焼成される。
Before firing, the spacer 2 supports the holding plate 3. At the initial stage of firing, the spacer 2 is still thicker, and the piezoelectric ceramic molded body 1 can freely contract. In the later stage of firing, the thickness of the spacer 2 becomes smaller than that of the piezoelectric ceramic compact 1, and the spacer 2 is fired under the load of the holding plate 3.

得られた圧電セラミックス焼成体は、直径15履で楕円
度(焼成体での最大外径と最小外径との差)が20μm
以下であった。また定板上に置いた焼成体には、その間
に厚みゲージが入るような反りは認められず平行度に優
れていた。
The obtained piezoelectric ceramic fired body had a diameter of 15 mm and an ellipticity (difference between the maximum and minimum outer diameters of the fired body) of 20 μm.
It was below. Moreover, the fired body placed on the fixed plate had no warpage that would cause the thickness gauge to be inserted between them, and had excellent parallelism.

(比較例) スペーサ3を用いないで保持板3を、圧電セラミックス
成形体1に直接載せて、実施例と同じ焼成条件で焼成し
た場合である。得られた圧電セラミックス焼成体は楕円
度が30〜200μmと大きく径方向の変形が大で、さ
らに焼成体には100個中2〜3個の割合で径方向にク
ラックが入っているのが認められた。
(Comparative Example) This is a case where the holding plate 3 was placed directly on the piezoelectric ceramic molded body 1 without using the spacer 3, and fired under the same firing conditions as in the example. The obtained fired piezoelectric ceramic bodies had a large ellipticity of 30 to 200 μm, and were highly deformed in the radial direction, and cracks were observed in the radial direction in 2 to 3 out of 100 fired bodies. It was done.

したがって、本発明の構造によれば、反りや変形のない
圧電セラミックス焼成体が得られた。
Therefore, according to the structure of the present invention, a fired piezoelectric ceramic body without warping or deformation was obtained.

[効果] 本発明の焼成構造によれば、焼成時のスペーサの収縮率
が圧電セラミックス成形体の収縮率より大きいので、焼
成初期は圧電セラミックス成形体は荷重を受けることな
く自由に収縮できる。そして焼成後期にはスペーサと圧
電セラミックス成形体の厚さが逆転し、圧電セラミック
ス成形体に荷重が負荷される。そのため成形体の収縮の
大きい初期段階での加熱速度を速くして反りや変形が生
じても、焼成後期で荷重が負荷されるので最終製品では
反りや変形は抑制できる。そのため従来のように初期の
加熱を時間を掛けてゆっくりおこなう必要がなく、焼成
時の加熱の制御が簡単となる。
[Effect] According to the firing structure of the present invention, the contraction rate of the spacer during firing is greater than the contraction rate of the piezoelectric ceramic molded body, so that the piezoelectric ceramic molded body can freely contract without being subjected to any load at the initial stage of firing. In the later stages of firing, the thicknesses of the spacer and the piezoelectric ceramic molded body are reversed, and a load is applied to the piezoelectric ceramic molded body. Therefore, even if warping or deformation occurs due to the heating rate being increased in the initial stage when the molded body shrinks greatly, the warping or deformation can be suppressed in the final product because the load is applied in the later stages of firing. Therefore, there is no need to perform the initial heating slowly over a long period of time as in the conventional method, and the heating during firing can be easily controlled.

得られる焼成体は反り、変形が少なく、製品化する場合
の加工代の低減が可能となる。また加工工程の省略も可
能となる。
The obtained fired body has less warpage and deformation, and it is possible to reduce processing costs when commercializing the product. It also becomes possible to omit processing steps.

また、スペーサは成形時の加圧圧力を下げて成形するこ
とで容易に圧電セラミックスより収縮率が大きくなり、
特別な工程を必要としない。
In addition, spacers can easily have a higher shrinkage rate than piezoelectric ceramics by lowering the pressure during molding.
No special process required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼成前の焼成構造の側断面図であり、第2図は
焼成初期の焼成構造の側断面図であり、第3図は焼成終
了時の焼成構造の側断面図である。 1・・・圧電セラミックス成形体 2・・・スペーサ 3・・・保持板 特許出願人  トヨタ自動車株式会社
FIG. 1 is a side sectional view of the fired structure before firing, FIG. 2 is a side sectional view of the fired structure at the initial stage of firing, and FIG. 3 is a side sectional view of the fired structure at the end of firing. 1... Piezoelectric ceramic molded body 2... Spacer 3... Holding plate Patent applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】  焼成される圧電セラミックス成形体と、対向する一対
の板で該圧電セラミックス成形体をその間隔内に保持す
る保持板と、該保持板の間隔内に配置され該圧電セラミ
ックス成形体の焼成時に該保持板の間隔の大きさを調整
する少なくとも一対のスペーサと、からなる圧電セラミ
ックスの焼成構造であって、 該スペーサは、焼成前においては該圧電セラミックス成
形体の厚みより大きく、焼成後においては該圧電セラミ
ックス成形体の厚み以下となり、該圧電セラミックス成
形体の収縮率より大きい収縮率をもつことを特徴とする
圧電セラミックスの焼成構造。
[Claims] A piezoelectric ceramic molded body to be fired, a pair of opposing plates that hold the piezoelectric ceramic molded body within the interval, and a piezoelectric ceramic molded body disposed within the interval between the retaining plates. A piezoelectric ceramic firing structure comprising at least a pair of spacers for adjusting the distance between the holding plates during firing of the body, the spacer being larger than the thickness of the piezoelectric ceramic molded body before firing, A fired piezoelectric ceramic structure characterized in that after firing, the thickness is less than or equal to the thickness of the piezoelectric ceramic molded body, and the shrinkage rate is greater than the shrinkage rate of the piezoelectric ceramic molded body.
JP2269284A 1990-10-05 1990-10-05 Burned structure of piezoelectric ceramics Pending JPH04144970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269284A JPH04144970A (en) 1990-10-05 1990-10-05 Burned structure of piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269284A JPH04144970A (en) 1990-10-05 1990-10-05 Burned structure of piezoelectric ceramics

Publications (1)

Publication Number Publication Date
JPH04144970A true JPH04144970A (en) 1992-05-19

Family

ID=17470215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269284A Pending JPH04144970A (en) 1990-10-05 1990-10-05 Burned structure of piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JPH04144970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240085A (en) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd Baking device of ceramic substrate and baking method of ceramic substrate
JP2012096980A (en) * 2010-11-02 2012-05-24 Samsung Electro-Mechanics Co Ltd Apparatus for firing ceramic substrate and method for firing ceramic substrate using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240085A (en) * 2006-03-09 2007-09-20 Nissan Motor Co Ltd Baking device of ceramic substrate and baking method of ceramic substrate
JP2012096980A (en) * 2010-11-02 2012-05-24 Samsung Electro-Mechanics Co Ltd Apparatus for firing ceramic substrate and method for firing ceramic substrate using the same

Similar Documents

Publication Publication Date Title
JPH04144970A (en) Burned structure of piezoelectric ceramics
JPH04144971A (en) Burned structure of piezoelectric ceramics
CN103090661B (en) Piezoelectric ceramic blank piece sintering device and craft method thereof
JPH06298574A (en) Joined ceramic article and joining method
JPS63129075A (en) Manufacture of aluminum nitride sintered body
JP4432341B2 (en) Ceramic plate firing method
CN109279891B (en) Bismuth ferrite based electrostrictive strain ceramic and preparation method and application thereof
JPH10324574A (en) Method for firing ceramic element
JPH0234572A (en) Method for sintering oxide-type ceramic superconducting material
Yoon et al. Multilayer bender-type PZT-PZN actuator by co-extrusion process
JP6616032B1 (en) A setter for heat treatment comprising a ceramic sintered body having an uneven surface.
JP3070799B2 (en) Polarization method for piezoelectric ceramics
JP3018683B2 (en) Method for producing lead-containing ceramics
JP2001089235A (en) Production of piezoelectric ceramics
JPH04262581A (en) Laminated type piezoelectric element
TW593204B (en) A method of producing lithium aluminosilicate ceramics
JPS62227703A (en) Method of molding ceramics
JP3061224B2 (en) Bismuth layered compound polarization method
Lee et al. Spiral-shaped piezoelectric actuator fabricated using thermoplastic co-extrusion process
JP4517913B2 (en) Setter and method of manufacturing piezoelectric ceramic substrate using the same
JP3359443B2 (en) Alumina sintered body and method for producing the same
JPH05124871A (en) Production of lead-containing ceramics
Kiggans Jr et al. Gelcast Forming of PZT Materials
JPH0358489A (en) Laminated type piezoelectric element
JPS621351B2 (en)