JPH04143563A - Refrigerant recovering device - Google Patents

Refrigerant recovering device

Info

Publication number
JPH04143563A
JPH04143563A JP26318090A JP26318090A JPH04143563A JP H04143563 A JPH04143563 A JP H04143563A JP 26318090 A JP26318090 A JP 26318090A JP 26318090 A JP26318090 A JP 26318090A JP H04143563 A JPH04143563 A JP H04143563A
Authority
JP
Japan
Prior art keywords
refrigerant
recovery
pressure side
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26318090A
Other languages
Japanese (ja)
Other versions
JP2851937B2 (en
Inventor
Toshinobu Masaike
政池 利信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Ryowa Ltd
Original Assignee
Techno Ryowa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Ryowa Ltd filed Critical Techno Ryowa Ltd
Priority to JP2263180A priority Critical patent/JP2851937B2/en
Publication of JPH04143563A publication Critical patent/JPH04143563A/en
Application granted granted Critical
Publication of JP2851937B2 publication Critical patent/JP2851937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To reduce in size and weight and to shorten recovering time by providing low and high pressure side solenoid valves provided to connecting tubes, a differential pressure switch provided to open or close the valve to detect a pressure difference of a recovering gas cylinder from the high pressure sic of a refrigerant circuit, and a low pressure switch for detecting a pressure in the circuit. CONSTITUTION:When a high pressure side solenoid valve 14 and a recovery gas cylinder side solenoid vale 16 are opened and a low pressure side solenoid valve 15 is closed, the high pressure side of a refrigerant circuit 21 is connected to a recovery gas cylinder 10, and high pressure liquid refrigerant cooled and condensed by a compressor 6 and a condenser 7 of the circuit 21 is fed into the low pressure cylinder 10. In this case, the liquid refrigerant is passed through an oil separator 20, and impurities in the refrigerant such as oil, etc., of the compressor 6 flowing out together with the refrigerant are removed. When the recovery of the refrigerant is started, a recovery timer 17 is simultaneously operated, and the solenoid valve 16 is closed after about two minutes. Then, a differential pressure sensing timer 18 is operated, and the valve 16 is released after 15 seconds. Thus, if a small space is provided around a facility, the refrigerant can be recovered, and the recovering time can be greatly shortened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、空調や冷凍設備等に使用されている冷媒を、
撤去或いは修理時に大気に放出することなく自動的に回
収することができる冷媒回収装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for refrigerant used in air conditioning, refrigeration equipment, etc.
The present invention relates to a refrigerant recovery device that can automatically recover refrigerant without releasing it into the atmosphere during removal or repair.

[従来の技術] 近年、環境汚染や環境破壊等の地球を取り巻く環境悪化
についてか問題となっている。その一つとして、空調や
冷凍設備の冷媒等に用いられているフロンガスの有害性
が取り上げられている。このガスは、人体には無害であ
るため多用されてきたが、オゾンを破壊する作用がある
ことが近年になって判明した。フロンガスの比重は空気
に比べて軽いため、大気中に放出されたガスは上昇して
地球を取り巻くオゾン層にまで達し、オゾン層を徐々に
破壊し始めている。地球はオゾン層があることによって
、太陽から大量に放射される有害な紫外線の大部分か遮
られている。この紫外線は人体に癌等を発生させる作用
かあるが、現在まではオゾン層によって地上に届く紫外
線が僅かであるため、この紫外線による人体への影響は
ほとんと無かった。しかし、このままオゾン層が破壊さ
れ続ければ大問題となる。
[Prior Art] In recent years, the deterioration of the environment surrounding the earth, such as environmental pollution and destruction, has become a problem. One example of this is the harmful nature of fluorocarbon gas, which is used as a refrigerant in air conditioning and refrigeration equipment. This gas has been widely used because it is harmless to the human body, but in recent years it has been discovered that it has the effect of destroying ozone. Since the specific gravity of fluorocarbon gas is lighter than air, the gas released into the atmosphere rises and reaches the ozone layer surrounding the earth, where it gradually begins to deplete. The Earth's ozone layer blocks most of the harmful ultraviolet rays emitted by the sun. These ultraviolet rays can cause cancer in the human body, but until now, only a small amount of ultraviolet rays reached the ground due to the ozone layer, so this ultraviolet ray had almost no effect on the human body. However, if the ozone layer continues to be destroyed, it will become a major problem.

そこで、最近は空調や冷凍設備等を撤去、或いは修理す
る時に、冷媒として使用されているフロンガスを大気中
に放出せずに回収することのできる冷媒回収装置か提供
されている。
Therefore, recently, refrigerant recovery devices have been provided that can recover the fluorocarbon gas used as a refrigerant when removing or repairing air conditioning or refrigeration equipment, etc., without releasing it into the atmosphere.

即ち、第3図に示されるように、この従来の冷媒回収装
置は、回収時に空調や冷凍設備等の冷媒排出口と接続さ
れる吸入連結管31に、オイルセパレータ34か接続さ
れたコンプレッサ32とコンデンサ33による冷凍サイ
クルが接続されている。この冷凍サイクルには、レシー
バ35及びドライヤ36が順に接続され、冷媒はこのド
ライヤ36を通過したのち別途に設けられた回収用レシ
ーバ37に回収される。
That is, as shown in FIG. 3, this conventional refrigerant recovery device includes a compressor 32 connected to an oil separator 34 to a suction connecting pipe 31 that is connected to a refrigerant outlet of an air conditioner or refrigeration equipment during recovery. A refrigeration cycle with a condenser 33 is connected. A receiver 35 and a dryer 36 are connected in this order to this refrigeration cycle, and after the refrigerant passes through this dryer 36, it is collected in a separately provided collection receiver 37.

この装置で空調や冷凍設備等の冷媒であるフロンガスを
回収するには、その設備の冷媒υU出口を吸入連結管3
1に接続させ、冷媒を回収装置内にガスの状態で吸入さ
せる。吸入されたフロンガスは冷凍サイクルであるコン
プレッサ32を通過して圧縮され、この圧縮ガス冷媒の
状態でオイルセパレータ34に吐出される。オイルセパ
レータ34では、圧縮ガス冷媒と共に流出するコンプレ
ッサ32のオイル等の不純物か除去される。不純物の除
去されたカス冷媒はコンデンサ33を通過して冷却され
、冷媒は凝縮液化される。この凝縮液化された冷媒は、
レシーバ35に送られ、このレシーバ35で空気等の不
純気体やガス冷媒が分離される。その後液化された冷媒
は、ドライヤ36を介して、回収装置とは別途に設けら
れた回収用レシーバ37に送られて回収される。
To recover fluorocarbon gas, which is a refrigerant from air conditioning and refrigeration equipment, etc., with this device, connect the refrigerant υU outlet of the equipment to the suction connecting pipe 3.
1, and the refrigerant is sucked into the recovery device in a gas state. The sucked fluorocarbon gas passes through a compressor 32 which is a refrigeration cycle, is compressed, and is discharged to an oil separator 34 in the form of compressed gas refrigerant. The oil separator 34 removes impurities such as oil from the compressor 32 that flows out together with the compressed gas refrigerant. The dregs refrigerant from which impurities have been removed passes through the condenser 33 and is cooled, and the refrigerant is condensed and liquefied. This condensed and liquefied refrigerant is
It is sent to the receiver 35, where impure gases such as air and gas refrigerant are separated. Thereafter, the liquefied refrigerant is sent to a recovery receiver 37 provided separately from the recovery device via the dryer 36 and recovered.

[発明が解決しようとする課題] しかしながら、従来の冷媒回収装置では、冷媒がガスの
状態で回収されるので凝縮液化する必要があり、そのた
めの冷凍サイクルが必要となる。
[Problems to be Solved by the Invention] However, in the conventional refrigerant recovery apparatus, since the refrigerant is recovered in a gas state, it is necessary to condense and liquefy the refrigerant, and a refrigeration cycle for this purpose is required.

この冷凍サイクルとしてのコンプレッサ32とコンデン
サ33を備えることによって、装置が大型化し、その重
量もかなりのものになってしまう。
By including the compressor 32 and the condenser 33 as the refrigeration cycle, the device becomes large and its weight becomes considerable.

しかも、この回収経路の中では、冷凍サイクルでガス冷
媒を冷却して凝縮することが不可欠であるため、その作
業に時間がかかってしまう。更に、この装置は冷凍サイ
クル等種々の回収用部材が必要なために、価格が高くな
ってしまう。−L述したように、従来の回収装置では設
置場所や回収時間、更に装置価格と問題か多いため、一
般にフロンガスの回収の重要性を認めつつも、使用して
いる業者はまだ少ない。
Moreover, in this recovery route, it is essential to cool and condense the gas refrigerant in a refrigeration cycle, which takes time. Furthermore, since this device requires various recovery members such as a refrigeration cycle, it becomes expensive. -L As mentioned above, there are many problems with conventional recovery equipment, such as installation location, recovery time, and equipment cost, so although the importance of fluorocarbon gas recovery is generally acknowledged, there are still few companies using it.

本発明は、上記のような従来技術の課題を解決するため
に提供されたもので、その目的は、小型軽量で、回収時
間を短縮することができ、しかも安価な冷媒の回収装置
を提供することである。
The present invention was provided in order to solve the problems of the prior art as described above, and its purpose is to provide a refrigerant recovery device that is small and lightweight, can shorten the recovery time, and is inexpensive. That's true.

[課題を解決するための手段] 本発明の冷媒回収装置は、 空調或いは冷凍設備に設けられた冷媒回路の高圧側と低
圧側、および別途に設けられた回収用ボンベにそれぞれ
に連結される連結管と、前記各連結管に設けられた高圧
側と低圧側の電磁弁と、 前記電磁弁を開閉するために設けられ、冷媒回路の高圧
側と回収用ボンへの圧力差を検出する差圧スイッチと、
冷媒回路内の圧力を検出する低圧スイッチと、 を備えたことを特徴とする。
[Means for Solving the Problems] The refrigerant recovery device of the present invention includes connections connected to the high-pressure side and low-pressure side of a refrigerant circuit provided in air conditioning or refrigeration equipment, and to a separately provided recovery cylinder. pipes, high-pressure side and low-pressure side solenoid valves provided in each of the connecting pipes, and a differential pressure provided to open and close the solenoid valves to detect the pressure difference between the high-pressure side of the refrigerant circuit and the recovery cylinder. switch and
A low pressure switch that detects the pressure within the refrigerant circuit;

[作用] 以上のような構成を有する本発明においては、まず、高
圧側の電磁弁を介して回収用ボンベを設備の高圧側に接
続すると、設備側のコンプレッサ及びコンデンサで圧縮
及び凝縮され、高圧となった凝縮冷媒か低圧のボンベ内
に流入し、ボンベ内には液冷媒が溜まっていく。凝縮冷
媒の流入は、ボンベ内部と設備側との差圧が小さくなる
まで続き、この差圧の減少を差圧スイッチが検出した状
態で、高圧側の電磁弁を閉じ、低圧側の電磁弁を開くこ
とで回収用ボンベを設備の低圧側に接続する。すると、
高圧になっているボンベ内部のガス冷媒が設備の低圧側
に放出され、その際の自己冷却によりボンへ内圧が低下
する。このボンベ内圧と設備の高圧側との差圧を差圧ス
イッチが確認した状態で、低圧側の電磁弁を閉じると共
に高圧側の電磁弁を開くと、再び凝縮された冷媒が低圧
になったボンベ内に流入する。
[Function] In the present invention having the above configuration, first, when the recovery cylinder is connected to the high pressure side of the equipment via the high pressure side solenoid valve, the high pressure is compressed and condensed by the compressor and condenser on the equipment side. The condensed refrigerant flows into the low-pressure cylinder, and liquid refrigerant accumulates inside the cylinder. The inflow of condensed refrigerant continues until the differential pressure between the inside of the cylinder and the equipment side becomes small. When the differential pressure switch detects a decrease in this differential pressure, the high pressure side solenoid valve is closed and the low pressure side solenoid valve is closed. Opening connects the collection cylinder to the low pressure side of the equipment. Then,
The high-pressure gas refrigerant inside the cylinder is released to the low-pressure side of the equipment, and self-cooling at this time lowers the internal pressure of the cylinder. When the differential pressure switch confirms the differential pressure between the internal pressure of the cylinder and the high pressure side of the equipment, the solenoid valve on the low pressure side is closed and the solenoid valve on the high pressure side is opened. flow inside.

以下、 ■設備側のコンプレッサ及びコンデンサを利用した高圧
側からの凝縮冷媒の流入、 ■低圧側へのガス冷媒の放出によるボンベの内圧低下、 の工程を繰り返すことにより、設備内の冷媒をボンベ内
に回収し、低圧スイッチにより設備内の冷媒圧力がOk
g / (1!Iilとなった時点で回収完了と判断し
、前記各電磁弁を閉じてボンベを設備から切り離す。
By repeating the following steps: (1) inflow of condensed refrigerant from the high-pressure side using the compressor and condenser on the equipment side, (2) lowering the internal pressure of the cylinder by releasing gas refrigerant to the low-pressure side, the refrigerant in the equipment is transferred to the cylinder. The refrigerant pressure inside the equipment is set to OK using the low pressure switch.
g/(1!Iil), it is determined that the collection is complete, and each of the electromagnetic valves is closed to disconnect the cylinder from the equipment.

[実施例コ 以下、本発明の冷媒回収装置の一実施例を第1図及び第
2図に従って説明する。
[Embodiment 1] An embodiment of the refrigerant recovery apparatus of the present invention will be described below with reference to FIGS. 1 and 2.

即ち、第1図は、設備側の冷媒回路に本実施例の冷媒回
収装置を接続した状態の回路図であって、この回路図に
示すように、冷媒の回収を必要とされる設備内に設けら
れた冷媒回路21は、冷媒を圧縮するためのコンプレッ
サ6に、冷媒を凝縮し液冷媒とするためのコンデンサ7
と、この凝縮されだ液冷媒をガス化し吸熱するエバポレ
ータ22が接続され、このエバポレータ22がガス化さ
れた冷媒を圧縮するために再びコンプレッサ6に接続さ
れている。また、冷媒回路21には、本実施例の冷媒回
収装置を接続するために、コンデンサ7の後方に高圧側
チエツクジヨイント8か、コンプレッサ6の前方に低圧
側チエツクジヨイント9が設けられている。
That is, FIG. 1 is a circuit diagram in which the refrigerant recovery device of this embodiment is connected to the refrigerant circuit on the equipment side. The provided refrigerant circuit 21 includes a compressor 6 for compressing refrigerant and a condenser 7 for condensing the refrigerant into liquid refrigerant.
An evaporator 22 is connected to the condensed saliva refrigerant to gasify it and absorb heat, and the evaporator 22 is connected again to the compressor 6 to compress the gasified refrigerant. Further, the refrigerant circuit 21 is provided with a high pressure side check joint 8 behind the condenser 7 or a low pressure side check joint 9 in front of the compressor 6 in order to connect the refrigerant recovery device of this embodiment. .

前述の設備から冷媒を回収するために、本実施例の冷媒
回収装置1と、これに連結され別途に設けられた回収ボ
ンベ10が必要である。
In order to recover the refrigerant from the above-mentioned equipment, the refrigerant recovery device 1 of this embodiment and the recovery cylinder 10 connected thereto and separately provided are required.

この冷媒回収装置1には、第1図及び第2図に示すよう
に、設備に設けられた冷媒回路21の高圧側チエツクジ
ヨイント8と、低圧側チェツクンヨイント9、及び回収
用ボンへ10とに接続される3本の連結管3,4.5が
本体ケース2内に設けられている。これらの連結管3,
4.5は分岐管13を介して互いに接続されている。更
にこれら容管には、管の開閉を行うためにそれぞれ高圧
側電磁弁14、低圧側電磁弁15及び回収ボンへ側電磁
弁16か設けられている。また、これら各電磁弁の開閉
を制御するために、冷媒回路21の高圧側圧力と回収用
ボンt\10内圧との差圧を検知する設定値1kg/c
♂の差圧スイッチ11と、冷媒回路21の低圧側圧力を
検知する設定値Okg/C−の低圧スイッチ12とが設
けられている。また、これら電磁弁14〜16の動作時
間の設定と差圧スイッチ11を一定の時間で作動させる
ために、回収用タイマ17、差圧検知用タイマ18及び
ボンベ内自己冷却減圧用タイマ19が設けられている。
As shown in FIGS. 1 and 2, this refrigerant recovery device 1 includes a high-pressure side check joint 8, a low-pressure side check joint 9, and a recovery bong 10 of a refrigerant circuit 21 provided in the equipment. Three connecting pipes 3, 4.5 connected to the main body case 2 are provided within the main body case 2. These connecting pipes 3,
4.5 are connected to each other via a branch pipe 13. Further, each of these container pipes is provided with a high pressure side solenoid valve 14, a low pressure side solenoid valve 15, and a side solenoid valve 16 for the recovery cylinder in order to open and close the pipes. In addition, in order to control the opening and closing of each of these solenoid valves, a set value of 1 kg/c is used to detect the differential pressure between the high pressure side pressure of the refrigerant circuit 21 and the internal pressure of the recovery cylinder t\10.
A male differential pressure switch 11 and a low pressure switch 12 with a set value Okg/C- for detecting the low pressure side pressure of the refrigerant circuit 21 are provided. In addition, in order to set the operating time of these electromagnetic valves 14 to 16 and to operate the differential pressure switch 11 at a constant time, a recovery timer 17, a differential pressure detection timer 18, and a timer 19 for self-cooling pressure reduction in the cylinder are provided. It is being

なお、高圧側連結管3の一部には、不純物除去のために
オイルセパレータ20が取り付けられている。
Note that an oil separator 20 is attached to a part of the high-pressure side connecting pipe 3 to remove impurities.

以上の様に構成される本実施例の冷媒回収装置で設備の
冷媒を回収するには、まず、冷媒回路21の高圧側チエ
ツクジヨイント8に高圧側連結管3を、低圧側チエツク
ジヨイント9に低圧側連結管4を、回収用ボンベ10に
ボンベ連結管5を接続する。この状態で、冷媒回収装置
1の電源を投入し、低圧スイッチ12が、冷媒の回収を
必要とする設備の冷媒回路21内に冷媒が少しでも有る
状態、即ち低圧側圧力がOkg / cdよりも大きい
状態を検出すると、高圧側電磁弁14と回収ホンへ側電
磁弁16が開き、低圧側電磁弁15か閉じられる。これ
によって、冷媒回路21の高圧側と回収ボンベ10とが
接続された状態になり、冷媒回路21のコンプレッサ6
とコンデンサ7によって冷却凝縮された高圧液冷媒が、
低圧の回収ホンへ10内に流入する。この時、液冷媒は
オイルセパレータ20を通り、冷媒と共に流出するコン
プレッサ6のオイル等の冷媒中の不純物か除去される。
In order to recover refrigerant from the equipment with the refrigerant recovery apparatus of this embodiment configured as described above, first, connect the high pressure side connecting pipe 3 to the high pressure side check joint 8 of the refrigerant circuit 21, and connect the high pressure side connecting pipe 3 to the low pressure side check joint 9. The low pressure side connecting pipe 4 is connected to the cylinder 10, and the cylinder connecting pipe 5 is connected to the recovery cylinder 10. In this state, the power to the refrigerant recovery device 1 is turned on, and the low pressure switch 12 indicates that there is even a small amount of refrigerant in the refrigerant circuit 21 of the equipment that requires refrigerant recovery, that is, the low pressure side pressure is lower than Okg/cd. When a large state is detected, the high pressure side solenoid valve 14 and the recovery phone side solenoid valve 16 are opened, and the low pressure side solenoid valve 15 is closed. As a result, the high pressure side of the refrigerant circuit 21 and the recovery cylinder 10 are connected, and the compressor 6 of the refrigerant circuit 21 is connected to the recovery cylinder 10.
The high-pressure liquid refrigerant cooled and condensed by the condenser 7 is
Flows into the low pressure recovery phone 10. At this time, the liquid refrigerant passes through the oil separator 20, and impurities in the refrigerant, such as oil from the compressor 6, which flow out together with the refrigerant, are removed.

冷媒の回収か開始されると同時に回収用タイマ17が作
動し、約2分後に回収ボンベ側電磁弁16が閉じられる
。この後、差圧検知用タイマ18が作動して、15秒後
に再度回収ホンへ側電磁弁16が解放される。この15
秒間に差圧スイッチ11によって冷媒回路2]の高圧側
圧力と回収用ボンベ10内圧ツノの差圧が検出され、こ
の値が1kg / crlよりも大きい値の場合には、
差圧か充分にあるため、再ひ高圧側と回収ホンへ10と
を接続させて回収を続ける。差圧が減少し1kg/cd
以内の場合には、高圧側電磁弁14を閉じ、低圧側電磁
弁15を開くことで回収用ボンへ10を冷媒回路21の
低圧側に接続する。この時、ボンへ内自己冷却減圧用タ
イマ19によって1分後には低圧側電磁弁15が閉じら
れる。この1分間に、高圧になった回収ボンベ10内か
らガス化された冷媒が冷媒回路21の低圧側に放出され
、その際の自己冷却によりボンベ内圧が低下する。
At the same time as refrigerant recovery is started, the recovery timer 17 is activated, and about 2 minutes later, the recovery cylinder side solenoid valve 16 is closed. Thereafter, the differential pressure detection timer 18 is activated, and the side solenoid valve 16 is again released to the collection phone after 15 seconds. This 15
The differential pressure between the high-pressure side pressure of the refrigerant circuit 2 and the internal pressure of the recovery cylinder 10 is detected by the differential pressure switch 11 every second, and if this value is larger than 1 kg/crl,
Since the differential pressure is sufficient, connect 10 to the high pressure side and the recovery phone again to continue recovery. Differential pressure decreases to 1kg/cd
In the case of less than 1, the high-pressure side solenoid valve 14 is closed and the low-pressure side solenoid valve 15 is opened to connect the recovery cylinder 10 to the low-pressure side of the refrigerant circuit 21. At this time, the low-pressure side solenoid valve 15 is closed one minute later by the timer 19 for self-cooling pressure reduction in the cylinder. During this one minute, gasified refrigerant is discharged from the high-pressure recovery cylinder 10 to the low-pressure side of the refrigerant circuit 21, and the internal pressure of the cylinder decreases due to self-cooling at this time.

低圧側電磁弁15が閉じられた後、差圧スイッチ11に
よって、冷媒回路21高圧側圧力と冷媒回収ボンベ10
内圧との差圧が1 kg / cdよりも大きい値であ
ることを確認し、再び冷媒回路21高圧側と回収ボンベ
10とを接続すると、高圧の凝縮液化冷媒が低圧となっ
た回収ボンベ10に流入し回収される。この冷媒回路2
1高圧側から凝縮液化冷媒を回収ボンベ10に回収する
工程と、回収ボンベ10内のガス冷媒を冷媒回路21低
圧側に放出して回収ポンベ10内圧を低下させる工程を
繰り返して、冷媒回路21内の冷媒を回収ボンベ10内
に回収する。このようにして、冷媒回路21内の冷媒が
回収され、低圧側の冷媒圧力かOkg/ ctAとなっ
たのを低圧スイッチ12が検知し、高圧側電磁弁14、
低圧側電磁弁15及び回収ボンベ側電磁弁16を閉じて
、回収装置1及び回収ボンベ10を設備側の冷媒回路2
1から切り離して回収を終了させる。
After the low pressure side solenoid valve 15 is closed, the differential pressure switch 11 switches between the high pressure side pressure of the refrigerant circuit 21 and the refrigerant recovery cylinder 10.
After confirming that the differential pressure with the internal pressure is greater than 1 kg/cd, the high pressure side of the refrigerant circuit 21 and the recovery cylinder 10 are connected again, and the high pressure condensed liquefied refrigerant is transferred to the low pressure recovery cylinder 10. It flows in and is collected. This refrigerant circuit 2
1. The process of recovering condensed liquefied refrigerant from the high-pressure side into the recovery cylinder 10 and the process of releasing the gas refrigerant in the recovery cylinder 10 to the low-pressure side of the refrigerant circuit 21 to lower the internal pressure of the recovery pump 10 are repeated. The refrigerant is recovered into the recovery cylinder 10. In this way, the refrigerant in the refrigerant circuit 21 is recovered, and the low pressure switch 12 detects that the refrigerant pressure on the low pressure side has reached Okg/ctA, and the high pressure side solenoid valve 14,
The low pressure side solenoid valve 15 and the recovery cylinder side solenoid valve 16 are closed, and the recovery device 1 and the recovery cylinder 10 are connected to the refrigerant circuit 2 on the equipment side.
Separate it from 1 and complete the collection.

ところで、高圧側連結管3に設けられたオイルセパレー
タ20は、冷媒回収時に冷媒と共に流出してしまうコン
プレッサ6のオイル等を貯溜し、更にこのオイル等をコ
ンプレッサ6に還流させるので、回収冷媒の純度を上げ
ることができ、また、コンプレッサ6の機能を損ねずに
冷媒の冷却を続けることができる。
Incidentally, the oil separator 20 provided in the high-pressure side connecting pipe 3 stores oil from the compressor 6 that would otherwise flow out together with the refrigerant during refrigerant recovery, and also returns this oil to the compressor 6, so that the purity of the recovered refrigerant can be reduced. In addition, cooling of the refrigerant can be continued without impairing the function of the compressor 6.

以上のように、本実施例の冷媒回収装置によれば、空調
や冷凍設備等の冷媒回路を利用することによって、冷媒
回収装置には冷却のだめの冷媒回路が不要となり、これ
によって装置が小型軽量化することができ、持ち運びも
簡単にできる。また、製造工程も簡素なものとなり、安
価な装置を提供することができる。更に、従来の回収経
路中で時間のかかるガス冷媒の冷却を、冷媒の回収を必
要とする設備の冷媒回路で行なって、液冷媒の状態て冷
媒回収装置に回収させるので、回収時間が従来に比べ大
幅に短縮することができる。
As described above, according to the refrigerant recovery device of this embodiment, by using the refrigerant circuit of air conditioning, refrigeration equipment, etc., the refrigerant recovery device does not require a refrigerant circuit for cooling, which makes the device smaller and lighter. It can be easily stored and carried. Moreover, the manufacturing process becomes simple, and an inexpensive device can be provided. Furthermore, the cooling of the gas refrigerant, which takes time in the conventional recovery route, is performed in the refrigerant circuit of the equipment that requires refrigerant recovery, and the refrigerant is recovered in the liquid refrigerant state by the refrigerant recovery equipment, so the recovery time is shorter than that of the conventional recovery route. It can be significantly shortened compared to

なお、本発明は上述した実施例に限定されるものではな
く、具体的な各部材の形状、或いは各々の取付は位置及
び方法等は適宜変更可能である。
Note that the present invention is not limited to the embodiments described above, and the specific shape of each member, the position and method of mounting each member, etc. can be changed as appropriate.

例えば、スイッチやタイマの設定は実施例に限定されず
、気温や冷媒の回収を必要とする設備のコンプレッサの
能力等により適正値に設定し、また補正することによっ
て、更に効率よく回収することができる。
For example, the settings of switches and timers are not limited to the examples, but can be set to appropriate values based on the temperature, the capacity of the compressor of the equipment that requires refrigerant recovery, etc., and by correcting them, more efficient recovery can be achieved. can.

また、差圧スイッチの前後や低圧スイッチ、或いは各連
結管の冷媒回路やボンベの接続部付近に圧力計を設ける
ことも考えられる。この圧力計によって、冷媒回路高圧
側圧力と冷媒回収ボンベ内圧との差圧や冷媒回路低圧側
圧力の正確な測定値を得ることができ、冷媒回路内の冷
媒残存状態や冷媒回収装置の作動状態を知ることができ
る。更に、タイマの設定等や冷媒回収装置の保守等の参
考に活用できる。また、本実施例はタイマを設けること
によって自動化されているが、圧力計を設けることによ
って、手動でも回収することができる。更に、冷媒がボ
ンベに回収されている工程中の差圧や低圧側圧力も測定
可能な高精度の差圧スイッチや低圧スイッチを使用する
ことによって、タイマを使用せずに効率よく回収を行う
ことができる。
It is also conceivable to provide pressure gauges before and after the differential pressure switch, near the low pressure switch, or near the refrigerant circuit or cylinder connection of each connecting pipe. With this pressure gauge, it is possible to obtain accurate measurements of the differential pressure between the high-pressure side pressure of the refrigerant circuit and the internal pressure of the refrigerant recovery cylinder, as well as the low-pressure side pressure of the refrigerant circuit. can be known. Furthermore, it can be used as a reference for timer settings, etc., and maintenance of refrigerant recovery equipment. Further, although this embodiment is automated by providing a timer, collection can also be performed manually by providing a pressure gauge. Furthermore, by using a high-precision differential pressure switch and low pressure switch that can measure the differential pressure and low pressure side pressure during the process where refrigerant is collected into the cylinder, collection can be performed efficiently without using a timer. I can do it.

更に、冷媒回収ボンベの周囲に水槽や冷却管等を設け、
常に冷却水で保冷することも可能である。
Additionally, water tanks and cooling pipes are installed around the refrigerant recovery cylinder.
It is also possible to always keep it cool with cooling water.

これによって、冷媒回収ボンベ内の温度の上昇を押さえ
ることができ、ボンベ内圧の低下を短時間に行うことが
でき、回収時間を短縮することができる。
As a result, it is possible to suppress an increase in the temperature inside the refrigerant recovery cylinder, the internal pressure of the cylinder can be reduced in a short time, and the recovery time can be shortened.

[発明の効果コ 本発明の冷媒回収装置によれは、従来に比べて小型軽量
化され、簡単に持ち運びができるので、冷媒の回収を必
要とする設備の周囲にわずかなスペースが有れば冷媒回
収をすることができる。また、回収時間を大幅に短縮す
ることができ、しがも安価であるので、空調や冷凍設備
の撤去及び修理の工程の一部に無理無く組み込むことか
でき、冷媒回収を普及することが可能となる。即ち、地
球環境保護のための冷媒回収を推進することができる冷
媒回収装置を提供することができる。
[Effects of the Invention] The refrigerant recovery device of the present invention is smaller and lighter than conventional devices and can be easily carried, so if there is a small space around the equipment that requires refrigerant recovery, can be collected. In addition, the recovery time can be significantly shortened, and since it is inexpensive, it can be easily incorporated into the process of removing and repairing air conditioning and refrigeration equipment, making refrigerant recovery more widespread. becomes. That is, it is possible to provide a refrigerant recovery device that can promote refrigerant recovery for the protection of the global environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷媒回収装置の実施例を示す回路図、
第2図は同じく配置図、第3図は従来の冷媒回収装置を
示す概略構成図である。 1・・・冷媒回収装置、2・・・本体ケース、3・・・
高圧側連結管、4・・・低圧側連結管、5・・・ボンベ
連結管、6・・・コンプレッサ、7・・・コンデンサ、
8・・・高圧チエツクジヨイント、9・・・低圧チエツ
クジヨイント、10・・・回収用ボンベ、11・・・差
圧スイッチ、12・・・低圧スイッチ、13・・・分岐
管、14・・・高圧側電磁弁、15・・・低圧側電磁弁
、16・・・回収ボンベ側電磁弁、17・・・回収用タ
イマ、18・・・差圧検知用タイマ、19・・・ボンベ
内自己冷却減圧用タイマ、20・・・オイルセパレータ
、21・・・冷媒回路、22・・・エバポレータ、31
・・・吸入連結管、32・・・コンプレッサ、33・・
・コンデンサ、34・・・オイルセパレータ、35・・
・レシーバ、36・・・ドライヤ、37・・・回収用レ
シーバ。
FIG. 1 is a circuit diagram showing an embodiment of the refrigerant recovery device of the present invention,
FIG. 2 is a similar layout diagram, and FIG. 3 is a schematic configuration diagram showing a conventional refrigerant recovery device. 1... Refrigerant recovery device, 2... Main body case, 3...
High pressure side connecting pipe, 4... Low pressure side connecting pipe, 5... Cylinder connecting pipe, 6... Compressor, 7... Condenser,
8... High pressure check joint, 9... Low pressure check joint, 10... Recovery cylinder, 11... Differential pressure switch, 12... Low pressure switch, 13... Branch pipe, 14... ...High pressure side solenoid valve, 15...Low pressure side solenoid valve, 16...Recovery cylinder side solenoid valve, 17...Recovery timer, 18...Differential pressure detection timer, 19...Inside cylinder Self-cooling pressure reduction timer, 20... Oil separator, 21... Refrigerant circuit, 22... Evaporator, 31
...Suction connecting pipe, 32...Compressor, 33...
・Capacitor, 34...Oil separator, 35...
-Receiver, 36...Dryer, 37...Receiver for collection.

Claims (1)

【特許請求の範囲】  空調或いは冷凍設備に設けられた冷媒回路の高圧側と
低圧側、および別途に設けられた回収用ボンベにそれぞ
れに連結される連結管と、 前記各連結管に設けられた高圧側と低圧側の電磁弁と、 前記電磁弁を開閉するために設けられ、冷媒回路の高圧
側と回収用ボンベの圧力差を検出する差圧スイッチと、
冷媒回路内の圧力を検出する低圧スイッチと、 を備えたことを特徴とする冷媒回収装置。
[Scope of Claims] Connecting pipes connected to the high-pressure side and low-pressure side of a refrigerant circuit provided in air conditioning or refrigeration equipment, and a separately provided recovery cylinder, and connecting pipes provided in each of the connecting pipes. a solenoid valve on a high-pressure side and a low-pressure side; a differential pressure switch that is provided to open and close the solenoid valve and detects a pressure difference between the high-pressure side of the refrigerant circuit and the recovery cylinder;
A refrigerant recovery device comprising: a low pressure switch that detects pressure within a refrigerant circuit;
JP2263180A 1990-10-02 1990-10-02 Refrigerant recovery device Expired - Lifetime JP2851937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263180A JP2851937B2 (en) 1990-10-02 1990-10-02 Refrigerant recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263180A JP2851937B2 (en) 1990-10-02 1990-10-02 Refrigerant recovery device

Publications (2)

Publication Number Publication Date
JPH04143563A true JPH04143563A (en) 1992-05-18
JP2851937B2 JP2851937B2 (en) 1999-01-27

Family

ID=17385884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263180A Expired - Lifetime JP2851937B2 (en) 1990-10-02 1990-10-02 Refrigerant recovery device

Country Status (1)

Country Link
JP (1) JP2851937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPI20110061A1 (en) * 2011-06-01 2012-12-02 Ecotechnics S P A RECOVERY, PURIFICATION AND INSPECTION OF A REFRIGERANT FLUID
CN102901287A (en) * 2011-07-25 2013-01-30 罗伯特·博世有限公司 Apparatus and method for recovering fluid refrigerant
JP2016033378A (en) * 2014-07-31 2016-03-10 アクセス株式会社 Solenoid valve unit
CN111426107A (en) * 2020-02-28 2020-07-17 青岛海尔空调电子有限公司 Air conditioning unit and impurity removal method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPI20110061A1 (en) * 2011-06-01 2012-12-02 Ecotechnics S P A RECOVERY, PURIFICATION AND INSPECTION OF A REFRIGERANT FLUID
WO2012164533A3 (en) * 2011-06-01 2013-11-07 Ecotechnics S.P.A. Apparatus and method for regenerating a refrigerant of a/c systems and for checking the lubricant content
CN102901287A (en) * 2011-07-25 2013-01-30 罗伯特·博世有限公司 Apparatus and method for recovering fluid refrigerant
CN102901287B (en) * 2011-07-25 2017-08-22 马勒国际有限公司 Apparatus and method for reclaiming fluid refrigerant
JP2016033378A (en) * 2014-07-31 2016-03-10 アクセス株式会社 Solenoid valve unit
CN111426107A (en) * 2020-02-28 2020-07-17 青岛海尔空调电子有限公司 Air conditioning unit and impurity removal method thereof

Also Published As

Publication number Publication date
JP2851937B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
TWI493106B (en) Cryogenic pump system, compressor and cryogenic pump regeneration method
US5230224A (en) Refrigerant recovery system
US5471848A (en) Refrigerant recovery and purification method and apparatus
JPH0792299B2 (en) Refrigerant recovery method and recovery device
JPH04143563A (en) Refrigerant recovering device
JP6822335B2 (en) Refrigerant recovery device
KR101999394B1 (en) Refrigerant recovery/recycling equipment and recycling method using the same
US5181390A (en) Manually operated refrigerant recovery apparatus
JP2826693B2 (en) Refrigerant gas recovery device for single-port valve recovery container
JPH0648290Y2 (en) Freon gas recovery device
JPH0120706B2 (en)
JPH07167536A (en) Refrigerant recovering apparatus
JP3959409B2 (en) Refrigerant recovery device
KR0186016B1 (en) Refrigerant recovering apparatus of refrigerating apparatus
JPH0792298B2 (en) Refrigerant recovery and regeneration device
JP3326998B2 (en) Refrigerant recovery device
JP2005055077A (en) Refrigerant treating device
JP2927071B2 (en) Cryogenic refrigerator
JPH02169973A (en) Fluorocarbon recovering apparatus
JPH0455670A (en) Recovering method of refrigerant for refrigerating machine
JP2001165535A (en) Method for manufacturing air conditioner
JP2001066023A (en) Refrigerant recovering unit
JP3000236U (en) Refrigerant receiver tank
JP3214989B2 (en) Refrigerant recovery device
KR200227519Y1 (en) Freon gas recovery system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

EXPY Cancellation because of completion of term