JPH04144919A - Superconducting ceramics - Google Patents

Superconducting ceramics

Info

Publication number
JPH04144919A
JPH04144919A JP2268759A JP26875990A JPH04144919A JP H04144919 A JPH04144919 A JP H04144919A JP 2268759 A JP2268759 A JP 2268759A JP 26875990 A JP26875990 A JP 26875990A JP H04144919 A JPH04144919 A JP H04144919A
Authority
JP
Japan
Prior art keywords
superconducting
elements
less
combination
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268759A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2268759A priority Critical patent/JPH04144919A/en
Publication of JPH04144919A publication Critical patent/JPH04144919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a superconducting ceramic having further improved critical temperature and stable superconducting characteristics by decreasing the content of impurity alkali metal and/or halogen element existing in a V-based superconducting ceramic having a specific composition below a specific level. CONSTITUTION:The subject superconducting ceramic is expressed by the general formula (A1-xBx)yVzOw (x is 0-10; V is 1.0-3.0; z is 1.0-3.0; w is 2.0-10.0) and contains <=0.2wt.% of alkali metal such as Li, Na and K, <=0.2wt.% of halogen element and <=0.2wt.% of alkali metal and halogen atom in total. In the above formula, A is one or more elements selected from Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ag, Cd, In, Sn, Hg, Tl, Pb and Bi and B is one or more elements selected from Be, Mg, Ca, Sr and Ba.

Description

【発明の詳細な説明】 (a)発明の利用分野 本発明は酸化物セラミックス系超伝導材料に関する。[Detailed description of the invention] (a) Field of application of the invention The present invention relates to oxide ceramic superconducting materials.

(b)従来の技術 従来の超伝導材料としては水銀、鉛等の元素、NbN、
Nbs Ge、Nb2Ga等の合金またはNbs  (
A16.l Geo、t )等の三元素化合物よりなる
金属材料が用いられてきた。しかしこれらの超伝導性を
示す臨界温度Tcは25Kまでであった。
(b) Conventional technology Conventional superconducting materials include elements such as mercury and lead, NbN,
Alloys such as Nbs Ge, Nb2Ga or Nbs (
A16. Metal materials consisting of ternary compounds such as l Geo,t ) have been used. However, the critical temperature Tc at which these materials exhibited superconductivity was up to 25K.

他方、近年、セラミックス系の超伝導材料が注目されて
いる。この材料は最初IBMのチューリッヒ研究所より
Ba−La−Cu−0()くラクオ)系酸化物高温超伝
導体として報告された。その後La−M−Cu−0系(
MはSr、 Ba、 Ca等)、Ba−Ln−Cu−0
系(LnはY等)。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first reported by IBM's Zurich Research Institute as a Ba-La-Cu-0 ()-based oxide high-temperature superconductor. After that, La-M-Cu-0 system (
M is Sr, Ba, Ca, etc.), Ba-Ln-Cu-0
system (Ln is Y, etc.).

B1−3r−Ca−Cu−0系、Tl−Ba−Ca−C
u−0系1等が現在までに確認されている。
B1-3r-Ca-Cu-0 system, Tl-Ba-Ca-C
U-0 series 1 etc. have been confirmed so far.

これらのセラミックス系の超伝導材料に共通してイルコ
トハ、いずれもペロブスカイト類似型の構造を持ち、銅
を含むということである。
What these ceramic-based superconducting materials have in common is that they all have a perovskite-like structure and contain copper.

しかしこれら銅を含むセラミックス超伝導材料において
は、その超伝導性を示す臨界温度かTl−Ba−Ca−
Cu−0系における125に程度が最高であった。従来
、層状構造を有し、その層数が増すに従って超伝導性を
示す臨界温度が上昇することが知られているが、近年の
精力的な研究によって銅を含むセラミックス超伝導材料
の層数をこれ以上多くしても超伝導性を示す臨界温度か
上昇しないという報告が多くされている。このことは、
現在得られている超伝導性を示す臨界温度が銅を含むセ
ラミックス超伝導材料の限界であるということを示唆す
る可能性が高い。 また、コレラの酸化物超電導セラミ
ックス材料においては新規な材料の組み合わせのみ追求
され、安定した超電導特性の発現を実現した材料はほと
んど無かった。従来の超電導材料の出発原料は純度99
%であれば十分であるとされ、合成の際に不本意にして
混入した不純物については全く考慮されていなかった。
However, in these ceramic superconducting materials containing copper, the critical temperature at which they exhibit superconductivity or Tl-Ba-Ca-
The highest degree was 125 in the Cu-0 system. Conventionally, it has been known that ceramic superconducting materials have a layered structure, and as the number of layers increases, the critical temperature at which superconductivity occurs increases. There have been many reports that even if the amount is increased beyond this level, the critical temperature that exhibits superconductivity will not rise. This means that
This is likely to suggest that the currently available critical temperature at which superconductivity is exhibited is the limit for ceramic superconducting materials containing copper. In addition, for cholera's oxide superconducting ceramic materials, only new combinations of materials have been pursued, and almost no materials have achieved stable superconducting properties. The starting raw material for conventional superconducting materials has a purity of 99%.
% was considered sufficient, and no consideration was given to impurities unintentionally introduced during synthesis.

(c)発明の目的 本発明は、更なる超伝導性を示す臨界温度の向上を目指
し、さらにまた、安定した超電導特性の発現を目指した
ものである。
(c) Purpose of the Invention The present invention aims to further improve the critical temperature exhibiting superconductivity, and also aims to exhibit stable superconducting characteristics.

そのために従来の銅を含むセラミックス超伝導材料に代
わるものとして、バナジウムを含むセラミックス超伝導
材料の合成を試みた。その結果、超伝導性を示す臨界温
度を150に以上にまで向上させ得ることが明らかとな
った。
To this end, we attempted to synthesize a ceramic superconducting material containing vanadium as an alternative to the conventional ceramic superconducting material containing copper. As a result, it has become clear that the critical temperature exhibiting superconductivity can be raised to 150 or higher.

(d)発明の構成 本発明の超伝導セラミックスは、次に示すような式で一
般的に示し得るものである。
(d) Structure of the Invention The superconducting ceramic of the present invention can be generally expressed by the following formula.

(A、、B、)、V、O。(A,,B,),V,O.

但し、x=0〜1.O,y=1.O〜3.0.z=1.
0〜3.0.w=2.0〜10.OAはY(イツトリウ
ム)、La(ランタン)。
However, x=0 to 1. O,y=1. O~3.0. z=1.
0-3.0. w=2.0~10. OA is Y (yttrium), La (lanthanum).

Ce(セリウム)、Pr(プラセオジム)、Nd(ネオ
ジム)、Pm(プロメチウム)、Sm(サマリウム)、
Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(
テルビウム)、Dy(ジスプロシウム)、Ho(ホルミ
ウム)、Er(エルビウム)、Tm(ツリウム)、Yb
(イッテルビウム)、Lu(ルテチウム)、Ag(銀)
、Cd(カドミウム)、In(インジウム)、Sn(ス
ズ)、Hg(水銀)、 TI  (タリウム)、Pb(
鉛)、  Bi (ビスマス)、Po(ボロニウム)よ
り選ばれた1種類もしくは2種類以上の元素の組み合わ
せより成り、BはBe(ベリリウム)、Mg(マグネシ
ウム)、Ca(カルシウム)、Sr(ストロンチウム)
、Ba(バリウム)、Ra(ラジウム)、より選ばれた
1種類もしくは2種類以上の元素の組み合わせより成り
、■はバナジウムである。これらの超電導材料中にアル
カリ金属(Na、に、Li等)が不純物として0.2重
量%以下しか含まれず、またハロゲン元素が不純物とし
て0.2重量%以下しか含まれず、あるいはハロゲン元
素とアルカリ金属の両方が0.2重量%以下しか含まれ
ないことを特徴とするものであります。
Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium),
Eu (europium), Gd (gadolinium), Tb (
Terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb
(ytterbium), Lu (lutetium), Ag (silver)
, Cd (cadmium), In (indium), Sn (tin), Hg (mercury), TI (thallium), Pb (
Consists of one or a combination of two or more elements selected from lead), Bi (bismuth), and Po (boronium), where B is Be (beryllium), Mg (magnesium), Ca (calcium), and Sr (strontium).
, Ba (barium), Ra (radium), and a combination of one or more elements selected from among them, and ■ is vanadium. These superconducting materials contain only 0.2% by weight or less of alkali metals (Na, Li, etc.) as impurities, contain 0.2% by weight or less of halogen elements as impurities, or contain halogen elements and alkali. It is characterized by containing less than 0.2% by weight of both metals.

本発明の超電導材料は、従来の銅を含む超伝導セラミッ
クスにおける銅の役割をバナジウムで置き換えることに
より、同様の超伝導発現機構で超伝導を呈せしめるモデ
ルを前提としている。
The superconducting material of the present invention is based on a model in which the role of copper in conventional copper-containing superconducting ceramics is replaced with vanadium, thereby exhibiting superconductivity through a similar superconductivity development mechanism.

従来の銅を含む超伝導セラミックスの特徴は、前述のよ
うにいずれもペロブスカイト類似型の構造を持ち、銅を
含むということである。この理由としては以下のような
ことが挙げられる。
A feature of conventional superconducting ceramics containing copper is that, as mentioned above, they all have a perovskite-like structure and contain copper. Reasons for this include the following.

■銅を含む理由 銅は3d遷移金属であり、いくつかの価数を安定にとる
。そのため混合原子価状態、すなわちホールや電子をド
ープした状態を作りやすく、このことが超伝導性発現に
必要不可欠であると考えられる。
■Reason for containing copper Copper is a 3d transition metal and has several stable valences. Therefore, it is easy to create a mixed valence state, that is, a state doped with holes and electrons, which is considered to be essential for the development of superconductivity.

■ペロブスカイト類似型の構造を持つ理由ペロブスカイ
ト型構造を第1図に示す。ペロブスカイト類似型も第1
図の構造に準するものである。酸素八面体の中心に位置
する金属をAサイト、外側の立方晶の隅に位置する金属
をBサイトと通常呼んでいる。ペロブスカイト型構造及
びペロブスカイト類似型はAサイトに多くの金属が置換
固溶しやすいために、Bサイトの金属の価数を制御しや
すい。また酸素の出入りが容易であるため、焼成の際の
雰囲気を制御することにより、Bサイトの金属の価数を
制御することが可能である。
■Reasons for having a perovskite-like structure The perovskite structure is shown in Figure 1. Perovskite-like type is also the first
The structure is similar to that shown in the figure. The metal located at the center of the oxygen octahedron is usually called the A site, and the metal located at the outer corner of the cubic crystal is called the B site. In the perovskite type structure and the perovskite-like structure, many metals are easily substituted and dissolved in the A site, so it is easy to control the valence of the metal at the B site. Furthermore, since oxygen can easily enter and exit, the valence of the metal at the B site can be controlled by controlling the atmosphere during firing.

また、銅を使用しない材料からなる酸化物でも超伝導を
示した例がある。例えばBa−に−Bi−〇系である。
There are also examples of oxides made from materials that do not use copper that exhibit superconductivity. For example, it is Ba- to -Bi-〇 system.

ただこの系は超伝導の発現機構が他の超伝導セラミック
スとは異なると言われている。より高い超伝導性を示す
臨界温度を得るためには銅系と同様の機構が適している
であろう。そこで本発明者バナジウムに着目した。
However, it is said that the mechanism by which superconductivity develops in this system is different from that of other superconducting ceramics. In order to obtain a critical temperature that exhibits higher superconductivity, a mechanism similar to that of copper systems would be suitable. Therefore, the present inventor focused on vanadium.

バナジウムは(Ar)3d” 4s”の電子配置を持ち
、5価〜2価の間でノンストイキオメトリ−を有する数
多くの酸化物をとることが知られており、ペロブスカイ
ト型の化合物も幾つか知られているため超伝導物質の探
索には適していると考えられる。
Vanadium has an electronic configuration of (Ar)3d"4s" and is known to take the form of many oxides with nonstoichiometry between pentavalent and divalent, and some perovskite-type compounds are also known. Therefore, it is considered suitable for searching for superconducting materials.

また、安定した超電導特性の発現を得るために本発明者
は超電導材料を作製する工程にて、混入する種々の不純
物のうち、特にアルカリ金属(Na、に、Li等)とハ
ロゲン元素が超電導材料の安定した特性を妨害している
ことを見出した。
In addition, in order to obtain stable superconducting properties, the inventors of the present invention discovered that among the various impurities mixed in during the process of producing superconducting materials, alkali metals (Na, Li, etc.) and halogen elements are particularly important in superconducting materials. It was found that the stable properties of

また特にその量として、0.2重量%以下であれば安定
した超電導特性を得られる。これらの不純物が酸化物セ
ラミックスの粒の粒界に集合し、それに密接した粒との
間に障壁を作ってしまい、電気伝導を阻害してしまう。
In particular, if the amount is 0.2% by weight or less, stable superconducting properties can be obtained. These impurities gather at the grain boundaries of the oxide ceramic grains, creating a barrier between the grains and adjacent grains, and inhibiting electrical conduction.

この為最大電流密度の向上ができず、加えて超電導性を
示す臨界温度も低くなっていた。
For this reason, it was not possible to improve the maximum current density, and in addition, the critical temperature at which superconductivity was exhibited was also low.

゛また、これら不純物の存在により、バナジウムと酸素
の主となる骨格が分断され、安定した超電導特性が得ら
れなかった。
Furthermore, due to the presence of these impurities, the main skeletons of vanadium and oxygen were separated, making it impossible to obtain stable superconducting properties.

本発明における超伝導セラミックスの合成には以下のよ
うな方法を用いた。
The following method was used to synthesize superconducting ceramics in the present invention.

まず、ペアレントマテリアルとして、従来から知られて
いるバナジウムをBサイトに有するペロブスカイト型化
合物を選び、それを焼成した。化合物中におけるバナジ
ウムの価数は各々の化合物によって異なり、価数を正確
に制御し、目的の物質を得るためには焼成の際の雰囲気
の制御が必要不可欠であった。従来の銅を含む超伝導セ
ラミックスの様に大気中で焼成した場合、バナジウムの
価数は5価であり、それ以上価数を変化させることは出
来ないのである。そこで、電気炉の内部を真空に引くた
めの真空ポンプ、及び、電気炉の内部にA r 、 H
2、CO2COtのガスを任意の割合で混合して流せる
構造を有する装置を作製し、それを用いて焼成を行なっ
た。ペアレントマテリアルが形成されているかどうかの
判定にはXRDを用いた。この様にして合成したペアレ
ントマテリアルに、ペアレントマテリアルのAサイトを
占める金属とは異なる価数を取りつる金属をドープし、
ホール及び電子の注入を行なって超伝導性の発現を目指
した。また、このホール及び電子の注入を行なう際には
、焼成の雰囲気を制御してやることにより、酸素量の制
御も同時に行ない、超伝導セラミックスを合成した。
First, a conventionally known perovskite compound containing vanadium at the B site was selected as the parent material, and it was fired. The valence of vanadium in a compound varies depending on each compound, and in order to accurately control the valence and obtain the desired substance, it is essential to control the atmosphere during firing. When fired in the air like conventional superconducting ceramics containing copper, the valence of vanadium is pentavalent, and the valence cannot be changed any further. Therefore, we installed a vacuum pump to evacuate the inside of the electric furnace, and A r and H inside the electric furnace.
2. An apparatus having a structure that allows CO2COt gases to be mixed and flowed at an arbitrary ratio was prepared, and firing was performed using the apparatus. XRD was used to determine whether parent material was formed. The parent material synthesized in this way is doped with a metal that has a different valence than the metal that occupies the A site of the parent material,
The aim was to achieve superconductivity by injecting holes and electrons. In addition, when performing this injection of holes and electrons, by controlling the firing atmosphere, the amount of oxygen was also controlled at the same time, and superconducting ceramics were synthesized.

上記の作成において、出発材料の純度を十分に高め、次
にこれらを混合した後に、超純水(比抵抗18MΩ以上
)にて洗浄した後に、超音波を加えて十分に乾燥し不純
物を除去した。
In the above production, the purity of the starting materials was sufficiently increased, and then they were mixed, washed with ultrapure water (specific resistance of 18 MΩ or more), and then thoroughly dried using ultrasonic waves to remove impurities. .

また、使用する装置、器具等も同様に超純水で洗浄して
作成した。
In addition, the equipment and instruments used were similarly cleaned with ultrapure water.

また、超純水ではなく、その他不鈍物が溶解できる溶媒
でこれらの不純物を溶解除去することも可能であった。
Furthermore, it was also possible to dissolve and remove these impurities with a solvent that can dissolve other impurities instead of ultrapure water.

以下に実施例を示し、より詳細に本発明を説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

(e)実施例1 本発明の実施例1として、AとしてBi、BとしてSr
を用いた例を示す。
(e) Example 1 As Example 1 of the present invention, A is Bi and B is Sr.
An example using .

出発材料はBi化合物としてBit’s、sr化合物と
して5rCO,、V化合物としてvO2を用いた。これ
らは、v02に関しては純度4Nの物を、他については
純度3N以上の物を用意し前述のように不純物を十分除
去して、原料を混合し作成を行った。また、以下の実施
例においても同様の不純物の除去を十分に行った。
As starting materials, Bit's was used as a Bi compound, 5rCO was used as an sr compound, and vO2 was used as a V compound. These were prepared by preparing a product with a purity of 4N for v02 and a product with a purity of 3N or higher for the others, sufficiently removing impurities as described above, and mixing the raw materials. Further, similar impurities were sufficiently removed in the following examples as well.

ペアレントマテリアルとしてはS r V O!、 l
という物質を選んだ。その際にVの価数は3価であるた
め還元雰囲気において焼成を行なった。焼成条件は、還
元を容易にするために比較的高い温度、例えば1250
℃で、CO:COt =too : tの混合ガスを流
して焼成を行った。原料はストイキオメトリ−なモル比
になるように電子微量天秤で秤量し、ボールミルを用い
て混合した後にペレット状にプレス加工して焼成を行っ
た。焼成時間は通常4時間程度で行ったが、XRDで確
認して未反応部分が見られた場合には更に焼成時間を延
長した。この様にしてペアレントマテリアルを得た。
As a parent material, S r VO! , l
I chose this substance. At that time, since the valence of V is trivalent, the firing was performed in a reducing atmosphere. Calcination conditions include relatively high temperatures, e.g. 1250 °C, to facilitate reduction.
Firing was carried out at 0.degree. C. by flowing a mixed gas of CO:COt=too:t. The raw materials were weighed using an electronic microbalance so as to have a stoichiometric molar ratio, mixed using a ball mill, and then pressed into pellets and fired. The firing time was usually about 4 hours, but if an unreacted portion was found by XRD, the firing time was further extended. In this way, we obtained the parent material.

次に、得られたS r V O2,6とB t t 0
2とをモル比で1=1になるように混合し、ペレット状
に成形した後、H2濃度が4%となるようにArで希釈
したガスを流し、800℃で4時間焼成した。反応が起
こっているかどうかの判定には、焼成前の5rVOz、
sとBtzOsの混合物のXRDと焼成後のXRDを比
較することにより行った。
Next, the obtained S r V O2,6 and B t t 0
2 and 2 were mixed at a molar ratio of 1=1, formed into pellets, and then heated at 800° C. for 4 hours by flowing a gas diluted with Ar so that the H2 concentration was 4%. To determine whether a reaction is occurring, 5rVOz before calcination,
This was done by comparing the XRD of the mixture of S and BtzOs and the XRD after firing.

原料粉末のピークは残っているものの、反応が進行して
いることが確かめられた。
Although the peak of the raw material powder remained, it was confirmed that the reaction was progressing.

このようにして得られた試料の抵抗率の温度依存性を調
べたところ、超伝導性を示す臨界温度TCか、オンセッ
トで130に、オフセットで約85にの超伝導特性が得
られた。第2図にこの時の抵抗率と温度の特性図を示し
ます。
When the temperature dependence of the resistivity of the sample thus obtained was investigated, it was found that superconducting properties were obtained, with the critical temperature TC indicating superconductivity being 130 at onset and about 85 at offset. Figure 2 shows the resistivity and temperature characteristics at this time.

得られた、超電導材料中の不純物の量はICPまたは原
子吸光分析により決定した、その量はアルカリ金属元素
のうちナトリウム0.05%以下、カリウム0.01%
以下、ハロゲン元素0.02%以下であった。
The amount of impurities in the obtained superconducting material was determined by ICP or atomic absorption spectrometry, and the amount was 0.05% or less for sodium and 0.01% for potassium among the alkali metal elements.
Below, the halogen element was 0.02% or less.

(f)実施例2 実施例2として、AとしてCeを用いた例を示す。原料
としては、Ceの酸化物と、他は実施例1と同様の物を
用いた。ペアレントマテリアルも同様の5rVO2,s
であり、ペアレントマテリアルとCeの酸化物とをモル
比でl:1になるように混合し、実施例1と同様の焼成
条件で焼成した。
(f) Example 2 As Example 2, an example in which Ce is used as A will be shown. As the raw material, the same materials as in Example 1 were used except for Ce oxide. The parent material also has the same 5rVO2,s
The parent material and Ce oxide were mixed at a molar ratio of 1:1, and fired under the same firing conditions as in Example 1.

Tcオンセットで50に1間オフセットで約35Kを得
ることが出来た。
I was able to get about 35K with a 1 in 50 Tc onset offset.

得られた、超電導材料中の不純物の量はICPまたは原
子吸光分析により決定した、その量はアルカリ金属元素
のうちナトリウム0.06%以下、カリウム0.02%
以下、ハロゲン元素0.01%以下であった。
The amount of impurities in the superconducting material obtained was determined by ICP or atomic absorption spectrometry, and the amount was 0.06% or less for sodium and 0.02% for potassium among the alkali metal elements.
Below, the halogen element was 0.01% or less.

(g)実施例3 実施例3として、AとしてT1を用い、BとしてBaを
用いた例を示す。ペアレントマテリアルとしては、B 
a V O2を選んだ。焼成条件等は実施例1と同様で
ある。次にペアレントマテリアルにTIの酸化物をモル
比でl:1になるように混合し、ペレット状に成形した
ものを金のシートにくるんで焼成した。こちらの焼成条
件も実施例1と同様である。得られた試料はTcオンセ
ットで150K、同オフセットで約135Kを得ること
が出来た。
(g) Example 3 As Example 3, an example is shown in which T1 is used as A and Ba is used as B. As a parent material, B
I chose a V O2. The firing conditions and the like are the same as in Example 1. Next, TI oxide was mixed with the parent material at a molar ratio of 1:1, formed into pellets, wrapped in a gold sheet, and fired. The firing conditions here are also the same as in Example 1. The obtained sample was able to obtain a Tc onset of 150K and a Tc offset of about 135K.

得られた、超電導材料中の不純物の量はICPまたは原
子吸光分析により決定した、その量はアルカリ金属元素
のうちナトリウム0.06%以下、カリウム0.02%
以下、ハロゲン元素0.01%以下であった。
The amount of impurities in the superconducting material obtained was determined by ICP or atomic absorption spectrometry, and the amount was 0.06% or less for sodium and 0.02% for potassium among the alkali metal elements.
Below, the halogen element was 0.01% or less.

(h)実施例4 実施例4として、AとしてLaを用い、BとしてCaを
用いた例を示す。ペアレントマテリアルとしては、Ca
 V O2を選んだ。焼成条件等は実施例1と同様であ
る。次にペアレントマチリア・ルにLaの酸化物をモル
比でl:lになるように混合し、ペレット状に成形した
ものを焼成した。こちらの焼成条件も実施例1と同様で
ある。得られた試料はTcオンセットで155に、同オ
フセットで約145Kを得ることが出来た。
(h) Example 4 As Example 4, an example in which La is used as A and Ca is used as B is shown. As a parent material, Ca
I chose VO2. The firing conditions and the like are the same as in Example 1. Next, an oxide of La was mixed with the parent material at a molar ratio of 1:1, and the mixture was shaped into pellets and fired. The firing conditions here are also the same as in Example 1. The obtained sample was able to obtain a Tc onset of 155 and an offset of about 145K.

得られた、超電導材料中の不純物の量はICPまたは原
子吸光分析により決定した、その量はアルカリ金属元素
のうちナトリウム0.04%以下、カリウム0.02%
以下、ハロゲン元素0.01%以下であった。
The amount of impurities in the obtained superconducting material was determined by ICP or atomic absorption spectrometry, and the amount was 0.04% or less for sodium and 0.02% for potassium among the alkali metal elements.
Below, the halogen element was 0.01% or less.

また、この試料を、50°Cで湿度80%の状態で、約
100時間保持下後に超電導特性を測定したところ、初
期の値に比べて2%しかその値は変化せず、再現性よく
安定した超電導特性を発現することができた。
In addition, when we measured the superconducting properties of this sample after holding it at 50°C and 80% humidity for about 100 hours, the value changed by only 2% compared to the initial value, and it was stable with good reproducibility. We were able to develop superconducting properties.

(i)発明の効果 本発明により、従来よりもはるかに高い超伝導性を示す
臨界温度Tcを持つ超伝導セラミックスを作製すること
が可能となった。このことは、単に超伝導性を示す臨界
温度の向上という意味だけではない。すなわち、実用化
の際に用いられるであろう冷媒、液体窒素の温度におけ
るマージンが非常に大きいという意味で、臨界電流密度
Jcの飛躍的な向上や、外部磁界が比較的大きい状態で
も超伝導性を保持することが容易に予想されるからであ
る。
(i) Effects of the Invention The present invention has made it possible to produce superconducting ceramics having a critical temperature Tc that exhibits much higher superconductivity than conventional ceramics. This does not simply mean an increase in the critical temperature at which superconductivity is exhibited. In other words, it means that there is a very large margin in the temperature of liquid nitrogen, the refrigerant that will be used in practical applications, and that it is possible to dramatically improve the critical current density Jc and to achieve superconductivity even in a relatively large external magnetic field. This is because it is easily expected to hold.

また、本発明により、安定した超電導特性が得られた。Further, according to the present invention, stable superconducting properties were obtained.

本発明によって実用上充分な特性を有する超伝導セラミ
ックスが作製可能になった。
The present invention has made it possible to produce superconducting ceramics with practically sufficient properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はペロブスカイト型構造の概略を示すものである
。 第2図は超伝導材料の抵抗率と温度の特性図を示すもの
である。 第 図
FIG. 1 schematically shows a perovskite structure. FIG. 2 shows a characteristic diagram of resistivity and temperature of a superconducting material. Diagram

Claims (3)

【特許請求の範囲】[Claims] 1.一般式(A_1_−_xB_x)_yV_zO_w
,(但しx=0〜1.0,y=1.0〜3.0,z=1
.0〜3.0,w=2.0〜10.0)を有し、上記式
中AはY(イットリウム),La(ランタン),Ce(
セリウム),Pr(プラセオジム),Nd(ネオジム)
,Pm(プロメチウム),Sm(サマリウム),Eu(
ユウロピウム),Gd(ガドリニウム),Tb(テルビ
ウム),Dy(ジスプロシウム),Ho(ホルミウム)
,Er(エルビウム),Tm(ツリウム),Yb(イッ
テルビウム),Lu(ルテチウム),Ag(銀),Cd
(カドミウム),In(インジウム),Sn(スズ),
Hg(水銀),Tl(タリウム),Pb(鉛),Bi(
ビスマス),より選ばれた1種類もしくは2種類以上の
元素の組み合わせより成り、BはBe(ベリリウム),
Mg(マグネシウム),Ca(カルシウム),Sr(ス
トロンチウム),Ba(バリウム),より選ばれた1種
類もしくは2種類以上の元素の組み合わせより成る超伝
導セラミックス中のLi(リチューム),Na(ナトリ
ウム),K(カリウム)等のアルカリ金属元素の含有量
を0.2重量%以下としたことを特徴とする超電導セラ
ミックス。
1. General formula (A_1_-_xB_x)_yV_zO_w
, (where x=0 to 1.0, y=1.0 to 3.0, z=1
.. 0 to 3.0, w=2.0 to 10.0), and in the above formula, A is Y (yttrium), La (lanthanum), Ce (
Cerium), Pr (praseodymium), Nd (neodymium)
, Pm (promethium), Sm (samarium), Eu(
europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium)
, Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium), Ag (silver), Cd
(cadmium), In (indium), Sn (tin),
Hg (mercury), Tl (thallium), Pb (lead), Bi (
B is composed of one type or a combination of two or more elements selected from Be (beryllium),
Li (lithium) and Na (sodium) in superconducting ceramics consisting of one or a combination of two or more elements selected from Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), etc. A superconducting ceramic characterized in that the content of alkali metal elements such as , K (potassium), etc. is 0.2% by weight or less.
2.一般式(A_1_−_xB_x)_yV_xO_w
,(但しx=0〜1.0,y=1.0〜3.0,z=1
.0〜3.0,w=2.0〜10.0)を有し、上記式
中Aは,Y(イットリウム),La(ランタン),Ce
(セリウム),Pr(プラセオジム),Nd(ネオジム
),Pm(プロメチウム),Sm(サマリウム),Eu
(ユウロピウム),Gd(ガドリニウム),Tb(テル
ビウム),Dy(ジスプロシウム),Ho(ホルミウム
),Er(エルビウム),Tm(ツリウム),Yb(イ
ッテルビウム),Lu(ルテチウム),Ag(銀),C
d(カドミウム),In(インジウム),Sn(スズ)
,Hg(水銀),Tl(タリウム),Pb(鉛),Bi
(ビスマス),より選ばれた1種類もしくは2種類以上
の元素の組み合わせより成り、BはBe(ベリリウム)
,Mg(マグネシウム),Ca(カルシウム),Sr(
ストロンチウム),Ba(バリウム),より選ばれた1
種類もしくは2種類以上の元素の組み合わせより成る超
伝導セラミックス中のハロゲン元素の含有量を0.2重
量%以下としたことを特徴とする超電導セラミックス。
2. General formula (A_1_-_xB_x)_yV_xO_w
, (where x=0 to 1.0, y=1.0 to 3.0, z=1
.. 0 to 3.0, w = 2.0 to 10.0), and in the above formula, A is Y (yttrium), La (lanthanum), Ce
(cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu
(europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium), Ag (silver), C
d (cadmium), In (indium), Sn (tin)
, Hg (mercury), Tl (thallium), Pb (lead), Bi
(Bismuth), one type or a combination of two or more types of elements, B is Be (Beryllium)
, Mg (magnesium), Ca (calcium), Sr (
Strontium), Ba (barium), 1 selected from
1. A superconducting ceramic comprising a type or a combination of two or more types of elements, and the content of a halogen element in the superconducting ceramic is 0.2% by weight or less.
3.一般式(A_1_−_xB_x)_yV_zO_w
,(但しx=0〜1.0,y=1.0〜3.0,z=1
.0〜3.0,w=2.0〜10.0)を有し、上記式
中AはY(イットリウム),La(ランタン),Ce(
セリウム),Pr(プラセオジム),Nd(ネオジム)
,Pm(プロメチウム),Sm(サマリウム),Eu(
ユウロピウム),Gd(ガドリニウム),Tb(テルビ
ウム),Dy(ジスプロシウム),Ho(ホルミウム)
,Er(エルビウム),Tm(ツリウム),Yb(イッ
テルビウム),Lu(ルテチウム),Ag(銀),Cd
(カドミウム),ln(インジウム),Sn(スズ),
Hg(水銀),Tl(タリウム),Pb(鉛),Bi(
ビスマス),より選ばれた1種類もしくは2種類以上の
元素の組み合わせより成り、BはBe(ベリリウム),
Mg(マグネシウム),Ca(カルシウム),Sr(ス
トロンチウム),Ba(バリウム),より選ばれた1種
類もしくは2種類以上の元素の組み合わせより成る超伝
導セラミックス中のLi(リチューム),Na(ナトリ
ウム),K(カリウム)等のアルカリ金属元素の含有量
を0.2重量%以下およびハロゲン元素の含有量を0.
2重量%以下としたことを特徴とする超電導セラミック
ス。
3. General formula (A_1_-_xB_x)_yV_zO_w
, (where x=0 to 1.0, y=1.0 to 3.0, z=1
.. 0 to 3.0, w=2.0 to 10.0), and in the above formula, A is Y (yttrium), La (lanthanum), Ce (
Cerium), Pr (praseodymium), Nd (neodymium)
, Pm (promethium), Sm (samarium), Eu(
europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium)
, Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium), Ag (silver), Cd
(cadmium), ln (indium), Sn (tin),
Hg (mercury), Tl (thallium), Pb (lead), Bi (
B is composed of one type or a combination of two or more elements selected from Be (beryllium),
Li (lithium) and Na (sodium) in superconducting ceramics consisting of one or a combination of two or more elements selected from Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), etc. , the content of alkali metal elements such as K (potassium) is 0.2% by weight or less, and the content of halogen elements is 0.2% by weight or less.
A superconducting ceramic characterized by having a content of 2% by weight or less.
JP2268759A 1990-10-05 1990-10-05 Superconducting ceramics Pending JPH04144919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268759A JPH04144919A (en) 1990-10-05 1990-10-05 Superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268759A JPH04144919A (en) 1990-10-05 1990-10-05 Superconducting ceramics

Publications (1)

Publication Number Publication Date
JPH04144919A true JPH04144919A (en) 1992-05-19

Family

ID=17462932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268759A Pending JPH04144919A (en) 1990-10-05 1990-10-05 Superconducting ceramics

Country Status (1)

Country Link
JP (1) JPH04144919A (en)

Similar Documents

Publication Publication Date Title
EP0356722B1 (en) Oxide superconductor and method of producing the same
US4861753A (en) Process for making superconductors using barium nitrate
JP2630361B2 (en) Superconducting material
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
JPH04144919A (en) Superconducting ceramics
EP0366721A4 (en) Improved process for making 90 k superconductors
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JPH01138132A (en) Meltable superconductor and its production
JP2597578B2 (en) Superconductor manufacturing method
EP0283317B1 (en) Superconducting oxide ceramics
JPH0517156A (en) Superconducting ceramics and formation thereof
JPS63233069A (en) Preparation of superconductive ceramic
JPH0196055A (en) Superconductive ceramic composition
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
JPS63236752A (en) Superconductive ceramic
JPS63230563A (en) Superconducting ceramics
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPS63233067A (en) Preparation of superconductive ceramic
JPH04124032A (en) Superconductor and its synthesis
JPH0818835B2 (en) Composite oxide superconducting material and method for producing the same
JPS63233064A (en) Superconductive ceramic
JPS63252925A (en) Production of superconductive material
JPH01172212A (en) Easily sinterable superconducting material
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JPS63239112A (en) Preparation of superconductive material