JPH04144922A - Production of cobalt ferrite film - Google Patents

Production of cobalt ferrite film

Info

Publication number
JPH04144922A
JPH04144922A JP26501390A JP26501390A JPH04144922A JP H04144922 A JPH04144922 A JP H04144922A JP 26501390 A JP26501390 A JP 26501390A JP 26501390 A JP26501390 A JP 26501390A JP H04144922 A JPH04144922 A JP H04144922A
Authority
JP
Japan
Prior art keywords
film
multilayer film
cobalt ferrite
layers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26501390A
Other languages
Japanese (ja)
Inventor
Takashi Ebisawa
孝 海老沢
Keiji Mashita
啓治 真下
Takaharu Yonemoto
米本 隆治
Junzo Takahashi
高橋 純三
Kenichi Sano
謙一 佐野
Tsugio Miyagawa
宮川 亜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIMES KK
Original Assignee
LIMES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIMES KK filed Critical LIMES KK
Priority to JP26501390A priority Critical patent/JPH04144922A/en
Publication of JPH04144922A publication Critical patent/JPH04144922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain a ferrite film having perpendicular magnetization direction and suitable for a high-density opto-magnetic recording medium by controlling the substrate temperature, vacuum degree and deposition thickness in the heat- treatment of a substrate having deposited Co and Fe in an oxygen-containing atmosphere. CONSTITUTION:A multilayer metal film is formed by depositing Co and Fe on a substrate heated at >=100 deg.C in ultimate vacuum of 1X10<-7> to 5X10<-7>Torr. The total thickness of Co and Fe layers is controlled to <=200Angstrom . The substrate having the above multilayer metal film is heat-treated in an oxygen-containing atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野及び課題] 本発明は、光磁気記録媒体等に用いられるコバルトフェ
ライト膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application and Problems] The present invention relates to a method for manufacturing a cobalt ferrite film used in magneto-optical recording media and the like.

[従来の技術] 従来、コバルトフェライト膜の製造は反応性の真空蒸着
法、イオンブレーティング法、イオンアシスト法、スパ
ッタ法、CVD法等による直接法や、前記成膜法やメツ
キ法でCol1!:Feの金属多層膜を作製した後、酸
素を含む雰囲気中で熱処理する方法、或いは前記金属多
層膜を電解液中で陽極酸化する間接法等により製造され
ている。
[Prior Art] Conventionally, cobalt ferrite films have been manufactured by direct methods such as reactive vacuum evaporation, ion blating, ion assist, sputtering, and CVD, and by the above-mentioned film forming methods and plating methods. : After producing a metal multilayer film of Fe, it is manufactured by a method of heat-treating in an atmosphere containing oxygen, or an indirect method of anodizing the metal multilayer film in an electrolytic solution.

[発明を解決しようとする課題] しかしながら、上述した方法で製造されたコバルトフェ
ライト膜はいずれも単結晶基板にエピタキシャル成長さ
せる等の特殊な方法を除けば、殆どが(311)面のX
線回折強度が強いランダムに配向膜となる。かかるラン
ダム配向のコバルトフェライト膜は面内磁化膜となり、
光磁気記録媒体に用いられる垂直磁化膜とするには<1
00>軸方向に配向させる必要がある。したがって、コ
バルトフェライト膜の配向性を任意に制御できる技術の
確立が望まれていた。
[Problems to be Solved by the Invention] However, most of the cobalt ferrite films produced by the above-mentioned method have the (311)
It becomes a randomly oriented film with strong linear diffraction intensity. This randomly oriented cobalt ferrite film becomes an in-plane magnetized film,
<1 for perpendicular magnetization film used in magneto-optical recording media
00>It is necessary to orient it in the axial direction. Therefore, it has been desired to establish a technique that can arbitrarily control the orientation of a cobalt ferrite film.

本発明は、上記従来の問題点を解決するためになされた
もので、<100>軸方向に配向制御され、磁気光学特
性の優れたコバルトフェライト膜の製造方法を提供しよ
うとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a method for manufacturing a cobalt ferrite film whose orientation is controlled in the <100> axis direction and has excellent magneto-optical properties.

[課題を解決するための手段] 本発明は、基板上にCoとFeを積層して金属多層膜を
形成した後、酸素を含む雰囲気中で熱処理してコバルト
フェライト膜を製造するに際し、前記金属多層膜の形成
時の到達真空度をLX 10−’〜5x 10−’to
rr、 CoとFeの2層の合計厚さを200Å以下に
制御することを特徴とするコバルトフェライト膜の製造
方法である。
[Means for Solving the Problems] The present invention provides a method for manufacturing a cobalt ferrite film by laminating Co and Fe on a substrate to form a metal multilayer film, and then heat-treating the film in an oxygen-containing atmosphere. The ultimate degree of vacuum when forming a multilayer film is LX 10-' to 5x 10-' to
This is a method for producing a cobalt ferrite film characterized by controlling the total thickness of two layers of Co and Fe to 200 Å or less.

前記基板としては、例えばガラス基板等を挙げることが
できる。
Examples of the substrate include a glass substrate.

前記基板に積層される金属多層膜とは、CoとFeの二
層膜を複数積層したものである。かかる金属多層膜は、
例えばスパッタ法、真空蒸着法、イオンブレーティング
法等により成膜される。
The metal multilayer film laminated on the substrate is a plurality of two-layer films of Co and Fe laminated. Such a metal multilayer film is
For example, the film is formed by a sputtering method, a vacuum evaporation method, an ion blating method, or the like.

前記金属多層膜の形成時の到達真空度を限定した理由は
、その真空度がLX 10−7〜5x 10−’tor
rの範囲を逸脱すると、金属多層膜の配向がFeの(1
10)面となり、製造されたコバルトフェライト膜が(
311)面の強いランダム配向になり、面内磁化膜とな
るからである。
The reason for limiting the degree of vacuum achieved during the formation of the metal multilayer film is that the degree of vacuum is LX 10-7 to 5x 10-'tor.
If r is outside the range, the orientation of the metal multilayer film will change to Fe (1
10) The produced cobalt ferrite film becomes (
This is because the 311) plane has a strong random orientation, resulting in an in-plane magnetized film.

前記金属多層膜におけるCoとFeの2層の合計厚さを
限定した理由は、その厚さが200人をを越えると金属
多層膜の配向がFeの(110)面や(211)面など
への配向が強くなり、製造されたコバルトフェライト膜
が面内磁化膜となるからである。
The reason for limiting the total thickness of the two layers of Co and Fe in the metal multilayer film is that if the thickness exceeds 200 layers, the orientation of the metal multilayer film will change to the (110) or (211) plane of Fe. This is because the orientation of the cobalt ferrite film becomes strong and the produced cobalt ferrite film becomes an in-plane magnetized film.

前記金属多層膜の熱処理工程は、500℃以上の温度で
行うことが望ましい。
The heat treatment process for the metal multilayer film is preferably performed at a temperature of 500° C. or higher.

本発明に係わるコバルトフェライトの製造方法では、前
記金属多層膜の形成時において到達真空度及びCoとF
eの2層の合計厚さの他に、基板温度を100℃以上に
設定される。かかる基板温度を限定した理由は、その温
度を100℃未満にすると熱処理後において(400)
面が強い<100>軸方向に配向した垂直磁化膜として
機能するコバルトフェライト膜を容易かつ再現性よく製
造する目的を達成し難くなるからである。
In the method for producing cobalt ferrite according to the present invention, the ultimate vacuum degree and Co and F during the formation of the metal multilayer film are
In addition to the total thickness of the two layers e, the substrate temperature is set to 100° C. or higher. The reason for limiting the substrate temperature is that if the temperature is less than 100°C, after heat treatment (400)
This is because it becomes difficult to achieve the purpose of easily and reproducibly manufacturing a cobalt ferrite film that functions as a perpendicular magnetization film with strong plane orientation in the <100> axis direction.

[作用コ 本発明者らは、CoとFeを積層した金属多層膜を酸素
を含む雰囲気中で熱処理してコバルトフェライト膜を製
造する研究の中で、CoやFeの金属膜又はそれらの金
属多層膜の構造が酸化膜に継承されることを見出だした
。このような現象から、金属膜の結晶配向性を制御する
ことによって、酸化膜であるコバルトフェライト膜の結
晶配向性を制御できることを究明した。
[Function] The present inventors conducted research on producing a cobalt ferrite film by heat-treating a metal multilayer film made of laminated layers of Co and Fe in an oxygen-containing atmosphere. We discovered that the structure of the film is inherited by the oxide film. Based on this phenomenon, we have found that by controlling the crystal orientation of the metal film, we can control the crystal orientation of the cobalt ferrite film, which is an oxide film.

本発明は、上述した究明結果から基板上にC。Based on the above-mentioned research results, the present invention provides C on a substrate.

とFeを積層して金属多層膜を形成する際、到達真空度
をLX 10−’〜5X 10−”tr+rr、Coと
Feの2層の合計厚さを200Å以下にそれぞれ制御し
、しかる後酸素を含む雰囲気中で熱処理することによっ
て、(400)面が強い<100>軸方向に配向した垂
直磁化膜として機能するコバルトフェライト膜を製造す
ることができる。これは、次のような作用によるものと
考えられる。
When laminating Co and Fe to form a metal multilayer film, the ultimate vacuum level is controlled to LX 10-' to 5X 10-''tr+rr, and the total thickness of the two layers of Co and Fe is controlled to 200 Å or less, and then oxygen By heat treatment in an atmosphere containing it is conceivable that.

即ち、到達真空度をLX 10−’〜5x 10−”t
orrにすることによって、真空中の残留ガスの影響に
より膜の配向性が変化する。これは、成膜中に残留ガス
原子が吸着し、ガスの吸着した格子面の面密度が上がり
、表面エネルギーが低下するため、この格子面が安定し
て優先成長がなされことによるものと考えられる。また
、CoとFeの2層の合計厚さを200Å以下にすると
、結晶配向性が変化する。これは、Feを初めに成膜し
た場合、Feは基板温度が残留ガスの影響により通常b
eeの(100)面配向となり、この上にCoを薄く成
膜すると下地のFeと相互影響し合うためと考えられる
。また、前記2層の厚さがより薄い場合にはCoとFe
の相互拡散の影響もあると考えられる。
That is, the ultimate vacuum level is LX 10-'~5x 10-''t
orr, the orientation of the film changes due to the influence of residual gas in vacuum. This is thought to be due to the fact that residual gas atoms are adsorbed during film formation, increasing the surface density of the lattice planes on which the gas is adsorbed and lowering the surface energy, which stabilizes these lattice planes and allows preferential growth to take place. . Furthermore, when the total thickness of the two layers of Co and Fe is 200 Å or less, the crystal orientation changes. This is because when Fe is deposited first, the substrate temperature is usually b due to the influence of residual gas.
It is thought that this is because the (100) plane of ee is oriented, and when a thin Co film is formed thereon, it interacts with the underlying Fe. In addition, when the thickness of the two layers is thinner, Co and Fe
This is also thought to be due to the mutual diffusion of

更に、前記金属多層膜を形成する際、到達真空度及びC
oとFeの2層の合計厚さを制御すると共に、基板温度
を100℃以上に制御することによって、(400)面
が強い<100>軸方向に配向した垂直磁化膜として機
能するコバルトフェライト膜を容易かつ再現性よく製造
することができる。こうした作用は、CoとFeの成膜
時の基板温度を100℃以上にすると、金属原子の付着
や再蒸発、基板表面での移動が大きくなり凝集が起こり
易く、膜の島状構造の一つ一つが球状に近くなる。この
ため、膜の配向性が変化することによるものと考えられ
る。
Furthermore, when forming the metal multilayer film, the ultimate vacuum degree and C
By controlling the total thickness of the two layers of O and Fe and controlling the substrate temperature to 100°C or higher, we can create a cobalt ferrite film that functions as a perpendicular magnetization film with a strong (400) plane oriented in the <100> axis direction. can be manufactured easily and with good reproducibility. This effect is caused by the fact that when the substrate temperature during film formation of Co and Fe is 100°C or higher, the adhesion, re-evaporation, and movement of metal atoms on the substrate surface become large and agglomeration tends to occur, which is one of the island-like structures of the film. One becomes almost spherical. This is considered to be due to a change in the orientation of the film.

〔実施例〕〔Example〕

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

実施例1 まず、成膜前の真空チャンバの到達真空度を7.6X 
1O−8torr%CoとFeの膜厚比がl:2(Co
  ; 1B、5人、F e  ; 33.5人)のC
o / F eの2層膜の積層数を40層、基板温度を
室温、100”C1200℃、300℃の4条件で以下
のスパッタ条件にてガラス基板(コーニング社製商品名
;コーニング7059)上に多層膜を作製した。
Example 1 First, the ultimate vacuum degree of the vacuum chamber before film formation was set to 7.6X.
1O-8torr%Co and Fe film thickness ratio is l:2(Co
; 1B, 5 people, F e ; 33.5 people) C
The number of laminated o / F e two-layer films was 40, the substrate temperature was room temperature, 100''C, 1200℃, and 300℃ under the following sputtering conditions on a glass substrate (trade name: Corning 7059, manufactured by Corning Corporation). A multilayer film was fabricated.

[スパッタ条件〕 スパッタガス;A「 スパッタガス圧;  2m torr スパッタ電流;  0.2A 全膜厚; 2000人 次いで、前記各多層膜を電気炉を用い、大気中500℃
で2時間熱処理を行った。
[Sputtering conditions] Sputtering gas; A Sputtering gas pressure; 2 m torr; Sputtering current; 0.2 A; Total film thickness;
Heat treatment was performed for 2 hours.

このような工程によりガラス基板上に製造された各酸化
膜(基板温度、室温、100℃、200”C1300℃
)の面内方向と垂直方向の磁気ヒステリシス曲線を、そ
れぞれ第1図〜第4図に示す。
Each oxide film manufactured on a glass substrate by such a process (substrate temperature, room temperature, 100℃, 200"C, 1300℃
) are shown in FIGS. 1 to 4, respectively, in the in-plane direction and the perpendicular direction.

第1図〜第4図より明らかなように多層膜の成膜時の基
板温度が高くなるに従っτ、垂直方向の磁気ヒステリシ
ス曲線の残留磁化、保磁力が共に大きくなり、基板温度
が100℃以上で垂直方向の磁気特性が強くなることが
わかる。
As is clear from Figures 1 to 4, as the substrate temperature increases during multilayer film formation, τ, the residual magnetization of the vertical magnetic hysteresis curve, and the coercive force all increase, and the substrate temperature increases to 100°C. It can be seen from the above that the magnetic properties in the vertical direction become stronger.

一方、基板温度を室温にして多層膜を成膜した場合の多
層膜のX線回折パターンを第5図(A)に、該多層膜を
大気中で熱処理して得た酸化膜のX線回折パターンを同
図(B)にそれぞれ示す。
On the other hand, FIG. 5(A) shows the X-ray diffraction pattern of the multilayer film when the multilayer film was formed with the substrate temperature at room temperature, and the X-ray diffraction pattern of the oxide film obtained by heat-treating the multilayer film in the air. The patterns are shown in the same figure (B).

また、基板温度を300℃にして多層膜を成膜した場合
の多層膜のX線回折パターンを第6図(A)に、該多層
膜を大気中で熱処理して得た酸化膜のX線回折パターン
を同図(B)にそれぞれ示す。
Figure 6 (A) shows the X-ray diffraction pattern of the multilayer film when the multilayer film was formed at a substrate temperature of 300°C. The diffraction patterns are shown in the same figure (B).

第5図(A)より明らかなように基板温度を室温にして
成膜した多層膜は、強いFeの(110)面のピークが
見られ、同図(B)に示すようにその酸化膜はコバルト
フェライトの(311)面に強いランダム配向膜となっ
ていることがわかる。
As is clear from FIG. 5(A), the multilayer film formed with the substrate temperature at room temperature shows a strong Fe (110) plane peak, and as shown in FIG. 5(B), the oxide film is It can be seen that the film has a strong random orientation on the (311) plane of cobalt ferrite.

これに対し、第6図(A)に示すように基板温度を30
0℃にして成膜した多層膜は、互いに同程度の強度を持
ッF eO) (110)面と(200)面のピークが
見られ、同図(B)に示すようにその酸化膜はコバルト
フェライトの(400)面がやや強い<100>軸方向
に配向した膜となっていることがわかる。
On the other hand, as shown in FIG. 6(A), the substrate temperature was
The multilayer films formed at 0°C have the same strength as each other (F eO), and peaks for the (110) and (200) planes can be seen, and as shown in Figure (B), the oxide film is It can be seen that the (400) plane of cobalt ferrite is oriented in the slightly strong <100> axis direction.

以上の結果から、基板温度を100℃以上で成膜した多
層膜を酸素雰囲気中で熱処理することによって、(40
0)面がやや強い<100>軸方向に配向した垂直磁化
膜として適したコバルトフェライト膜を製造できること
がわかる。
From the above results, by heat-treating a multilayer film formed at a substrate temperature of 100°C or higher in an oxygen atmosphere, (40°C
0) It is found that a cobalt ferrite film suitable as a perpendicular magnetization film oriented in the <100> axis direction with a slightly strong surface can be manufactured.

実施例2 成膜前の到達真空度を7.OX 10−’torr、 
 1.7x10−’torr、 4.OX 10−’t
orr及び 1.8X 10−’torrとし、基板温
度を室温とした以外、実施例1と同様な方法により多層
膜の形成、酸化膜の製造を行った。
Example 2 The ultimate vacuum degree before film formation was 7. OX 10-'torr,
1.7x10-'torr, 4. OX 10-'t
A multilayer film was formed and an oxide film was produced in the same manner as in Example 1, except that the temperature was set to 1.8×10-'torr and the substrate temperature was set to room temperature.

前記到達真空度を7.OX 10−”torrにして成
膜した多層膜のX線回折パターンを第7図(A)に、該
多層膜を大気中で熱処理して得た酸化膜の面内方向と垂
直方向の磁気ヒステリシス曲線を同図(B)にそれぞれ
示す。前記到達真空度を1,7Xto−7torrにし
て成膜した多層膜のX線回折パターンを第8図(A)に
、該多層膜を大気中で熱処理して得た酸化膜の面内方向
と垂直方向の磁気ヒステリシス曲線を同図(B)にそれ
ぞれ示す。前記到達真空度を4.OX 10””tor
rにして成膜した多層膜のX線回折パターンを第9図(
A)に、該多層膜を大気中で熱処理して得た酸化膜の面
内方向と垂直方向の磁気ヒステリシス曲線を同図(B)
l:それぞれ示す。さらに、前記到達真空度を1.6×
1O−6torrにして成膜した多層膜のX線回折パタ
ーンを第1O図(A)に、該多層膜を大気中で熱処理し
て得た酸化膜の面内方向と垂直方向の磁気ヒステリシス
曲線を同図(B)にそれぞれ示す。
The ultimate vacuum level is 7. Figure 7 (A) shows the X-ray diffraction pattern of the multilayer film formed at OX 10-”torr, and the in-plane and perpendicular magnetic hysteresis of the oxide film obtained by heat-treating the multilayer film in the atmosphere. The curves are shown in Figure 8 (B). Figure 8 (A) shows the X-ray diffraction pattern of the multilayer film formed at the ultimate vacuum of 1.7X to -7 torr. The magnetic hysteresis curves in the in-plane direction and perpendicular direction of the oxide film obtained in this manner are shown in the same figure (B), respectively.
Figure 9 shows the X-ray diffraction pattern of the multilayer film formed at r.
A) shows the magnetic hysteresis curves in the in-plane direction and perpendicular direction of the oxide film obtained by heat-treating the multilayer film in the atmosphere (B).
l: Shown respectively. Furthermore, the ultimate vacuum degree is 1.6×
Figure 1(A) shows the X-ray diffraction pattern of the multilayer film formed at 1O-6 torr, and the magnetic hysteresis curve in the in-plane direction and perpendicular direction of the oxide film obtained by heat-treating the multilayer film in the atmosphere. Each is shown in FIG.

第7図(A)、(B)、第10図(A)、(B)に示す
ように7.OX 10−”torr、 1.6X 1O
−6torrの到達真空度で作製した多層膜はFeの(
110)面に配向しており、それらの酸化膜の磁気ヒス
テリシス曲線は面内方向が強いことがわかる。これに対
し、第8図(A)、(B)、第9図(A)、(B)に示
すように 1.7X 10””torr、  4.OX
 10−’torrの到達真空度で作製した多層膜はF
eの(200)面に配向しており、それらの酸化膜の磁
気ヒステリシス曲線は垂直方向が強いことがわかる。
7. As shown in FIGS. 7(A) and (B) and FIG. 10(A) and (B). OX 10-”torr, 1.6X 1O
The multilayer film fabricated at an ultimate vacuum of -6 torr was made of Fe (
110) plane, and it can be seen that the magnetic hysteresis curves of these oxide films are strong in the in-plane direction. On the other hand, as shown in FIGS. 8(A) and (B) and FIGS. 9(A) and (B), 1.7X 10''torr, 4. OX
The multilayer film fabricated at an ultimate vacuum of 10-'torr is F.
It can be seen that the magnetic hysteresis curves of these oxide films are strongly oriented in the vertical direction.

以上の結果から、多層膜を成膜する際、CoとFeの2
層膜の合計厚さを200Å以下にした条件下にて到達真
空度をLX 10−’ 〜5X 10−’torrにす
ることによって、垂直方向の磁気ヒステリシス特性が高
く、垂直磁化膜として適したコIくルトフエライト膜を
製造できることがわかる。
From the above results, when forming a multilayer film, two of Co and Fe
By setting the ultimate vacuum to LX 10-' to 5X 10-' torr under the condition that the total thickness of the layer film is 200 Å or less, a film with high magnetic hysteresis characteristics in the perpendicular direction and suitable as a perpendicular magnetization film can be obtained. It can be seen that it is possible to produce an I-curth ferrite film.

実施例3 成膜前の到達真空度を5.OX 1O−7torr、基
板温度を室温とした以外、実施例1と同様な方法により
ガラス基板上に全膜厚を2000人に一定とし、Co 
/ F eの2層膜の合計厚さ及び積層数が2000Å
×1層、■000人×2層、500人×4層、250人
×8層、 200人XtO層、 100人X20層、5
0λX40層の7つの形態の多層膜の形成、酸化膜の製
造を行った。
Example 3 The ultimate vacuum level before film formation was 5. Co
/ Fe two-layer film total thickness and number of laminated layers is 2000 Å
×1 layer, 000 people × 2 layers, 500 people × 4 layers, 250 people × 8 layers, 200 people XtO layer, 100 people × 20 layers, 5
Seven types of multilayer films of 0λ×40 layers were formed and oxide films were manufactured.

前記2層膜の合計厚さ及び積層数が2000人×1層、
1000人×2層、500人×4層、250人×8層、
200人X10層、 100人X20層、50人×40
層の条件で成膜した各多層膜のX線回折パターンを第1
1図(A)〜第17図(A)にそれぞれ示し、これら多
層膜を大気中で熱処理して得た各酸化膜のX線回折パタ
ーンを第11図(B)〜第17図(B)にそれぞれ示す
The total thickness and number of laminated layers of the two-layer film is 2000 people x 1 layer,
1000 people x 2 layers, 500 people x 4 layers, 250 people x 8 layers,
200 people x 10 layers, 100 people x 20 layers, 50 people x 40
The X-ray diffraction pattern of each multilayer film formed under the conditions of the first layer is
1(A) to 17(A) respectively, and the X-ray diffraction patterns of each oxide film obtained by heat-treating these multilayer films in the atmosphere are shown in FIGS. 11(B) to 17(B). are shown respectively.

第11図(A)、(B)〜第14図(A)、(B)から
明らかなようにCoとFeの2層膜の合計厚さが200
人を越えて成膜した多層膜は、Feの(110)面に配
向しており、それらの酸化膜もコバルトフェライトの(
311)面に強いランダム配向膜となっていることがわ
かる。これに対し、第15図(A)、(B)〜第17図
(A)、(B)に示すようにCoとFeの2層膜の合計
厚さを200λ以下にして成膜した多層膜は、Feの(
200)面に配向しており、それらの酸化膜でも多層膜
に対応してコバルトフェライトの(400)面に強く配
向した膜となっていることがわかる。
As is clear from FIGS. 11 (A) and (B) to FIG. 14 (A) and (B), the total thickness of the two-layer film of Co and Fe is 200 mm.
The multi-layered film that has been deposited beyond humans is oriented on the (110) plane of Fe, and these oxide films are also (
It can be seen that this is a randomly oriented film that is strong against the 311) plane. On the other hand, as shown in FIGS. 15 (A), (B) to 17 (A), (B), a multilayer film is formed with a total thickness of two layers of Co and Fe of 200λ or less. is Fe(
It can be seen that these oxide films are strongly oriented in the (400) plane of cobalt ferrite, corresponding to the multilayer film.

以上の結果から、所定の到達真空度下にてCOとFeの
2層膜の合計厚さを200Å以下にして多層膜を成膜す
ることによって、(400)面に強く配向した垂直磁化
膜として適したコノくルトフエライト膜を製造できるこ
とがわかる。
From the above results, by forming a multilayer film with a total thickness of two layers of CO and Fe of 200 Å or less under a predetermined ultimate vacuum, it is possible to create a perpendicularly magnetized film strongly oriented in the (400) plane. It can be seen that a suitable konorutferrite film can be produced.

[発明の効果] 以上詳述した如く、本発明によれば基板上にCoとFe
を積層して金属多層膜を形成する際、到達真空度を及び
COとFeの2層の合計厚さをそれぞれ所定の値に制御
し、しかる後酸素を含む雰囲気中で熱処理することによ
って、結晶配向性が<100>軸方向に制御され、垂直
方向に磁化を持つ高密度光磁気記録媒体に好適なコノく
ルトフエライト膜の製造方法を提供できる。また、金属
多層膜を形成する際、到達真空度を及びCOとFeの2
層の合計厚さ、更に基板温度をそれぞれ所定の値に制御
し、しかる後酸素を含む雰囲気中で熱処理することによ
って、結晶配向性が<100>軸方向に制御され、垂直
方向に磁化を持つ高密度光磁気記録媒体に好適なコバル
トフェライト膜を容易かつ再現性よく製造することがで
きる。
[Effects of the Invention] As detailed above, according to the present invention, Co and Fe are deposited on the substrate.
When forming a metal multilayer film by laminating the two layers, the ultimate vacuum degree and the total thickness of the two layers of CO and Fe are controlled to predetermined values, and then the crystals are heated in an atmosphere containing oxygen. It is possible to provide a method for producing a konochrut ferrite film whose orientation is controlled in the <100> axis direction and which is suitable for a high-density magneto-optical recording medium having magnetization in the perpendicular direction. In addition, when forming a metal multilayer film, the ultimate vacuum degree and CO and Fe 2
By controlling the total thickness of the layers and the substrate temperature to predetermined values, and then performing heat treatment in an oxygen-containing atmosphere, the crystal orientation is controlled in the <100> axis direction and magnetization is in the perpendicular direction. A cobalt ferrite film suitable for high-density magneto-optical recording media can be manufactured easily and with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本実施例1により形成された各酸化膜
の面内方向と垂直方向の磁気ヒステリシス曲線を示す線
図、第5図及び第6図はそれぞれ異なる基板温度で成膜
した多層膜とそれら酸化膜の特性を示す線図、第7図〜
第10図はそれぞれ異なる到達真空度で成膜した本実施
例2における多層膜とそれら酸化膜の特性を示す線図、
第11図〜第17図はそれぞれ本実施例3で成膜したC
OとFeの2層膜の合計厚さが異なる多層膜とそれらの
酸化膜の特性を示す線図である。 出願人代理人 弁理士 鈴江武彦 第 図 −DIEMLI 第 N 重 図 第 図 2θ(deg) (A) 藩 (A) (A) 2θ(degン +0711 2U(deg) (A) 華 16図 (B) 17図
Figures 1 to 4 are diagrams showing the in-plane and perpendicular magnetic hysteresis curves of each oxide film formed in Example 1, and Figures 5 and 6 are diagrams showing the magnetic hysteresis curves formed at different substrate temperatures. Diagrams showing the characteristics of multilayer films and their oxide films, Figure 7~
FIG. 10 is a diagram showing the characteristics of the multilayer films and their oxide films in Example 2, which were formed at different ultimate vacuum degrees;
Figures 11 to 17 show the C film formed in Example 3.
FIG. 2 is a diagram showing the characteristics of multilayer films having different total thicknesses of O and Fe two-layer films and their oxide films. Applicant's Representative Patent Attorney Takehiko Suzue Diagram - DIEMLI No. N Double Diagram Diagram 2θ (deg) (A) Domain (A) (A) 2θ (deg+0711 2U (deg)) (A) Flower 16 Diagram (B) Figure 17

Claims (2)

【特許請求の範囲】[Claims] (1)基板上にCoとFeを積層して金属多層膜を形成
した後、酸素を含む雰囲気中で熱処理してコバルトフェ
ライト膜を製造するに際し、前記金属多層膜の形成時の
基板温度を100℃以上、到達真空度を1×10^−^
7〜5×10^−^7torr、CoとFeの2層の合
計厚さを200Å以下に制御することを特徴とするコバ
ルトフェライト膜の製造方法。
(1) After laminating Co and Fe on a substrate to form a metal multilayer film, when manufacturing a cobalt ferrite film by heat-treating in an atmosphere containing oxygen, the substrate temperature at the time of forming the metal multilayer film is set to 100 ℃ or higher, the ultimate vacuum level is 1 x 10^-^
A method for producing a cobalt ferrite film, characterized by controlling the total thickness of two layers of Co and Fe to 200 Å or less.
(2)請求項1記載において、前記金属多層膜の形成時
の基板温度を100℃以上にすることを特徴とするコバ
ルトフェライト膜の製造方法。
(2) A method for manufacturing a cobalt ferrite film according to claim 1, characterized in that the substrate temperature during formation of the metal multilayer film is 100° C. or higher.
JP26501390A 1990-10-04 1990-10-04 Production of cobalt ferrite film Pending JPH04144922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26501390A JPH04144922A (en) 1990-10-04 1990-10-04 Production of cobalt ferrite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26501390A JPH04144922A (en) 1990-10-04 1990-10-04 Production of cobalt ferrite film

Publications (1)

Publication Number Publication Date
JPH04144922A true JPH04144922A (en) 1992-05-19

Family

ID=17411369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26501390A Pending JPH04144922A (en) 1990-10-04 1990-10-04 Production of cobalt ferrite film

Country Status (1)

Country Link
JP (1) JPH04144922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109208A (en) * 1998-01-29 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Plasma generating apparatus with multiple microwave introducing means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109208A (en) * 1998-01-29 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Plasma generating apparatus with multiple microwave introducing means

Similar Documents

Publication Publication Date Title
US20120171519A1 (en) MULTILAYER STRUCTURE WITH HIGH ORDERED FePt LAYER
US9899050B2 (en) Multiple layer FePt structure
US5589261A (en) Perpendicular magnetic film, process for producing the same and magnetic recording medium having the same
KR19980702586A (en) Magnetic recording medium and manufacturing method thereof
JPH09106514A (en) Ferromagnetic tunnel element and its production
US20080037407A1 (en) Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus
CN108831741B (en) Method for increasing interface magnetic anisotropy energy of ferromagnetic metal/oxide double-layer film
US5496631A (en) Perpendicular magnetic film, multilayered film for perpendicular magnetic film and process for producing perpendicular magnetic film
JP2000331338A (en) Cobalt base alloy made longitudinal direction recording medium having high coercivity and its manufacture
JPH04144922A (en) Production of cobalt ferrite film
JPS60182012A (en) Thin film magnetic recording medium
JPH01119005A (en) Magnetic film and manufacture thereof
JP2658185B2 (en) Perpendicular magnetic recording film
KR100352157B1 (en) Manufacturing method of soft magnetic multilayer thin films for high-frequency
JP3559333B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
JPH0410509A (en) Manufacture of cobalt-ferrite film
JP2001102215A (en) Exchange coupling film and method for production thereof, magnetoresistive effect element
JPS61110328A (en) Vertical magnetic recording medium and its production
KR100390391B1 (en) Alloy Compositions for Base Layer of High Density Longitudinal Magnetic Recording Media
JPH07307022A (en) Magnetic recording medium and its production
JPH04155618A (en) Perpendicular magnetic recording medium
JPH0279210A (en) Magnetic recording thin film and its production
JPH04285153A (en) Multi-layer magnetic film and its formation
JPH04127508A (en) Mn-al ferromagnetic thin film and manufacture thereof
JPH03256305A (en) Perpendicular magnetic recording film and manufacture thereof