JPH04144072A - Electrolyte pouring method for sealed type lead-acid battery - Google Patents

Electrolyte pouring method for sealed type lead-acid battery

Info

Publication number
JPH04144072A
JPH04144072A JP2267906A JP26790690A JPH04144072A JP H04144072 A JPH04144072 A JP H04144072A JP 2267906 A JP2267906 A JP 2267906A JP 26790690 A JP26790690 A JP 26790690A JP H04144072 A JPH04144072 A JP H04144072A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
silica powder
electrode plates
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2267906A
Other languages
Japanese (ja)
Inventor
Yukio Tokuhara
幸夫 得原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2267906A priority Critical patent/JPH04144072A/en
Publication of JPH04144072A publication Critical patent/JPH04144072A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To shorten the time for pouring electrolyte by forming a sealed battery in which the spaces between pos. and neg. electrode plates and around a bunch of electrode plates with silica powder, pressurizing it and expanding, pouring electrolyte to the deformed part, and then putting the battery in decompressed state. CONSTITUTION:Electrode plates 1 in such a construction that glass separators are inserted between pos. and neg. electrode plates are embedded in foaming resin 2 attached together into a box form and are arranged in a battery jar 4. Then gaps between the pos. and neg. electrode plates and spaces around a bunch of electrode plates are filled with silica powder 3. After welding a lid 5 to the battery jar 4. this battery is pressurized and expanded. Then electrolyte 8 is poured into a void 9 produced with deformation of the battery jar 4, which is followed by putting the battery in decompressed state. Then the electrode plates 1, separators, and silica powder 3 are deaerated, and the electrolyte having stayed on the silica powder 3 oversurface or void 9 permeates the silica powder 3 either directly or upon passing through the foaming resin 2, and at the same time, the electric jar 4 in expansion returns to the original dimension. Thus electrolyte pouring is completed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の電解液注液方法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in a method for pouring electrolyte into a sealed lead-acid battery.

従来の技術 電池の充電中に発生する酸素カスを負極で吸収させるタ
イプの密閉式鉛蓄電池にはリテーナ式とゲル式の二柿類
がある。リテーナ式は正極板と負極板との間に(政綱カ
ラス繊維を素材とするマ・lト状セパレータ(カラスセ
パレータ)を挿入し、これによって放電に必要な硫酸電
解7後の保持と内矩の隔離をおこなっており、近年ボー
タプル機器やコンピュータの電源として広く用いられる
ようになってきた。しかし、リテーナ式はカラスセノ(
レータが高価なことおよび充分な量の電解液を保持でき
ないために、低率放電では放電容量か電解液量で制限さ
れるという欠点があり、この種の密閉式鉛蓄電池の普及
の障害となっている。
BACKGROUND OF THE INVENTION There are two types of sealed lead-acid batteries that use a negative electrode to absorb oxygen scum generated during battery charging: a retainer type and a gel type. In the retainer type, a mat-shaped separator (glass separator) made of crow fiber is inserted between the positive electrode plate and the negative electrode plate. In recent years, it has become widely used as a power source for portable devices and computers.However, the retainer type is
Due to the high cost of the battery and the inability to hold a sufficient amount of electrolyte, low-rate discharge is limited by the discharge capacity or the amount of electrolyte, which is an obstacle to the widespread use of this type of sealed lead-acid battery. ing.

一方、ゲル式はリテーナ式よりも安価であるか、電池性
能がリテーナ式よりも劣るという欠点があった。
On the other hand, the gel type has disadvantages in that it is cheaper than the retainer type or its battery performance is inferior to the retainer type.

リテーナ式およびゲル式の密閉式SQW電池のこれらの
欠点を解消する新しい電解液保持体として二酸化時f#
(シリカ)の粉体を用いることか提案されている。この
シリカの粉体、特にその造粒品を電解液保持体に用いた
電池は従来のリテーナ式よりも高率放電性能に優れ、ゲ
ル式電池よりも低十枚電性能に優れているという特徴を
有している発明か解決しようとする課題 I−かし、このシリカ粉体を電解液保持体として用いる
場合、特に製造工程上の問題点が明らかになってきた。
f# at the time of carbon dioxide as a new electrolyte holder that overcomes these drawbacks of caged and gel-type sealed SQW batteries.
It has been proposed to use (silica) powder. Batteries that use this silica powder, especially granulated products, as an electrolyte holder have superior high-rate discharge performance than conventional retainer-type batteries, and are superior to gel-type batteries in low-density discharge performance. However, when this silica powder is used as an electrolyte holder, problems particularly in the manufacturing process have become apparent.

その1つに硫酸電解液をシリカ粉体に保持させるジ)に
長時間を要するという点がある、これはシリカ粉体の一
次粒子が10〜40ミリミクロンと細かく、表面積が約
1001127’9と大きいことに起因するものと考え
られる。
One of the problems is that it takes a long time to hold the sulfuric acid electrolyte in the silica powder. This is thought to be due to the large size.

課題を解決するための手段 本発明は]−述した問題点を解決するもので、生産性に
r髪れ、安価でかつ放電性能に優れた密閉式4HH蓄電
池を描洪するもので、その要旨とするところは、正極板
と負極板の間に隔離体を挿入してなる橋板群を電槽内に
収納し、正極板と負極板との間隙および、りるいは極板
群の周囲にシリカ粉体を充填 配置1−1電槽と蓋を溶
着した後電池を加圧し7て膨張させ、その変形部分に電
解液を注入した後電池を減圧状態にすること、および該
電槽内に電解液や空気は通すがシリカ粉体は通さない連
続気泡をもつ多孔体よりなる内箱を設はプ5−ビを特徴
とする密閉式鉛蓄電池の電解府江冴方法にある。
Means for Solving the Problems The present invention solves the above-mentioned problems and describes a sealed 4HH storage battery that is highly productive, inexpensive, and has excellent discharge performance. In this case, a bridge plate group consisting of a separator inserted between the positive electrode plate and the negative electrode plate is stored in a battery case, and silica powder is applied to the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. Filling the body Arrangement 1-1 After welding the battery case and the lid, the battery is pressurized and expanded, and after injecting electrolyte into the deformed part, the battery is depressurized, and the electrolyte is poured into the battery case. The method for electrolyzing a sealed lead-acid battery, which is characterized by plasticity, includes an inner box made of a porous material with open cells that allows air to pass through but not silica powder.

以下本発明を実施例に基ついて説明する。The present invention will be explained below based on examples.

実施例 外径寸法150 ” x370 ’ inの門−Ca−
3n合金よりなる正極および負極格子体に通常の正極お
よび負極ペーストをそれぞれ充填した後、熟成を施して
未化成極板を作製した。ついで正極板8枚と負極板0枚
および平均繊維径がl )t 7%のカラスセパレータ
を用いてエレメントを組み立てた、方145 Lx 1
60 ” x 410 ’ nnの樹脂製電槽の内壁に
治って連続気泡をもつ厚き約5n+iの発泡樹脂を箱形
の形状に張り合わせたものを−Fめ製作1゜ておき、上
−記エレメントをこの中に収納した後振動機に固定し、
60H2、3Gの振動を加えなから7509のシリカ粉
体を充填した。ついで蓋の溶着および端子部の封口を行
った。つきに本年明6J゛よる注液方法を図面に基づき
説明する。
Exception: Gate with diameter size 150" x 370" in -Ca-
After filling positive electrode and negative electrode grid bodies made of 3n alloy with normal positive electrode and negative electrode pastes, respectively, they were aged to produce unformed electrode plates. Then, an element was assembled using 8 positive electrode plates, 0 negative electrode plates, and a glass separator with an average fiber diameter of 7%, 145 L x 1.
A box-shaped piece of foamed resin with a thickness of about 5n+i with open cells bonded to the inner wall of a 60" x 410' nn resin battery case was fabricated at -F for 1°, and the above-mentioned element was assembled. After storing it in this, fix it to the vibrator,
60H2, 7509 silica powder was filled without applying 3G vibration. Next, the lid was welded and the terminal portion was sealed. First, we will explain the liquid injection method according to 6J of this year based on the drawings.

第1図および第2図は注液方法を説明するf:めの要部
断面模式図であり第1図において1は極板2は発/22
樹脂、3はシリカ粉体、・1は電槽、5は煮である。二
カ電池の注液口6がら空気を導入して電池内圧を大気圧
より0.3K(]/CI’高めると電槽671第2図に
示すように膨張し、その最大変形量は電槽側面において
は尤の寸法の約20%、電槽底面においては約5°0で
あった。つき゛に加圧を止め電池内圧を大気圧に戻した
か、電槽の変形状態は加圧時と変らなかった。ここで電
解液容器7から50pの電解液8を注入すると電解液は
まずシリカ粉体に浸透していくが、浸透速度は電解液の
注入速度よりもはるかに遅いため電解液はシリカ粉体上
の介/22樹脂で囲まれた開口部分に滞溜し、やがてあ
ふれて電槽の変形によって生じた空隙9に流入していっ
た。つぎに電池内圧が大気圧に対して08にg、/C1
12になる状態で注液口から減圧をし続けると極板やセ
パし一夕、シリカ粉体に含まれていた空気が脱気され、
シリカ粉体り面や空隙9に滞溜していた電解液が直接あ
るいは発泡樹脂を通してシリカ粉体に浸透1−2また同
時に膨張していた電槽4は第1図に示すような元の−を
法C5二房り〆主液か完了した。
Figures 1 and 2 are schematic cross-sectional views of the main parts of f: for explaining the injection method.
Resin, 3 is silica powder, 1 is a battery container, and 5 is a boiler. When air is introduced through the injection port 6 of a two-capacity battery to raise the internal pressure of the battery by 0.3 K(]/CI' above atmospheric pressure, the battery case 671 expands as shown in Figure 2, and the maximum amount of deformation is It was about 20% of its original size on the sides, and about 5°0 on the bottom of the battery case.The deformation of the battery case was probably different from when pressurization was applied, either because the pressure was stopped and the internal pressure of the battery was returned to atmospheric pressure. When 50p of electrolyte 8 is injected from the electrolyte container 7, the electrolyte first penetrates into the silica powder, but the penetration rate is much slower than the injection rate of the electrolyte, so the electrolyte is absorbed into the silica powder. The powder accumulated in the opening surrounded by the resin, and eventually overflowed and flowed into the gap 9 created by the deformation of the battery case. g, /C1
If you continue to reduce the pressure from the injection port when the temperature reaches 12, the air contained in the silica powder will be degassed overnight due to the electrode plate and separation.
The electrolytic solution that had accumulated on the surface of the silica powder or in the voids 9 penetrated into the silica powder either directly or through the foamed resin 1-2.At the same time, the battery case 4, which had expanded, was returned to its original state as shown in Figure 1. The method C5 Nifu Ri〆 main liquid was completed.

この一連の注液作業に要する時間を本発明に上る注液方
法と比較のために第3図に示すように同構成の電池の注
液口上部に三方コ・・り1Gを介して電解液容器を設け
、三方コ・lりの一方は9字ポンプと連結し、電池内圧
か大気圧に対1−で−08にg、/C1”になるまで減
圧した後己方コ・ツクを切り換ズ−で電解液を注入する
従来から用いているH法について測定した。この語基を
第1表に示す。なお機器の装着時間等は各項目の時間に
参入した。
For comparison with the liquid injection method according to the present invention, the time required for this series of liquid injection operations is as shown in FIG. Set up a container, connect one side of the three-way connector to a figure-9 pump, and reduce the pressure to -08g/C1'' at 1-1 to the internal pressure of the battery or atmospheric pressure, then switch the self-container. Measurements were made using the conventionally used H method in which electrolyte is injected using a zoom lens.The base of this term is shown in Table 1.The time for wearing the equipment, etc. was included in the time for each item.

第1表 第1表から明らかなよう1.二本発明による方法を用い
ることにより電解液の注7夜に要4−る総時間を従来法
の約1、′8に短縮づ−ることかできた。従来法におい
ては1回の滅庄、注液操作では電解液が入らず7〜10
回の操作が必要であった。
As is clear from Table 1, 1. By using the method according to the present invention, the total time required for dispensing the electrolyte can be reduced to about 1.8 times the conventional method. In the conventional method, the electrolyte did not enter with one evaporation and injection operation, and it was 7 to 10 minutes.
Multiple operations were required.

シリカ粉体への電解液の注液時間Tと浸透距離pの間に
はT=KA2の関係があることがこれまで実験かられか
っている。ここでKは電解液の粘度やシリカ粉体が入っ
た容器内外の圧力差によって決まる項である。
It has been found from experiments that there is a relationship T=KA2 between the injection time T of electrolyte into silica powder and the permeation distance p. Here, K is a term determined by the viscosity of the electrolytic solution and the pressure difference between the inside and outside of the container containing the silica powder.

本発明による方法はシリカ粉体を充填した直方体の上面
、下面および4つの側面から同時に注液を行うため、結
果として所定量の電解液の注液に必要なpを小さくする
ことができる。これに対して従来法の場合、電解液の浸
透は上面からのみでpは極板群の高さに相当し、注液に
長時間を要する。
Since the method according to the present invention simultaneously injects liquid from the top, bottom and four sides of a rectangular parallelepiped filled with silica powder, it is possible to reduce the amount p required to inject a predetermined amount of electrolyte. On the other hand, in the case of the conventional method, the electrolyte penetrates only from the top surface, p corresponds to the height of the electrode plate group, and it takes a long time to pour the electrolyte.

また、鉛蓄電池の正負極板は放置中にPt1CO3を生
成するとこれが注液時に電解液と反応してC02が発生
するため、従来法では電池内を減圧して(、こerr 
C02によって内圧か−F昇j7、あるいはCO2発生
により上部から浸透していた電解液か押し戻されるなど
効率が悪かった。本発明による方法ではCO2が発生し
ても電池は注液中常に真空ポンプで減圧を行っているた
め内圧が上昇することはなく、また、上面からの電解液
の浸透が阻害されても側面あるいは下面から浸透が可能
である。
In addition, if the positive and negative electrode plates of a lead-acid battery generate Pt1CO3 while left unused, this will react with the electrolyte during injection and generate C02. Therefore, in conventional methods, the pressure inside the battery is reduced (and this error occurs).
The efficiency was poor, as the internal pressure increased due to CO2, or the electrolyte that had penetrated from the top was pushed back due to the generation of CO2. In the method according to the present invention, even if CO2 is generated, the internal pressure of the battery will not increase because the battery is constantly depressurized by a vacuum pump during injection, and even if the penetration of electrolyte from the top surface is inhibited, the battery will not increase the internal pressure. Penetration is possible from the bottom.

発明の効果 以上のように本発明によれば正負極板間および極板群の
周囲にシリカ粉体を充填、配置した密閉式鉛蓄電池の電
解液の注液に要する時間を大幅に短縮することができる
Effects of the Invention As described above, according to the present invention, the time required for pouring electrolyte into a sealed lead-acid battery in which silica powder is filled and arranged between the positive and negative electrode plates and around the electrode plate group can be significantly shortened. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明による注液方法を説明する
ための要部断面模式図、第3図は従来法による注液方法
を説明するための要部断面模式図である。
FIGS. 1 and 2 are schematic cross-sectional views of main parts for explaining the liquid injection method according to the present invention, and FIG. 3 is a schematic cross-sectional view of main parts for explaining the liquid injection method according to the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1、正極板と負極板の間に隔離体を挿入してなる極板群
を、電解液や空気は通すがシリカ粉体は通さない連続気
泡をもつ多孔体よりなる内箱を設けた電槽内に収納し、
正極板と負極板との間隙および、あるいは極板群の周囲
にシリカ粉体を充填、配置し、電槽と蓋を溶着した後電
池を加圧して膨張させ、その変形部分に電解液を注入し
た後電池を減圧状態にすることを特徴とする密閉式鉛蓄
電池の電解液注液方法。
1. Place the electrode plate group, which is made by inserting a separator between the positive electrode plate and the negative electrode plate, into a battery case with an inner box made of a porous material with open cells that allows the electrolyte and air to pass through, but not the silica powder. Store and
Silica powder is filled and arranged in the gap between the positive and negative electrode plates and/or around the electrode plate group, and after welding the battery case and lid, the battery is pressurized and expanded, and electrolyte is injected into the deformed part. A method for injecting electrolyte into a sealed lead-acid battery, which is characterized in that the battery is brought into a reduced pressure state.
JP2267906A 1990-10-04 1990-10-04 Electrolyte pouring method for sealed type lead-acid battery Pending JPH04144072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2267906A JPH04144072A (en) 1990-10-04 1990-10-04 Electrolyte pouring method for sealed type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267906A JPH04144072A (en) 1990-10-04 1990-10-04 Electrolyte pouring method for sealed type lead-acid battery

Publications (1)

Publication Number Publication Date
JPH04144072A true JPH04144072A (en) 1992-05-18

Family

ID=17451263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267906A Pending JPH04144072A (en) 1990-10-04 1990-10-04 Electrolyte pouring method for sealed type lead-acid battery

Country Status (1)

Country Link
JP (1) JPH04144072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082033A (en) * 2012-10-15 2014-05-08 Gs Yuasa Corp Method for manufacturing lead-acid battery, and lead-acid battery
JP2014207244A (en) * 2014-07-03 2014-10-30 ソニー株式会社 Device of manufacturing battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082033A (en) * 2012-10-15 2014-05-08 Gs Yuasa Corp Method for manufacturing lead-acid battery, and lead-acid battery
JP2014207244A (en) * 2014-07-03 2014-10-30 ソニー株式会社 Device of manufacturing battery

Similar Documents

Publication Publication Date Title
JP2020532835A (en) Pouch type battery case including crack prevention structure and its manufacturing method
JPH04144072A (en) Electrolyte pouring method for sealed type lead-acid battery
CN220856870U (en) Cell priming device
JPS6030063A (en) Sealed type lead-acid battery
JP2768176B2 (en) Lead storage battery and method of manufacturing the same
JP3676387B2 (en) Manufacturing method of sealed lead-acid battery
JP2533418B2 (en) Sealed lead acid battery
JP7503040B2 (en) Secondary battery manufacturing method
JPH0729595A (en) Retainer type sealed lead-acid battery
JPS62103989A (en) Enclosed lead storage battery
JPH05217572A (en) Manufacture of lead-acid battery
JP2002050396A (en) Enclosed lead acid storage battery
JP4534508B2 (en) Lead acid battery
JP2552353B2 (en) Sealed secondary battery
JPH0325904B2 (en)
JPS62103990A (en) Enclosed lead storage battery
JP3266918B2 (en) Sealed lead-acid battery
JPS61140074A (en) Enclosed lead storage battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH0636793A (en) Sealed lead-acid battery
JPS61245472A (en) Manufacture of enclosed lead storage battery
JPH0436966A (en) Sealed type lead-acid battery
JPH08222199A (en) Sealed lead-acid battery
JP2003086168A (en) Method of interconnecting cells of lead-acid battery
JPS5931558A (en) Lead storage battery