JP2001102215A - Exchange coupling film and method for production thereof, magnetoresistive effect element - Google Patents

Exchange coupling film and method for production thereof, magnetoresistive effect element

Info

Publication number
JP2001102215A
JP2001102215A JP27298199A JP27298199A JP2001102215A JP 2001102215 A JP2001102215 A JP 2001102215A JP 27298199 A JP27298199 A JP 27298199A JP 27298199 A JP27298199 A JP 27298199A JP 2001102215 A JP2001102215 A JP 2001102215A
Authority
JP
Japan
Prior art keywords
film
exchange coupling
antiferromagnetic
substrate
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27298199A
Other languages
Japanese (ja)
Inventor
Kazuto Kamei
一人 亀井
Tatsuo Sawazaki
立雄 沢崎
Hideyasu Nagai
秀康 永井
Masanori Ueno
昌紀 上野
Fuminori Higami
文範 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Rite Corp
Original Assignee
Read Rite Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Rite Corp filed Critical Read Rite Corp
Priority to JP27298199A priority Critical patent/JP2001102215A/en
Publication of JP2001102215A publication Critical patent/JP2001102215A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance magnetic conversion characteristics by reducing the Barkhausen noise in a magnetoresistive effect element more effectively through higher exchange coupling strength and structural stability. SOLUTION: An exchange coupling film comprises an antiferromagnetic film 3 of IrMn alloy having composition shown by IrxMn1-x (0.2<x<0.30), and a ferromagnetic film 4 formed sequentially on a substrate 1 through an underlying layer 2 of Ta. The antiferromagnetic film is ordered without requiring heat treatment and has a conventionally unknown Mn rich hexagonal structure of 3H shown by Ir2Mn7 thus realizing a significantly higher exchange coupling field. Exchange coupling field is increased furthermore when the hexagonal structure has a-axis and c-axis falling in such ranges as 2.40 Å<a<2.95 Åand 5.90 Å<c<7.20 Å. The structure is stabilized and a high exchange coupling field is attained when antiferromagnetic film contains twin having thickness of 5.90 Å-300 Å in the direction perpendicular to the twin face at high density and the tin face makes an angle of 10-40 deg. to the film surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強磁性体膜と反強
磁性体膜との交換結合を利用した交換結合膜及びその製
造方法に関し、更にこの交換結合膜を備え、磁界検出用
センサや再生用磁気ヘッドなどに使用される磁気抵抗効
果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exchange coupling film utilizing exchange coupling between a ferromagnetic film and an antiferromagnetic film and a method for manufacturing the same. The present invention relates to a magnetoresistance effect element used for a reproducing magnetic head or the like.

【0002】[0002]

【従来の技術】現在、高密度磁気記録における再生用磁
気ヘッドとして、異方性磁気抵抗効果(AMR)を用い
た磁気抵抗効果素子が実用化されている。磁気抵抗効果
素子材料としては、従来より80at%Ni−20at%F
e合金(パーマロイ)が一般に使用されている。パーマ
ロイからなる磁気抵抗効果膜は、その磁区構造に起因し
たバルクハウゼンノイズが問題となっており、これを抑
制するために、反強磁性体膜との交換結合を利用して磁
気抵抗効果膜を単磁区化する方法が知られている。
2. Description of the Related Art At present, a magnetoresistive element using the anisotropic magnetoresistance effect (AMR) has been put to practical use as a reproducing magnetic head for high-density magnetic recording. As the material of the magnetoresistance effect element, 80 at% Ni-20 at% F
An e-alloy (Permalloy) is commonly used. Barkhausen noise caused by the magnetic domain structure is a problem in the magnetoresistive film made of permalloy, and in order to suppress this, the magnetoresistive film is formed using exchange coupling with an antiferromagnetic film. A method for forming a single magnetic domain is known.

【0003】また、最近では、より大きな再生出力が得
られる巨大磁気抵抗効果(GMR)膜を利用した磁気抵
抗効果素子として、スピンバルブ素子が実用化されてい
る。スピンバルブ素子では、強磁性体膜と反強磁性体膜
との交換結合を利用して、強磁性体膜の磁化を外部磁界
に応答しないように一方向に固定即ちピン止めする。ス
ピンバルブ素子に利用される反強磁性体には、良好な耐
食性、強い交換結合力、良好な熱安定性などが求められ
る。この反強磁性体材料として、例えば米国特許第41
03315号及び第5014147号両明細書に記載さ
れるように、γ−FeMn合金が広く知られている。
Recently, a spin valve element has been put into practical use as a magnetoresistive element using a giant magnetoresistive (GMR) film capable of obtaining a larger reproduction output. In the spin valve element, the magnetization of the ferromagnetic film is fixed or pinned in one direction so as not to respond to an external magnetic field by utilizing exchange coupling between the ferromagnetic film and the antiferromagnetic film. Antiferromagnetic materials used in spin valve elements are required to have good corrosion resistance, strong exchange coupling force, good thermal stability, and the like. As this antiferromagnetic material, for example, US Pat.
Γ-FeMn alloys are widely known, as described in both 03315 and 5014147.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たγ−FeMn合金は、特に耐食性が悪いという問題が
あり、そのために製造工程が複雑化したり工数が増加
し、製造上歩留まりの低下や信頼性の低下を招くという
問題があった。更に、γ−FeMn合金は、交換結合力
がゼロになるブロッキング温度が低いため、熱的安定性
が悪いという欠点がある。
However, the above-mentioned γ-FeMn alloy has a problem that the corrosion resistance is particularly poor, which complicates the manufacturing process and increases the number of steps, lowers the manufacturing yield and reduces the reliability. There has been a problem of causing a decrease. Furthermore, since the γ-FeMn alloy has a low blocking temperature at which the exchange coupling force becomes zero, there is a disadvantage that thermal stability is poor.

【0005】耐食性の良好な他の反強磁性体材料とし
て、酸化物系のNiOなどが上記米国特許第41033
15号明細書に提案されているが、γ−FeMn合金に
比して交換結合力が弱いという問題がある。更に別の反
強磁性体材料として、強い交換結合力が得られるMnP
t規則合金やMnNi規則合金が提案されている。しか
し、強い交換結合力を得るためには高温で熱処理するこ
とが必要であり、そのために製造プロセスが複雑にな
り、歩留まり・信頼性の低下を生じる虞がある。
As another antiferromagnetic material having good corrosion resistance, oxide-based NiO or the like is disclosed in the above-mentioned US Pat. No. 4,103,133.
Although proposed in the specification of No. 15, there is a problem that the exchange coupling force is weaker than that of the γ-FeMn alloy. As another antiferromagnetic material, MnP capable of obtaining a strong exchange coupling force
A t-ordered alloy and a MnNi ordered alloy have been proposed. However, in order to obtain a strong exchange coupling force, it is necessary to perform a heat treatment at a high temperature, which complicates the manufacturing process and may cause a decrease in yield and reliability.

【0006】かかる問題点を解消するために、本願発明
者は、FeMn合金以外の反強磁性材料について様々に
研究した結果、特願平10−46343号明細書に記載
されるように、製造プロセス上問題となる熱処理を施す
ことなく強い交換結合力が得られ、ブロッキング温度が
高くかつ耐食性に優れ、比較的簡単な製造工程で信頼性
の高い交換結合膜を得るのに好適な数種のMn合金を見
出した。しかしながら、交換結合膜を利用した磁気抵抗
効果素子における磁気特性及び信頼性の向上をより一層
図るためには、より大きな交換結合磁界が得られる優れ
た反強磁性材料が要求される。
In order to solve such a problem, the present inventor has conducted various studies on antiferromagnetic materials other than FeMn alloys. As a result, as described in Japanese Patent Application No. 10-46343, the manufacturing process has been described. Strong exchange coupling force can be obtained without performing the heat treatment which is a problem above, and several kinds of Mn suitable for obtaining a highly reliable exchange coupling film in a relatively simple manufacturing process with a high blocking temperature and excellent corrosion resistance are obtained. Alloy found. However, in order to further improve the magnetic characteristics and reliability of a magnetoresistive element using an exchange coupling film, an excellent antiferromagnetic material capable of obtaining a larger exchange coupling magnetic field is required.

【0007】そこで、本発明の目的は、同様に耐食性及
び熱的安定性が良好で、更により大きな交換結合磁界を
実現し得る交換結合膜を提供することにある。また、本
発明の目的は、このように強い交換結合力を有する交換
結合膜を備えることにより、バルクハウゼンノイズをよ
り有効に低減でき、高い磁気変換性能及び信頼性を発揮
し得る磁気抵抗効果素子を提供することにある。
Accordingly, an object of the present invention is to provide an exchange-coupling film which also has good corrosion resistance and thermal stability and can realize a larger exchange-coupling magnetic field. Further, an object of the present invention is to provide an exchange coupling film having such a strong exchange coupling force, whereby a Barkhausen noise can be more effectively reduced, and a magnetoresistive element capable of exhibiting high magnetic conversion performance and reliability. Is to provide.

【0008】[0008]

【課題を解決するための手段】本願発明者は、既に上記
特願平10−46343号明細書において、交換結合膜
の構造について、Mn合金薄膜からなる反強磁性体膜の
上に強磁性体膜を積層することにより、熱処理すること
なく反強磁性体膜の結晶構造を規則化できることを開示
している。更に、特にIrMn合金の反強磁性材料とし
ての特性について研究を重ね、良好な交換結合特性を示
す合金組成や微視的構造、成膜条件、積層構造との関係
について、各種磁気特性評価、X線回折、高分解能電子
顕微鏡観察などにより詳細かつ系統的に詳細に検討した
結果、従来報告されていない或る特異な構造のIrMn
合金薄膜が優れた交換結合特性を示すことを見出し、本
発明を完成させるに至ったものである。
The inventor of the present invention has already disclosed in the above-mentioned Japanese Patent Application No. 10-46343 that the structure of the exchange-coupling film has a ferromagnetic material on an antiferromagnetic film made of a Mn alloy thin film. It discloses that by stacking the films, the crystal structure of the antiferromagnetic film can be regularized without heat treatment. Furthermore, studies on the properties of the IrMn alloy as an antiferromagnetic material have been repeated, and various magnetic properties have been evaluated for the relationship between the alloy composition, the microscopic structure, the film forming conditions, and the laminated structure exhibiting good exchange coupling characteristics. As a result of detailed and systematic detailed investigations by X-ray diffraction, high-resolution electron microscopy, etc., IrMn with a specific structure that has not been reported before
The inventors have found that the alloy thin film exhibits excellent exchange coupling characteristics, and have completed the present invention.

【0009】即ち、本発明の交換結合膜は、上述した目
的を達成するためのものであり、基板上に形成した反強
磁性体膜とその上に積層した強磁性体膜とからなり、前
記反強磁性体膜が、規則化された結晶構造を有し、かつ
IrxMn1-x(xは0.2<x<0.30)で表される
膜組成のIrMn合金からなることを特徴とする。
That is, the exchange-coupling film of the present invention achieves the above-mentioned object, and comprises an antiferromagnetic film formed on a substrate and a ferromagnetic film laminated thereon. The antiferromagnetic film has an ordered crystal structure and is made of an IrMn alloy having a film composition represented by Ir x Mn 1-x (x is 0.2 <x <0.30). Features.

【0010】一般に、結晶構造が不規則なIrMn合
金、例えばIr20Mn80合金をアニールにより規則化す
る従来の方法で得られる結晶構造は、従来報告されてい
るように不規則なfccから規則化されたfccへの変
態によるもので、図1Aの状態図に示すようなIrMn
3で表されるL12構造である。
In general, the crystal structure obtained by a conventional method of annealing an IrMn alloy having an irregular crystal structure, for example, an Ir20Mn80 alloy, is changed from an irregular fcc to an ordered fcc as previously reported. IrMn as shown in the phase diagram of FIG. 1A.
This is the L1 2 structure represented by 3 .

【0011】これに対し、本発明の交換結合膜では、反
強磁性体膜のIrMn合金をMnリッチにすることによ
って、図1Bに示すように、Ir2Mn7で表される3H
の六方晶構造が得られる。この結晶構造は、本願発明者
が知る限り、まだ報告されていない全く新しい規則化構
造で、その膜組成IrxMn1-xが0.2<x<0.30
の範囲にある限り、原子空孔を含んでおり、これを反強
磁性体膜に用いることにより、従来より大きな交換結合
磁界を得ることができる。また、この新規な規則化構造
は、各サイトのIr、Mn占有率が変化しても安定であ
ることが確認された。
On the other hand, in the exchange-coupling film of the present invention, by making the IrMn alloy of the antiferromagnetic material film Mn-rich, 3H represented by Ir 2 Mn 7 as shown in FIG.
Is obtained. This crystal structure is, as far as the inventor of the present application knows, a completely new ordered structure that has not been reported yet, and its film composition Ir x Mn 1-x is 0.2 <x <0.30.
As long as it is within the range, atomic vacancies are included, and by using the vacancies in the antiferromagnetic film, a larger exchange coupling magnetic field can be obtained as compared with the related art. In addition, it was confirmed that this novel ordered structure was stable even when the occupancy of Ir and Mn at each site was changed.

【0012】図1Bの規則化構造を電子線回折した結
果、図2に示す回折図形が得られ、これから前記六方晶
構造のa-軸及びc-軸は、次式からそれぞれ2.40Å
<a<2.95Å、5.90Å<c<7.20Åの範囲
にあると好ましいことが分かった。(ここで、afcc
fcc構造のa-軸の値である。) a=1/√2・afcc c=√3・afcc
As a result of electron beam diffraction of the ordered structure shown in FIG. 1B, a diffraction pattern shown in FIG. 2 is obtained. From this, the a-axis and c-axis of the hexagonal structure are calculated as 2.40 ° from the following formulas.
It was found that it was preferable to be in the range of <a <2.95 °, 5.90 ° <c <7.20 °. (Here, a fcc is the value of the a-axis of the fcc structure.) A = 1 / √2 · a fcc c = √3 · a fcc

【0013】従って、本発明によれば、前記反強磁性体
膜のIrMn合金の結晶構造が六方晶構造であり、かつ
そのa-軸及びc-軸がそれぞれ2.40Å<a<2.9
5Å、5.90Å<c<7.20Åであることを特徴と
する交換結合膜が提供される。
Therefore, according to the present invention, the crystal structure of the IrMn alloy of the antiferromagnetic film is a hexagonal structure, and its a-axis and c-axis are 2.40 ° <a <2.9, respectively.
An exchange coupling membrane is provided, wherein 5 °, 5.90 ° <c <7.20 °.

【0014】更に本発明によれば、前記反強磁性体膜が
双晶構造を有し、かつその双晶面垂直方向の双晶厚みが
5.90〜300Åの範囲にあると、更に構造が安定化
し、かつ大きい交換結合磁界が得られるので、好都合で
ある。
Further, according to the present invention, when the antiferromagnetic film has a twin structure and the twin thickness in the direction perpendicular to the twin plane is in the range of 5.90 to 300 °, the structure is further improved. Advantageously, it is stabilized and a large exchange coupling field is obtained.

【0015】この場合に、前記反強磁性体膜の双晶面と
膜表面とのなす角度が、10〜40°の範囲にあると、
交換結合磁界がより一層増大するので、より好都合であ
る。
In this case, if the angle between the twin plane of the antiferromagnetic film and the film surface is in the range of 10 to 40 °,
It is more convenient because the exchange coupling field is further increased.

【0016】本発明の別の側面によれば、引っ張り応力
を負荷した基板の表面上に反強磁性体膜、及びその上に
強磁性体膜を順に積層することを特徴とする交換結合膜
の製造方法が提供され、それにより上述した本発明の交
換結合膜を容易に実現することができる。
According to another aspect of the present invention, there is provided an exchange-coupling film characterized in that an antiferromagnetic film and a ferromagnetic film are sequentially laminated on a surface of a substrate to which a tensile stress is applied. A manufacturing method is provided, whereby the exchange coupling membrane of the present invention described above can be easily realized.

【0017】更に本発明によれば、上述した新規な規則
化結晶構造のIrMn合金薄膜からなる反強磁性体膜を
有する交換結合膜を備えた磁気抵抗効果素子が提供さ
れ、該交換結合膜が従来より強い交換結合磁界を発揮す
ることにより、磁気抵抗効果素子はバルクハウゼンノイ
ズが低減し、熱的・磁気的安定性が増して磁気変換特性
の向上が図れる。
Further, according to the present invention, there is provided a magnetoresistive element having an exchange coupling film having an antiferromagnetic film made of an IrMn alloy thin film having the above-mentioned novel ordered crystal structure. By exhibiting a stronger exchange coupling magnetic field than in the past, the magnetoresistance effect element reduces Barkhausen noise, increases thermal and magnetic stability, and improves magnetic conversion characteristics.

【0018】[0018]

【発明の実施の形態】図3は、本発明による交換結合膜
の実施例の構造を示しており、基板1の上に設けた下地
層2の上に形成した反強磁性体膜3と、その上に積層し
た強磁性体膜4とを備える。強磁性体膜4の上には、例
えばTaの保護層5が設けられる。基板1には、例えば
ガラスなどの非結晶質材料、SiやMgOなどの結晶質
材料など、公知の様々な基板材料が用いられる。下地層
2は、その上に形成する反強磁性体膜の結晶性を向上さ
せるためのもので、例えばTa、Ti、Cr、Zr合金
などの従来から使用されている様々な材料を用いること
ができる。
FIG. 3 shows the structure of an embodiment of an exchange-coupling film according to the present invention, in which an antiferromagnetic film 3 formed on a base layer 2 provided on a substrate 1, and And a ferromagnetic film 4 laminated thereon. On the ferromagnetic film 4, a protective layer 5 of, for example, Ta is provided. For the substrate 1, various known substrate materials such as an amorphous material such as glass and a crystalline material such as Si and MgO are used. The underlayer 2 is for improving the crystallinity of the antiferromagnetic material film formed thereon, and may be formed of various conventionally used materials such as Ta, Ti, Cr, and Zr alloy. it can.

【0019】反強磁性体膜3は、その組成がIrxMn
1-x、0.2<x<0.30で表されるIrMn合金から
形成される。このようにMn含有量を僅かに多くしたI
rMn合金を反強磁性体材料として用い、かつ反強磁性
体膜の上に強磁性体膜を積層することにより、反強磁性
体膜3の結晶構造は、熱処理を施さなくても規則化する
だけでなく、上述した図1Bに示す新規な六方晶構造を
している。この規則化結晶構造は、図1Aに示すように
従来報告されている不規則fccから規則化fccへの
変態によるIrMn3で表されるL12構造と全く異な
り、従来報告されていないIr2Mn7で表される3Hの
六方晶構造である。このような反強磁性体材料の規則相
の存在は、公知のX線回折法又は電子線回折法で容易に
確認できる。
The antiferromagnetic film 3 has a composition of Ir x Mn.
1-x , formed from an IrMn alloy represented by 0.2 <x <0.30. As described above, I with slightly increased Mn content
By using the rMn alloy as the antiferromagnetic material and laminating the ferromagnetic film on the antiferromagnetic film, the crystal structure of the antiferromagnetic film 3 is ordered without heat treatment. In addition, it has a novel hexagonal structure shown in FIG. 1B described above. The ordered crystal structure completely different from the disordered fcc to previously reported as shown in FIG. 1A and L1 2 structure represented by IrMn 3 by transformation to the ordered fcc, not previously reported Ir 2 Mn This is a 3H hexagonal structure represented by 7 . The existence of such an ordered phase of the antiferromagnetic material can be easily confirmed by a known X-ray diffraction method or electron beam diffraction method.

【0020】図2は、反強磁性体膜3を電子線回折した
結果を示しており、これにより図1Bの六方晶構造を確
認することができる。これらの図面から分かるように、
前記六方晶構造のa-軸及びc-軸の値a、cは、それぞ
れ次式で表される。 a=1/√2・afcc c=√3・afcc ここでafccは、不規則なIrMn合金のfcc構造の
a-軸の値であるから、a、cはそれぞれ2.40Å<
a<2.95Å、5.90Å<c<7.20Åの範囲に
すればよい。
FIG. 2 shows the result of electron diffraction of the antiferromagnetic film 3, whereby the hexagonal structure shown in FIG. 1B can be confirmed. As can be seen from these drawings,
The values a and c of the a-axis and the c-axis of the hexagonal structure are represented by the following equations, respectively. a = 1 / {2 · a fcc c = {3 · a fcc where a fcc is the value of the a-axis of the fcc structure of the irregular IrMn alloy.
a <2.95 °, 5.90 ° <c <7.20 °.

【0021】前記六方晶構造は、膜組成IrxMn1-x
0.2<x<0.30の範囲にある限り、原子空孔を含
むことが確認され、反強磁性体膜3は強磁性体膜4との
間で従来より強い交換結合磁界を得ることができる。更
に前記六方晶構造は、各サイトのIr、Mnの占有率が
変化しても安定であることが判明した。
It has been confirmed that the hexagonal structure contains atomic vacancies as long as the film composition Ir x Mn 1-x is in the range of 0.2 <x <0.30. A stronger exchange coupling magnetic field can be obtained with the ferromagnetic film 4 than before. Further, it has been found that the hexagonal structure is stable even when the occupancy of Ir and Mn at each site changes.

【0022】反強磁性体膜3及び強磁性体膜4は、例え
ば蒸着法、スパッタ法、MBE(モレキュラビームエピ
タクシ)法などの公知の様々な成膜方法を用いて形成す
ることができる。前記反強磁性体膜及び強磁性体膜の成
膜は、交換結合膜に磁気異方性を付与するために、磁界
中で行うことができる。また、別の実施例では、下地層
2を設けずに、反強磁性体膜3を基板1上に直接形成す
ることも可能で、その場合にも反強磁性体膜に同様の六
方晶構造が得られる。
The antiferromagnetic film 3 and the ferromagnetic film 4 can be formed by various known film forming methods such as a vapor deposition method, a sputtering method, and an MBE (Molecular Beam Epitaxy) method. . The formation of the antiferromagnetic film and the ferromagnetic film can be performed in a magnetic field in order to impart magnetic anisotropy to the exchange coupling film. In another embodiment, the antiferromagnetic material film 3 can be formed directly on the substrate 1 without providing the underlayer 2, and in this case, the antiferromagnetic material film has a similar hexagonal structure. Is obtained.

【0023】また、本発明のIrMn合金膜膜からなる
反強磁性体膜3は、図4に示すように、3H構造のIr
Mn規則相の底面((0001)面)6を鏡面とする双
晶を高密度に含むように形成することができる。ことに
より、強磁性体膜4との間でより強い交換結合磁界が得
られる。この双晶は、その双晶面垂直方向の厚みtを
5.90Å<t<300Åとするのが好ましく、それに
より交換結合力の増大に加えて、構造がより一層安定す
る。
Further, as shown in FIG. 4, the antiferromagnetic film 3 made of the IrMn alloy film of the present invention has a 3H Ir
It can be formed so as to contain a high density of twins having the bottom surface ((0001) plane) 6 of the Mn ordered phase as a mirror surface. As a result, a stronger exchange coupling magnetic field can be obtained with the ferromagnetic film 4. The twin preferably has a thickness t in the direction perpendicular to the twin plane of 5.90 ° <t <300 °, whereby the structure becomes more stable in addition to the increase in exchange coupling force.

【0024】更に、この双晶構造において、双晶面6と
反強磁性体膜の表面7とがなす角度θを10°<θ<4
0°に設定することにより、より一層大きな交換結合磁
界を実現することができる。
Further, in this twin structure, the angle θ between the twin plane 6 and the surface 7 of the antiferromagnetic film is set to 10 ° <θ <4.
By setting the angle to 0 °, a much larger exchange coupling magnetic field can be realized.

【0025】本発明の交換結合膜は、以下に説明するよ
うに、基板表面に引張り応力を負荷した状態で前記各膜
層を成膜することにより、比較的容易に形成することが
できる。図5Aは、基板表面に或る一定の引張り応力を
負荷するのに好適な治具の実施例を示している。この治
具8は、矩形基板9に対応する平面矩形のベースプレー
ト10の左右両側辺に同じ一定高さの側壁部11が垂設
され、かつその上端がそれぞれ内側直角に折曲されて基
板押え12を形成している。ベースプレート10の中央
には下側からねじ13が螺設され、かつその前記ベース
プレートから突出する先端には、真直ぐな棒状の基板支
持部14が、該ねじを回すことによって上下に変位し、
しかもその際に常に前記ベースプレートに関して水平に
かつ両側壁11に対して平行をなすように取り付けられ
ている。
The exchange-coupling film of the present invention can be formed relatively easily by forming each of the above-mentioned film layers in a state where a tensile stress is applied to the substrate surface, as described below. FIG. 5A shows an embodiment of a jig suitable for applying a certain tensile stress to the substrate surface. In this jig 8, side walls 11 of the same constant height are vertically provided on both left and right sides of a flat rectangular base plate 10 corresponding to a rectangular substrate 9, and the upper ends thereof are bent inward at right angles, respectively. Is formed. A screw 13 is screwed from the lower side in the center of the base plate 10, and a straight rod-shaped substrate supporting portion 14 is displaced up and down by turning the screw at a tip protruding from the base plate,
In addition, at this time, it is attached so as to be always horizontal with respect to the base plate and parallel to both side walls 11.

【0026】基板9は治具8に、図5Bに示すように、
その左右両側縁を基板押え12の下側に入れて、基板支
持部14との間で挟むように装着される。この状態から
ねじ13を少しずつねじ込むことにより基板支持部14
を上昇させ、図5Bに示すように基板9を上向き凸に湾
曲させる。これにより、基板9の上面には一定の引張り
応力が発生する。このように治具8に装着したまま、基
板9上面に従来の方法を用いて、例えばスパッタリング
で下地層、反強磁性体膜、強磁性体膜及び保護層を成膜
することにより、図1Bに示す規則化結晶構造の反強磁
性体膜を有する交換結合膜を形成することができる。
尚、このように交換結合膜を形成しようとする基板の表
面に引張り応力を負荷する治具として、基板の形状・寸
法や成膜条件に応じて、図5以外の様々な構造のものを
使用し得ることは云うまでもない。
The substrate 9 is attached to the jig 8 as shown in FIG.
The left and right side edges are placed under the substrate presser 12 and mounted so as to be sandwiched between the substrate supporter 14. From this state, the screw 13 is screwed little by little so that the substrate support portion 14
Is raised, and the substrate 9 is curved upwardly convex as shown in FIG. 5B. Thereby, a certain tensile stress is generated on the upper surface of the substrate 9. By thus forming a base layer, an antiferromagnetic material film, a ferromagnetic material film, and a protective layer on the upper surface of the substrate 9 by, for example, sputtering using the conventional method while being mounted on the jig 8 as shown in FIG. An exchange coupling film having an antiferromagnetic film having an ordered crystal structure shown in FIG.
As a jig for applying a tensile stress to the surface of the substrate on which the exchange coupling film is to be formed, various structures other than those shown in FIG. 5 may be used according to the shape and dimensions of the substrate and the film forming conditions. It goes without saying that it can be done.

【0027】また、上述した本実施例の交換結合膜に公
知技術を用いて電極を設けることにより、磁気抵抗効果
素子を製造することができる。この磁気抵抗効果素子は
特に強い交換結合力を発揮するので、バルクハウゼンノ
イズの除去、スピンバルブ素子における磁化の固定又は
ピン止めに有効である。
Further, by providing an electrode on the exchange coupling film of this embodiment using a known technique, a magnetoresistive element can be manufactured. Since this magnetoresistive effect element exhibits a particularly strong exchange coupling force, it is effective for removing Barkhausen noise and fixing or pinning magnetization in a spin valve element.

【0028】[0028]

【実施例】Si基板の表面上に、図5に示す治具を用い
て約1%の引張り応力を発生させた状態で、DCマグネ
トロンスパッタ装置を用いて膜厚4nmのTaからなる下
地層、膜厚20nmのIr20Mn80(at%)からなる反強
磁性体膜、及び膜厚10nmのCo10Fe90(at%)から
なる強磁性体膜をこの順に40Oe中の静磁界中で成膜
することにより、図3に示す交換結合膜を形成した。こ
の交換結合膜について外部磁界に関する磁化曲線を測定
したところ、その交換結合磁界は約300Oeであっ
た。更に、この交換結合膜の断面TEM写真を撮影した
ところ、図6に示すように微細双晶を伴った規則相の形
成が認められた。
EXAMPLE An about 1% tensile stress was generated on the surface of a Si substrate using a jig shown in FIG. 5, and a 4 nm-thick Ta underlayer was formed using a DC magnetron sputtering apparatus. An antiferromagnetic film made of Ir20Mn80 (at%) having a thickness of 20 nm and a ferromagnetic film made of Co10Fe90 (at%) having a thickness of 10 nm are formed in this order in a static magnetic field of 40 Oe. The exchange coupling film shown in No. 3 was formed. When a magnetization curve of the exchange coupling film with respect to an external magnetic field was measured, the exchange coupling magnetic field was about 300 Oe. Further, when a cross-sectional TEM photograph of this exchange-coupled film was taken, formation of an ordered phase with fine twins was recognized as shown in FIG.

【0029】比較例として、従来と同様にその表面に応
力負荷が無い状態のSi基板上に、同じくDCマグネト
ロンスパッタ装置を用いて膜厚4nmのTa下地層、膜厚
10nmのCo10Fe90(at%)強磁性体膜、膜厚20nm
のIr20Mn80(at%)反強磁性体膜を40Oe中の静
磁界中で順に成膜し、図3と同じ構造の交換結合膜を形
成した。この交換結合膜について磁化曲線を求めたとこ
ろから、交換結合磁界は約120Oeであった。これら
を比較することにより、本発明の交換結合膜は、より大
きな交換結合磁界を実現し得ることが分かった。
As a comparative example, a 4 nm-thick Ta underlayer and a 10 nm-thick Co10Fe90 (at%) were similarly formed on a Si substrate having no stress load on its surface by using a DC magnetron sputtering apparatus. Ferromagnetic film, thickness 20 nm
Ir20 Mn80 (at%) antiferromagnetic films were sequentially formed in a static magnetic field of 40 Oe to form an exchange coupling film having the same structure as that of FIG. When a magnetization curve was obtained for this exchange coupling film, the exchange coupling magnetic field was about 120 Oe. By comparing these, it was found that the exchange coupling film of the present invention can realize a larger exchange coupling magnetic field.

【0030】[0030]

【発明の効果】本発明は、以上のように構成されている
ので、以下に記載されるような効果を奏する。本発明の
交換結合膜によれば、優れた耐食性及び高いブロッキン
グ温度を有しかつ熱処理を要することなく反強磁性体膜
の結晶構造を規則化できることに加えて、従来に無い新
規で特異な六方晶構造をとることにより、従来より更に
大きい交換結合力及び構造の安定性を実現することがで
きるので、これを磁気抵抗効果素子に適用することによ
り、バルクハウゼンノイズをより有効に低減でき、最近
の磁気記録の高性能化に対応した磁気変換特性の向上を
より一層図ることができる。
Since the present invention is configured as described above, it has the following effects. According to the exchange-coupling film of the present invention, in addition to having excellent corrosion resistance and a high blocking temperature and being capable of ordering the crystal structure of the antiferromagnetic film without requiring heat treatment, a novel and unique hexagonal structure that has never existed before By taking a crystal structure, it is possible to realize a larger exchange coupling force and a more stable structure than before, and by applying this to a magnetoresistive element, it is possible to more effectively reduce Barkhausen noise. Thus, the magnetic conversion characteristics corresponding to the higher performance of the magnetic recording can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A図は、従来の規則化したIrMn合金薄膜の
結晶構造を示す模式図、B図は、本発明による交換結合
膜のIrMn反強磁性体膜の規則化結晶構造を示す模式
図である。
FIG. 1A is a schematic diagram showing a crystal structure of a conventional ordered IrMn alloy thin film, and FIG. 1B is a schematic diagram showing an ordered crystal structure of an IrMn antiferromagnetic film of an exchange coupling film according to the present invention. It is.

【図2】図1のIrMn反強磁性体膜の規則化結晶構造
の電子線回折図である。
2 is an electron beam diffraction diagram of an ordered crystal structure of the IrMn antiferromagnetic film of FIG.

【図3】本発明による交換結合膜の断面図である。FIG. 3 is a cross-sectional view of an exchange coupling film according to the present invention.

【図4】図3の断面においてIrMn反強磁性体膜に形
成される双晶の構造を示す図である。
FIG. 4 is a diagram showing a twin structure formed in the IrMn antiferromagnetic film in the cross section of FIG. 3;

【図5】A図は、本発明の方法により交換結合膜を形成
する際に使用する治具の構成を例示する斜視図、B図
は、この治具を用いて基板表面に引っ張り応力を負荷し
た状態を示す正面図である。
FIG. 5A is a perspective view illustrating the configuration of a jig used when forming an exchange coupling film by the method of the present invention, and FIG. 5B is a diagram that applies a tensile stress to a substrate surface using the jig. It is a front view showing the state where it did.

【図6】実施例1の交換結合膜の断面TEM写真であ
る。
FIG. 6 is a cross-sectional TEM photograph of the exchange coupling film of Example 1.

【符号の説明】[Explanation of symbols]

1 基板 2 下地層 3 反強磁性体膜 4 強磁性体膜 5 保護層 6 双晶面 7 反強磁性体膜表面 8 治具 9 基板 10 ベースプレート 11 側壁部 12 基板押え 13 ねじ 14 基板支持部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Underlayer 3 Antiferromagnetic film 4 Ferromagnetic film 5 Protective layer 6 Twin plane 7 Antiferromagnetic film surface 8 Jig 9 Substrate 10 Base plate 11 Side wall 12 Substrate press 13 Screw 14 Substrate support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢崎 立雄 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 永井 秀康 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 (72)発明者 上野 昌紀 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 (72)発明者 樋上 文範 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 Fターム(参考) 5D034 BA05 CA04 CA08 DA07 5E049 AA01 AA09 AC00 AC05 BA12 BA16 DB02 DB04 DB12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Tatsuo Sawazaki, Inventor Sumitomo Metal Industries, Ltd. 4-33, Kitahama, Chuo-ku, Osaka City, Osaka (72) Inventor Hideyasu Nagai 2-15 Egawa, Shimamoto-cho, Mishima-gun, Osaka −17 Inside Readlight SMI Co., Ltd. (72) Inventor Masaki Ueno 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture (72) Inventor Fuminori Higami, Shimamoto-cho, Mishima-gun, Osaka 2-15-17 Egawa F-term in Readlight SMI Co., Ltd. (reference) 5D034 BA05 CA04 CA08 DA07 5E049 AA01 AA09 AC00 AC05 BA12 BA16 DB02 DB04 DB12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成した反強磁性体膜とその上
に積層した強磁性体膜とからなり、 前記反強磁性体膜が、規則化された結晶構造を有し、か
つIrxMn1-x(xは0.2<x<0.30)で表され
る膜組成のIrMn合金からなることを特徴とする交換
結合膜。
1. An antiferromagnetic film formed on a substrate and a ferromagnetic film laminated thereon, wherein the antiferromagnetic film has an ordered crystal structure, and Ir x An exchange coupling film comprising an IrMn alloy having a film composition represented by Mn 1-x (x is 0.2 <x <0.30).
【請求項2】 前記結晶構造が六方晶構造であり、かつ
そのa-軸及びc-軸がそれぞれ2.40Å<a<2.9
5Å、5.90Å<c<7.20Åであることを特徴と
する請求項1に記載の交換結合膜。
2. The crystal structure is a hexagonal structure, and its a-axis and c-axis are 2.40 ° <a <2.9, respectively.
The exchange coupling membrane according to claim 1, wherein 5 °, 5.90 ° <c <7.20 °.
【請求項3】 前記反強磁性体膜が双晶構造を有し、か
つその双晶面垂直方向の双晶厚みが5.90〜300Å
であることを特徴とする請求項1又は2に記載の交換結
合膜。
3. The antiferromagnetic film has a twin structure, and has a twin thickness in the direction perpendicular to the twin plane of 5.90 to 300 °.
The exchange coupling membrane according to claim 1 or 2, wherein
【請求項4】 前記反強磁性体膜の双晶面と膜表面との
なす角度が、10〜40°であることを特徴とする請求
項3に記載の交換結合膜。
4. The exchange coupling film according to claim 3, wherein an angle between a twin plane of the antiferromagnetic film and the film surface is 10 to 40 °.
【請求項5】 請求項1乃至4のいずれかに記載の交換
結合膜を備えることを特徴とする磁気抵抗効果素子。
5. A magnetoresistive element comprising the exchange coupling film according to claim 1. Description:
【請求項6】 引っ張り応力を負荷した基板の表面上に
反強磁性体膜、及びその上に強磁性体膜を積層すること
を特徴とする交換結合膜の製造方法。
6. A method for manufacturing an exchange-coupling film, comprising: laminating an antiferromagnetic film on a surface of a substrate to which a tensile stress is applied, and a ferromagnetic film thereon.
JP27298199A 1999-09-27 1999-09-27 Exchange coupling film and method for production thereof, magnetoresistive effect element Pending JP2001102215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27298199A JP2001102215A (en) 1999-09-27 1999-09-27 Exchange coupling film and method for production thereof, magnetoresistive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27298199A JP2001102215A (en) 1999-09-27 1999-09-27 Exchange coupling film and method for production thereof, magnetoresistive effect element

Publications (1)

Publication Number Publication Date
JP2001102215A true JP2001102215A (en) 2001-04-13

Family

ID=17521493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27298199A Pending JP2001102215A (en) 1999-09-27 1999-09-27 Exchange coupling film and method for production thereof, magnetoresistive effect element

Country Status (1)

Country Link
JP (1) JP2001102215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819532B2 (en) 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer
JP2009164268A (en) * 2007-12-28 2009-07-23 Fujitsu Ltd Exchange-coupled element and magnetoresistance effect element
CN109716548A (en) * 2016-08-10 2019-05-03 阿尔卑斯阿尔派株式会社 Exchanging coupling film and the magneto-resistance effect element and magnetic detection device for using the exchanging coupling film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819532B2 (en) 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer
JP2009164268A (en) * 2007-12-28 2009-07-23 Fujitsu Ltd Exchange-coupled element and magnetoresistance effect element
CN109716548A (en) * 2016-08-10 2019-05-03 阿尔卑斯阿尔派株式会社 Exchanging coupling film and the magneto-resistance effect element and magnetic detection device for using the exchanging coupling film
CN109716548B (en) * 2016-08-10 2022-12-06 阿尔卑斯阿尔派株式会社 Exchange coupling film, and magnetoresistance effect element and magnetic detection device using same

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
EP0717422B1 (en) Exchange coupling film and magnetoresistive element
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US7196879B2 (en) Exchange coupling film and magnetoresistive element using the same
US6146775A (en) Magnetoresistive film
US6833981B2 (en) Spin valve magnetic head with three underlayers
US6074707A (en) Method of producing magnetoresistive element
JP5429480B2 (en) Magnetoresistive element, MRAM, and magnetic sensor
WO1999032896A1 (en) Nickel-manganese pinned spin valve/gmr magnetic sensors
US5858455A (en) Method for forming a lateral giant magnetoresistance multilayer for a magnetoresistive sensor
JPH09106514A (en) Ferromagnetic tunnel element and its production
JP2001102215A (en) Exchange coupling film and method for production thereof, magnetoresistive effect element
US6015632A (en) Self-assembled giant magnetoresistance lateral multilayer for a magnetoresistive sensor
JP2000058941A (en) Manufacture of spin valve film
Mao et al. Ion beam sputtered spin-valve films with improved giant magnetoresistance response
JPH0982524A (en) Exchange coupling film and magnetoresistance effect element
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JP2000216020A (en) Magneto-resistive effect film and manufacture thereof
JPH11233344A (en) Exchange-coupling film and magnetoresistance effect element
JP3116855B2 (en) Exchange coupling film and magnetoresistive element using the same
JPH07263773A (en) Magnetoresistance effect element and its manufacture
JPH11251141A (en) Laminating film and element comprising high exchange-combination magnetic field
JP3891507B2 (en) Laminated film and magnetic element
JPH1174123A (en) Magneto-resistance effect film
JP2000031562A (en) Switched connection film and its manufacture, magneto- resistance effect element using the film, and thin-film magnetic head using the element