JPH04144184A - Method for controlling coherence of semiconductor laser element - Google Patents

Method for controlling coherence of semiconductor laser element

Info

Publication number
JPH04144184A
JPH04144184A JP26809290A JP26809290A JPH04144184A JP H04144184 A JPH04144184 A JP H04144184A JP 26809290 A JP26809290 A JP 26809290A JP 26809290 A JP26809290 A JP 26809290A JP H04144184 A JPH04144184 A JP H04144184A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
coherence
carrier concentration
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26809290A
Other languages
Japanese (ja)
Inventor
Sadaaki Ueda
上田 禎亮
Noboru Oshima
昇 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP26809290A priority Critical patent/JPH04144184A/en
Publication of JPH04144184A publication Critical patent/JPH04144184A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/204Strongly index guided structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce coherence of a laser to be generated and to reduce a return light noise by forming a clad layer between a current narrowing layer and a light emitting layer of a predetermined composition, and setting carrier concentration of the clad layer to a predetermined value or less. CONSTITUTION:A clad layer between a current narrowing layer and a light emitting layer is formed of Ga(1-x)AlxAs (0.3<x<0.5), and carrier concentration of the clad layer is set to 1.5X10<18>/cm<3> or below. the cap concentrations of the emitting layer 4, a second clad layer 6 and a cap layer 6 are respectively 1-10X10<17>/cm<3>, 1-10X10<17>/cm<3>, 2-4X10<18>/cm<3>, and carrier concentration of a first clad layer 3 between the narrowing layer 2 and the emitting layer 4 is variously varied in a range of 5-30X10<17>/cm<3> by regulating adding amount of an impurity such as Mg, Zn, etc. The lower the carrier concentration becomes, the smaller a gamma value of an index or coherence becomes. This trend is particularly remarkable if the cap concentration in a region having high threshold current is 1.5X10<18>/cm<3> or below.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、コンパクトディスクやレーザディスク用の光
ピツクアップなどに使用されるGal!As半導体レー
ザ素子の制御方法に関する。
The present invention is applicable to Gal! used for optical pickup for compact discs and laser discs. The present invention relates to a method of controlling an As semiconductor laser device.

【従来の技術】[Conventional technology]

近年、この種の先ピックアップの小型化および部品点数
の削減に伴って、使用されている半導体レーザ素子に戻
ってくる外乱光が増加し、そのため発せられるレーザが
不安定になって、いわゆる戻り光雑音が増大するように
なった。この戻り光雑音は、光ピツクアップの性能を左
右する大きな要因であり、半導体レーザ素子の可干渉性
と密接に関係する。 ここで、可干渉性とは、発せられるレーザが位相に関連
して互いに干渉し合ってパターンが観測されうろことを
いい、第3図に示すマイケルソン型干渉計を用いて、次
のように定量的に定義される。即ち、第3図の半導体レ
ーザ素子11から発せられたレーザをビームスプリッタ
12で2つに分けた後、一方を固定ミラー13で、他方
を可動ミラー14て夫々反射して、双方に△ρの光路差
を作って受光素子15に導く。すると、受光素子15で
検出される干渉光の強度は、第4図のインターフェログ
ラムに示すように光路差Δgに応して変化する。このイ
ンターフェログラム16の包絡線I7上の最大値をAと
し、次の最大値をBとして、γ−B/Aによって干渉性
を定量的に定義するのである。従って、γはO以」二か
っ!以下の数値をとり、し・−ザは、γ−1のとき干渉
性か最も強くて完全なコヒーレント先をなし、γが0に
近つくほど干渉性か弱くなる。 一方、戻り光雑音は、半導体レーザ素子にそれが発した
レーザを定量的に戻して、出力レーザの強度S(信号)
に生じる変動N(雑音)を測定し、S7/Nの比てもっ
て表わされる。 干渉性の指数たる上記γ値が略1.0,0.5である半
導体レーザ素子について、上記戻り光雑音S/Nを測定
した結果を夫々第5図、第6図に示す。 図から明らかなように、γ値が大きく(γ−10)干渉
性の強い素子(第5図)のほうか、戻り光雑音S/Nは
悪いことが判かる。これは、干渉性か強くなるほど、発
振波長が単一となるので、戻り光による波長の変化か顕
著なモート変動を惹起して、出力レーザ強度に大きな変
動をもたらすからであり、かかる現象はモートポツプ雑
音と呼ばれでいる。以上の事実から、戻り光雑音の少な
い半導体レーザ素子を得るには、その特性曲線たるイン
ターフェログラム16(第4図参照)においてγ値(γ
−B /’ A )を小さくすることが必須となる。 
そこで、従来、内部電流挟窄型のGaA(!As半導体
素子では、上記γ値を小さくする方法として、発光層を
厚<Lf超つ、電流挟窄層と発光層の間のクラッド層を
厚くしたりする手法が知られている。
In recent years, as this type of tip pickup has become smaller and the number of components has been reduced, the amount of disturbance light returning to the semiconductor laser element used has increased, making the emitted laser unstable and causing so-called return light. The noise started to increase. This return optical noise is a major factor that affects the performance of optical pickup, and is closely related to the coherence of the semiconductor laser device. Here, coherence refers to the fact that the emitted lasers interfere with each other in relation to the phase, so that a pattern can be observed. Using the Michelson interferometer shown in Figure 3, we can Defined quantitatively. That is, after the laser emitted from the semiconductor laser element 11 shown in FIG. The light is guided to the light receiving element 15 by creating an optical path difference. Then, the intensity of the interference light detected by the light receiving element 15 changes according to the optical path difference Δg, as shown in the interferogram of FIG. The maximum value on the envelope I7 of this interferogram 16 is defined as A, the next maximum value is defined as B, and the coherence is quantitatively defined by γ-B/A. Therefore, γ is 0 or more! Taking the following numerical values, when γ-1, the coherence is strongest and is completely coherent, and as γ approaches 0, the coherence becomes weaker. On the other hand, return optical noise quantitatively returns the laser emitted by the semiconductor laser element to the output laser intensity S (signal).
The fluctuation N (noise) occurring in the signal is measured and expressed as the ratio of S7/N. FIGS. 5 and 6 show the results of measuring the return optical noise S/N for semiconductor laser devices whose γ value, which is an index of coherence, is approximately 1.0 and 0.5, respectively. As is clear from the figure, the returned light noise S/N is worse for the element with a large γ value (γ-10) and strong coherence (FIG. 5). This is because the stronger the coherence, the more the oscillation wavelength becomes single, which causes a change in the wavelength due to the returned light or significant moat fluctuations, resulting in large fluctuations in the output laser intensity. It's called noise. From the above facts, in order to obtain a semiconductor laser device with low return optical noise, it is necessary to determine the γ value (γ
-B/'A) is essential.
Conventionally, in internal current pinching type GaA (!As) semiconductor devices, as a method to reduce the above γ value, the thickness of the light emitting layer is greater than Lf, and the cladding layer between the current pinching layer and the light emitting layer is made thicker. There are known methods to do this.

【発明が解決しようとする課題] ところか、上記従来の前者の方法は、発光層を厚くするため、レーザ発振のための閾値電流の増大をもたらす。 また、上記従来の後者の方法は、クラッド層を厚くするため、電流の広がりが大きくなって発光に寄与しない無効電流が増加し、同様に閾値電流の増大をもたらす。そして、閾値電流の増大は、素子の駆動電流および発熱量を増大させ、半導体レーザ素子の寿命を短縮させるという欠点がある。 そこで、本発明の目的は、閾値電流を増太さ仕ることなく、発生されるレーザの可干渉性即ちγ値を低トさせることによ−て、戻り光雑音を長期に唾って低減させることかできる半導体レーザ素子のaJモ渉性の制御方法を提供することにある。 【課題を解決するための手段】[Problem to be solved by the invention] On the other hand, the former conventional method increases the thickness of the light emitting layer, resulting in an increase in the threshold current for laser oscillation. Furthermore, in the latter conventional method, since the cladding layer is made thicker, the spread of the current becomes larger and the reactive current that does not contribute to light emission increases, which also causes an increase in the threshold current. Further, an increase in the threshold current increases the drive current and heat generation amount of the device, and has the drawback of shortening the life of the semiconductor laser device. Therefore, the purpose of the present invention is to reduce the return optical noise in the long term by lowering the coherence, that is, the γ value, of the generated laser without increasing the threshold current. It is an object of the present invention to provide a method for controlling the aJ modulus of a semiconductor laser device. [Means to solve the problem]

発明者は、閾値電流を増大させずにγ値を低下させるに
は、クラッド層の組成とキャリア濃度を調整すればよい
ことに着目し、種々の条件で鋭意実験、研究を重ね、そ
の結果、本発明を構成するに至った。 即ち、本発明の半導体レーザ素子の可干渉性の制御方法
は、内部電流挟窄型のGaAQAs半導体レーザ素子に
おいて、電流挟窄層と発光層との間のクラッド層を、G
a(+−x)AQx)AlxAs(0.3<x<0.5
)で形成するとともに、上記クラッド層のキャリア濃度
を、1.5X 1016/cm3以下としたことを特徴
とする。 なお、キャリア濃度を1,5x 10”/ cm3以下
に限定したのは、閾値電流を一定に保ったままでγ値を
0.5程度以下に低下させるためである。
The inventor focused on the fact that in order to reduce the γ value without increasing the threshold current, it was only necessary to adjust the composition and carrier concentration of the cladding layer, and after conducting extensive experiments and research under various conditions, the results were as follows: The present invention has now been constructed. That is, the method for controlling the coherence of a semiconductor laser device according to the present invention is such that, in an internal current pinching type GaAQAs semiconductor laser device, the cladding layer between the current pinching layer and the light emitting layer is
a(+-x)AQx)AlxAs(0.3<x<0.5
), and the cladding layer has a carrier concentration of 1.5×10 16 /cm 3 or less. Note that the reason why the carrier concentration is limited to 1.5 x 10''/cm3 or less is to lower the γ value to about 0.5 or less while keeping the threshold current constant.

【作用】[Effect]

クラッド層をGa(+−リAQx)AlxAs(0.3
<x<0.5)で形成し、そのキャリア濃度を1.5x
 10′8/ cm3としたので、半導体レーザ素子の
閾値電流を増大させることなく、発生されるレーザの可
干渉性を低下させ、戻り光雑音を長期に亘って低減させ
ることかできる。なお、キャリア濃度が低いほど、γ値
はより大きく低下し、戻り光雑音の低減に効果的である
The cladding layer is made of Ga(+-ReAQx)AlxAs(0.3
<x<0.5), and the carrier concentration is 1.5x.
Since it is set to 10'8/cm3, the coherence of the generated laser can be lowered without increasing the threshold current of the semiconductor laser element, and the return optical noise can be reduced over a long period of time. Note that the lower the carrier concentration, the greater the decrease in the γ value, which is more effective in reducing return optical noise.

【実施例】 以下、本発明を図示の実施例により詳細に説明する。 第1図は、内部電流挟窄型Cal!A8半導体レーザ素
子の一例たるVSIS(Vチャネル・サブストレート・
インナー・ストライブ)型半導体レーザ素子の断面図で
ある。同図において、■はP型G−aAsからなる基板
、2はこの基板l上にN型GaAsを略1μm厚で成長
させ、中央部を硫酸系エツチング液でフォトレジストを
用いてエツチングしてなる電流挟窄層、3はこの電流挟
窄層2および基板l上にP型G a(+−リAQy、A
sC0,3< x< 0.5)を略0.2μ餓厚で成長
させてなる第1クラフト層、4はこの第1クラッド層3
上にP型C; a (l−リAQy)AlxAs(0.
1< y< 0.2)を略01μm厚で成長させてなる
発光層、5はこの発光層4上にN型Ga(+−x)A&
xAs(OJ< X< 0.5)を略1μm厚で成長さ
せてなる第2クラッド層、6はこの第2クラッド層5L
にN型GaAsを数μm厚で成長させてなるキャップ層
である。 上記発光層4.第2クラツト層5.キャップ層6のキャ
リア濃度は、夫々1〜10×1017/cm3,1〜1
0X 10′7/ cm”、 2〜4 X 10+11
/ Cm3であり、電流挟窄層2と発光層4の間の上記
第1クラッド層3のキャリア濃度は、Mg、Znなどの
不純物の添加量を調整して、5〜30X10”/am3
の範囲で種々変化させた(第2図参照)。なお、電流挟
窄層2の上記エツチング部分2aか電流通路となる。 こうして、第1クラシト層3が種々のキャリア#変をも
つように作成されたvsrs型半導体レーザ素子の夫々
について、そのγ値(γ−B/A)を第3.4図で述べ
た手法で測定し、その閾値電流1thを測定した。 第2図は、測定されたγ値と閾値電流rthの関係を第
1クラッド層3の種々のキャリア濃度別に示している。 図から明らかなように、半導体レーザ素子の閾値電流I
thが同一であっても、キャリア濃度が低くなる程、可
干渉性指数たるγ値は小さくなる。また、この傾向は、
閾値電流の高い領域においてキャリア濃度が1.5x 
10”7 cm3以下の場合、特に顕著であり、γ値は
10から0.5以下に低下している。そして、γ値が0
.5以下に低下すれば、第6図で述べたように従来問題
となっていた戻り光雑音が無くなり、しかもこのとき閾
値電流は同一で増やす必要がないから、素子の寿命を延
ばすことができる。 このように、本発明では、電流挟窄層と発光層との間の
クラッド層のキャリア濃度を一定値以下にしているので
、レーザ発振のための閾値電流を増大させることなく、
発生されるレーザの可干渉性を弱めて、不都合な戻り光
雑音を長期に亘って低減させることができる。
EXAMPLES The present invention will be described in detail below with reference to illustrated examples. Figure 1 shows the internal current pinching type Cal! VSIS (V channel substrate) is an example of A8 semiconductor laser device.
1 is a cross-sectional view of an inner stripe type semiconductor laser device. In the figure, ■ is a substrate made of P-type GaAs, and 2 is a substrate made by growing N-type GaAs to a thickness of about 1 μm on this substrate l, and etching the center part using a photoresist with a sulfuric acid-based etching solution. The current pinching layer 3 is a P-type Ga (+-re AQy, A
sC0,3<x<0.5) is grown to a thickness of approximately 0.2μ, and 4 is the first cladding layer 3.
P-type C; a (l-AQy) AlxAs (0.
1 < y < 0.2) to a thickness of about 01 μm, and 5 is an N-type Ga(+-x)A &
A second cladding layer formed by growing xAs (OJ<X<0.5) to a thickness of approximately 1 μm, 6 is this second cladding layer 5L
This is a cap layer made by growing N-type GaAs to a thickness of several μm. The light emitting layer 4. Second crust layer5. The carrier concentration of the cap layer 6 is 1 to 10 x 1017/cm3 and 1 to 1, respectively.
0X 10'7/cm", 2~4 X 10+11
/ Cm3, and the carrier concentration of the first cladding layer 3 between the current pinching layer 2 and the light emitting layer 4 is 5 to 30×10”/am3 by adjusting the amount of impurities such as Mg and Zn.
(See Figure 2). Note that the etched portion 2a of the current pinching layer 2 serves as a current path. In this way, the γ value (γ-B/A) of each of the vsrs type semiconductor laser devices fabricated so that the first cruciate layer 3 has various carrier # variations is determined by the method described in FIG. 3.4. The threshold current 1th was measured. FIG. 2 shows the relationship between the measured γ value and the threshold current rth for various carrier concentrations in the first cladding layer 3. As is clear from the figure, the threshold current I of the semiconductor laser device
Even if th is the same, the lower the carrier concentration, the smaller the γ value, which is the coherence index. Also, this trend is
Carrier concentration is 1.5x in the high threshold current region
This is particularly noticeable when the size is 10”7 cm3 or less, and the γ value decreases from 10 to 0.5 or less.
.. If the threshold current decreases to 5 or less, the return light noise, which has been a problem in the past, as described in FIG. As described above, in the present invention, since the carrier concentration in the cladding layer between the current pinching layer and the light emitting layer is kept below a certain value, the threshold current for laser oscillation is not increased.
By weakening the coherence of the generated laser, unwanted return optical noise can be reduced over time.

【発明の効果】【Effect of the invention】

以−トの説明で明らかなように、本発明の半導体レーザ
素子の可干渉性の制御方法は、電流挟窄層と発光層との
間のクラッド層を、Ga(+−x)A(!x)AlxA
s(0.3< x< 0.5)で形成し、そのキャリア
濃度を15X 10”/ cm3以下にしているので、
半導体レーザ素子の閾値電流を増大させることなく、発
生されるレーザの可干渉性を低下させ、戻り光雑音を長
期に亘って低減させることができる。
As is clear from the following explanation, the method for controlling the coherence of a semiconductor laser device according to the present invention uses Ga(+-x)A(! x) AlxA
s (0.3<x<0.5), and the carrier concentration is 15X 10”/cm3 or less, so
Without increasing the threshold current of the semiconductor laser element, the coherence of the generated laser can be lowered, and return optical noise can be reduced over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体レーザ素子の一例としての
vsrs型GaAρAs半導体レーザ素子の断面図、第
2図は第1図の素子のγ値と閾値電流Ithの関係を種
々のキャリア濃度について示す図、第3図はマイケルソ
ン干渉計の概略図、第4図は上記干渉計て得られたイン
ターフェログラムを示す図、第5図、第6図は夫々γ二
1.0.0.5の素子の戻り光雑音特性を示す図である
。 ■・・基板、2・電流挟窄層、 3・・第1クラッド層、4・・・発光層、5・・・第2
クラッド層、6・キャップ層、11・半導体レーザ素子
、15 受光素子、16・・インターフェログラム。
FIG. 1 is a cross-sectional view of a vsrs type GaAρAs semiconductor laser device as an example of a semiconductor laser device according to the present invention, and FIG. 2 shows the relationship between the γ value and the threshold current Ith of the device in FIG. 1 for various carrier concentrations. 3 is a schematic diagram of a Michelson interferometer, FIG. 4 is a diagram showing an interferogram obtained with the above interferometer, and FIGS. 5 and 6 are γ21.0.0.5, respectively. FIG. 3 is a diagram showing the return optical noise characteristics of the element. ■...Substrate, 2...Current pinching layer, 3...First cladding layer, 4...Light emitting layer, 5...Second
Cladding layer, 6. Cap layer, 11. Semiconductor laser element, 15. Photodetector, 16. Interferogram.

Claims (1)

【特許請求の範囲】[Claims] (1)内部電流挟窄型のGaAlAs半導体レーザ素子
において、 電流挟窄層と発光層との間のクラッド層を、Ga_(_
1_−_x)Al_xAs(0.3<x<0.5)で形
成するとともに、上記クラッド層のキャリア濃度を、1
.5×10^1^6/cm^3以下として、半導体レー
ザ素子の閾値電流を増大させることなく、発生されるレ
ーザの可干渉性を低下させ、戻り光雑音を低減させるよ
うにしたことを特徴とする半導体レーザ素子の可干渉性
の制御方法。
(1) In an internal current pinching type GaAlAs semiconductor laser device, the cladding layer between the current pinching layer and the light emitting layer is made of Ga_(_
1_-_x) Al_xAs (0.3<x<0.5), and the carrier concentration of the cladding layer is set to 1
.. 5×10^1^6/cm^3 or less to reduce the coherence of the generated laser without increasing the threshold current of the semiconductor laser element and reduce the return optical noise. A method for controlling the coherence of a semiconductor laser device.
JP26809290A 1990-10-04 1990-10-04 Method for controlling coherence of semiconductor laser element Pending JPH04144184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26809290A JPH04144184A (en) 1990-10-04 1990-10-04 Method for controlling coherence of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26809290A JPH04144184A (en) 1990-10-04 1990-10-04 Method for controlling coherence of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH04144184A true JPH04144184A (en) 1992-05-18

Family

ID=17453782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26809290A Pending JPH04144184A (en) 1990-10-04 1990-10-04 Method for controlling coherence of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH04144184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331446A (en) * 1992-06-04 1993-12-14 Sumitomo Bakelite Co Ltd High-molecular weight polyimide resin film adhesive
EP0667661A2 (en) * 1994-02-10 1995-08-16 ROHM Co., Ltd. Semiconductor laser and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331446A (en) * 1992-06-04 1993-12-14 Sumitomo Bakelite Co Ltd High-molecular weight polyimide resin film adhesive
EP0667661A2 (en) * 1994-02-10 1995-08-16 ROHM Co., Ltd. Semiconductor laser and method for manufacturing the same
EP0667661A3 (en) * 1994-02-10 1995-12-27 Rohm Co Ltd Semiconductor laser and method for manufacturing the same.
US5583881A (en) * 1994-02-10 1996-12-10 Rohm Co., Ltd. Semiconductor laser and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5003549A (en) Semiconductor laser
US4712219A (en) Visible double heterostructure-semiconductor laser
EP0630085B1 (en) II-VI semiconductor light emitting device and its manufacturing method
JPH04144184A (en) Method for controlling coherence of semiconductor laser element
NL9000254A (en) A SEMICONDUCTOR LASER DEVICE AND METHOD FOR MANUFACTURE THEREOF.
US20040109221A1 (en) High speed optical signal processor including saturable absorber and gain-clamped optical amplifier
CA1180094A (en) Semiconductor laser
KR100277322B1 (en) Manufacturing method of semiconductor laser device
JPH0376287A (en) Broad area laser
JPS59165481A (en) Distributed feedback type semiconductor laser
JPS6124840B2 (en)
JP2518221B2 (en) Semiconductor laser device
JP2664388B2 (en) Semiconductor laser device
JPH08313745A (en) Semiconductor optical integrated circuit and its production
JP2869875B2 (en) Manufacturing method of optical integrated circuit
JPH11330612A (en) Semiconductor laser and optical disk device
JP2849499B2 (en) Manufacturing method of semiconductor laser
JPS613486A (en) Semiconductor laser
JPH0429235B2 (en)
JPS6482686A (en) Semiconductor laser
JPS61220393A (en) Semiconductor laser element
JPS6242588A (en) Semiconductor laser device
JPH02113586A (en) Semiconductor laser element
JPS63187671A (en) 1.3mum-range semiconductor photodetector
JPS6239088A (en) Semiconductor laser