JPH0414268A - Photoelectric transducer using compound semiconductor polycrystalline thin film - Google Patents
Photoelectric transducer using compound semiconductor polycrystalline thin filmInfo
- Publication number
- JPH0414268A JPH0414268A JP2116810A JP11681090A JPH0414268A JP H0414268 A JPH0414268 A JP H0414268A JP 2116810 A JP2116810 A JP 2116810A JP 11681090 A JP11681090 A JP 11681090A JP H0414268 A JPH0414268 A JP H0414268A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- type semiconductor
- transparent electrode
- zinc sulfide
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 79
- 239000010409 thin film Substances 0.000 title claims description 7
- 150000001875 compounds Chemical class 0.000 title claims description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 claims abstract description 41
- 239000005083 Zinc sulfide Substances 0.000 claims abstract description 22
- 239000006104 solid solution Substances 0.000 claims abstract description 20
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 13
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000013459 approach Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 14
- 238000004544 sputter deposition Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 13
- 230000007547 defect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910017489 Cu I Inorganic materials 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Landscapes
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、化合物半導体多結晶薄膜を用いた光電変換素
子に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoelectric conversion element using a compound semiconductor polycrystalline thin film.
[従来の技術]
従来のP型化合物半導体CuInSe2を光吸収層とす
る薄膜型光電変換素子は、通常、第3図に示す基本構造
を有する。第3図において、6はガラスあるいはセラミ
ックスなどからなる基板であり、この基板6上にはモリ
ブデンMoあるいはニッケルNiなどからなる電極7が
形成されている。電極7上には物理的蒸着法(多元蒸着
法、スバンタ法なと)、スプレー法あるいはメンキ法な
どの手法により、P型半導体層8としてCuInSez
が形成されている。さらにP型半導体層8上には、前記
手法によりn型半導体層9が形成されている。n型半導
体層9には硫化カドミウムCdS、あるいは硫化カドミ
ウムCdS硫化亜鉛ZnS固溶体が用いられる。固溶体
を用いた場合、その組成は通常n型半導体層9内におい
て均一である。P型半導体層8およびn型半導体層9の
厚さは、製作条件によるが、通常、それぞれ2.0〜4
.0 μmおよび1、(1〜2.0μmである。[Prior Art] A conventional thin film photoelectric conversion element using a P-type compound semiconductor CuInSe2 as a light absorption layer usually has a basic structure shown in FIG. In FIG. 3, reference numeral 6 denotes a substrate made of glass or ceramics, and on this substrate 6 is formed an electrode 7 made of molybdenum Mo, nickel Ni, or the like. CuInSez is deposited as a P-type semiconductor layer 8 on the electrode 7 by a physical vapor deposition method (multiple vapor deposition method, Svanta method, etc.), a spray method, or a Mönki method.
is formed. Furthermore, an n-type semiconductor layer 9 is formed on the P-type semiconductor layer 8 by the method described above. For the n-type semiconductor layer 9, cadmium sulfide CdS or a cadmium sulfide CdS zinc sulfide ZnS solid solution is used. When a solid solution is used, its composition is usually uniform within the n-type semiconductor layer 9. The thickness of the P-type semiconductor layer 8 and the n-type semiconductor layer 9 depends on the manufacturing conditions, but is usually 2.0 to 4.
.. 0 μm and 1, (1 to 2.0 μm.
n型半導体層9上には、真空蒸着法あるいは熱化学的蒸
着法(以下熱CVD法という)などの手法によりインジ
ウムInと錫Snの混合酸化物(以下ITOという)あ
るいは酸化錫5n02などからな透明電極10が形成さ
れている。さらに、透明電極IO上には、アルミニウム
AAあるいは金Auなどからなる集電用のグリッド電極
11が形成されている。A mixed oxide of indium In and tin Sn (hereinafter referred to as ITO) or tin oxide 5N02 is deposited on the n-type semiconductor layer 9 by a method such as a vacuum evaporation method or a thermochemical vapor deposition method (hereinafter referred to as a thermal CVD method). A transparent electrode 10 is formed. Further, a current collecting grid electrode 11 made of aluminum AA, gold Au, or the like is formed on the transparent electrode IO.
第3図に示した構成の素子において、光は透明電極10
側から入射し、主としてP型半導体層8内で吸収される
。光を吸収したP型半導体層8内では電子および正孔が
発生するが、これらはPn接合によって形成された内部
電界によって分極され、電子はn型半導体側へ、正孔は
P型半導体側へそれぞれ移動し、電極を通して外部回路
に取り出される。In the element having the configuration shown in FIG.
The light enters from the side and is mainly absorbed within the P-type semiconductor layer 8. Electrons and holes are generated in the P-type semiconductor layer 8 that absorbs the light, but these are polarized by the internal electric field formed by the Pn junction, with the electrons moving towards the n-type semiconductor side and the holes moving towards the P-type semiconductor side. They each move and are taken out to an external circuit through electrodes.
従来の基本構成を第3図に示した光電変換素子において
は、下記の課題があった。The conventional photoelectric conversion element whose basic configuration is shown in FIG. 3 has the following problems.
(1) Cu I n S ezおよび硫化カドミウ
ムCdSの薄膜は、通常、強い配向性を示す。したがっ
て、Cu I nSe2と硫化カドミニウムCdS多結
晶薄膜でPn接合を形成した場合、それぞれの面間隔に
差があるため、局所的な歪みが生り、Pn接合面付近で
欠陥が多数生成される。(1) Thin films of Cu I n S ez and cadmium sulfide CdS usually exhibit strong orientation. Therefore, when a Pn junction is formed with Cu I nSe 2 and a cadmium sulfide CdS polycrystalline thin film, there is a difference in the interplanar spacing between the two, resulting in local distortion and generation of many defects near the Pn junction surface.
このため、光発生した電子および正孔がこれらの欠陥に
捕獲され、電流には寄与しなくなるため、素子特性が低
下する。For this reason, photogenerated electrons and holes are captured by these defects and do not contribute to current, resulting in deterioration of device characteristics.
(2)n型半導体層は、光入射層であるとともに、光発
生した電子を透明電極へ伝える機能を有する。したがっ
て、n型半導体層は禁制帯幅および導電率ともに大きい
ことが望ましい。n型半導体層として硫化カドミウムC
dSを用いた場合、禁制帯幅を拡げるため、通常、硫化
亜鉛ZnSを固溶する。しかし、この手法の場合、硫化
亜鉛ZnS固溶量の増大とともに禁制帯幅は広がるが、
同時に導電率が低下する。したがって均一組成の膜を形
成した場合、禁制帯幅と導電率ともに増大させることは
できない。(2) The n-type semiconductor layer is a light incident layer and has a function of transmitting photogenerated electrons to the transparent electrode. Therefore, it is desirable that the n-type semiconductor layer has a large forbidden band width and a large conductivity. Cadmium C sulfide as n-type semiconductor layer
When using dS, zinc sulfide ZnS is usually dissolved in solid solution in order to widen the forbidden band width. However, in the case of this method, the forbidden band width widens as the amount of zinc sulfide ZnS solid solution increases;
At the same time, the conductivity decreases. Therefore, when a film with a uniform composition is formed, both the forbidden band width and the conductivity cannot be increased.
本発明は、上記の課題を解決するためになされたもので
あり、良好なPn特性を有する化合物半導体多結晶薄膜
を用いた光電変換素子を提供することを目的としている
。The present invention was made to solve the above problems, and an object of the present invention is to provide a photoelectric conversion element using a compound semiconductor polycrystalline thin film having good Pn characteristics.
口課題を解決するための手段]
本発明に係る光電変換素子は、光入射側の窓層を形成し
硫化カドミウムCd5−硫化亜鉛ZnS固溶体よりなる
n型半導体層、同半導体層の光が入射する一方の面に接
合された透明電極、および上記n型半導体層の他方の面
に接合されたP型半導体層を備え、上記n型半導体層の
硫化亜鉛ZnSの固溶量をP型半導体層との接合面に近
い側で大きくし透明電極との接合面に近づくにつれて小
さくなるようにその組成を厚さ方向に傾斜させたことを
特徴としている。Means for Solving the Problems] The photoelectric conversion element according to the present invention includes an n-type semiconductor layer which forms a window layer on the light incident side and is made of a cadmium sulfide Cd5-zinc sulfide ZnS solid solution, through which light from the semiconductor layer is incident. A transparent electrode bonded to one surface and a P-type semiconductor layer bonded to the other surface of the n-type semiconductor layer, the amount of solid solution of zinc sulfide ZnS in the n-type semiconductor layer being the same as that of the P-type semiconductor layer. The structure is characterized in that its composition is inclined in the thickness direction so that it is larger on the side closer to the bonding surface of the transparent electrode and becomes smaller as it approaches the bonding surface with the transparent electrode.
〔作用]
上記において、n型半導体層はP型半導体層との接合面
付近における硫化亜鉛ZnS固溶量が調整され、P型半
導体層とのn型半導体層との面間隔の差が小さくなり格
子の整合性が改善されているため、局所的な歪みが緩和
される。この結果、Pn接合界面付近で生成する欠陥が
減少し、光発生した電子および正孔のうちこれらの欠陥
で捕獲されるものが減少し、外部回路に取り出される電
流が増大する。[Function] In the above, the amount of solid solution of zinc sulfide ZnS in the n-type semiconductor layer near the junction surface with the P-type semiconductor layer is adjusted, and the difference in the interplanar spacing between the P-type semiconductor layer and the n-type semiconductor layer becomes smaller. Improved lattice integrity reduces local distortion. As a result, defects generated near the Pn junction interface are reduced, fewer photo-generated electrons and holes are captured by these defects, and the current taken out to the external circuit is increased.
また、n型半導体層の形成において透明電極との接合面
に近づくにつれて硫化亜鉛ZnS固溶量を減少させてい
るため、組成の傾斜とともに導電率が増大する。この結
果、素子の内部抵抗が低下し、半導体層の内部で発生し
た電子が効率的に透明電極に流れるようになる。Furthermore, in forming the n-type semiconductor layer, the amount of solid solution of zinc sulfide ZnS is decreased as it approaches the bonding surface with the transparent electrode, so that the electrical conductivity increases as the composition gradients. As a result, the internal resistance of the element decreases, and electrons generated inside the semiconductor layer efficiently flow to the transparent electrode.
上記により、本発明の変換素子においては良好なPn接
合が形成され、半導体内で光発生した電子および正札が
効率的に外部回路に取り出されるため、短絡電流および
曲線因子の増大を期待することができる。As a result of the above, a good Pn junction is formed in the conversion element of the present invention, and electrons photogenerated within the semiconductor and the genuine tag are efficiently taken out to the external circuit, so an increase in short circuit current and fill factor can be expected. can.
〔実施例] 本発明の一実施例を第1図に示す。〔Example] An embodiment of the present invention is shown in FIG.
第1図に示す本実施例は、ガラスからなる基板1、同基
板1上に形成され厚さ2000人の酸化錫SnO2から
なる透明電極2、同透明電極2上に形成され硫化亜鉛Z
nSの固溶量が上記透明電極2との接合面に近づくに従
い小さくなり硫化カドミウムCdSと硫化亜鉛ZnSか
らなるn型半導体層3、同n型半導体層3上に形成され
銅Cu、インジウムIn及びセレン5e−9cn合金か
らなるn型半導体層4、および同n型半導体層3上5こ
形成さz7厚さ0.5μmのモリブデンM。からなる金
属電極5を備えている。The present embodiment shown in FIG. 1 includes a substrate 1 made of glass, a transparent electrode 2 formed on the substrate 1 and made of tin oxide SnO2 with a thickness of 2000 mm, and a transparent electrode 2 made of zinc sulfide Z formed on the transparent electrode 2.
The amount of solid solution of nS decreases as it approaches the bonding surface with the transparent electrode 2, and the n-type semiconductor layer 3 made of cadmium sulfide CdS and zinc sulfide ZnS is formed on the n-type semiconductor layer 3, including copper Cu, indium In, and An n-type semiconductor layer 4 made of a selenium 5e-9cn alloy, and molybdenum M having a thickness of 0.5 μm are formed on the n-type semiconductor layer 3. It is equipped with a metal electrode 5 consisting of.
上記本実施例の形成手順を以下に説明する。The formation procedure of the above embodiment will be explained below.
まず、ガラスからなる基板1上に熱CVD法により厚さ
2000人の酸化錫5nOzからなる透明電極2を形成
する。、透明電極2が成膜されたガラス基板1は、アセ
トン、メタノールおよび純水中で順次超音波洗浄した後
、乾燥した。First, a transparent electrode 2 made of 5 nOz of tin oxide with a thickness of 2,000 yen is formed on a substrate 1 made of glass by thermal CVD. The glass substrate 1 on which the transparent electrode 2 was formed was sequentially ultrasonically cleaned in acetone, methanol, and pure water, and then dried.
上記透明電極2上に形成するn型半導体層3およびn型
半導体層4は、物理的蒸着法の1つである高周波スパッ
タリング法により形成した。n型半導体層3の形成につ
いては、上記洗浄した透明電極2付きのガラス基板1を
高周波スパッタ装置に設置して5. Ox 10−7T
、、、まで排気し、基板1を所定の温度に加熱した後、
チャンバーにアルゴンArを導入して圧力が5. Ox
10−”Torrになるように流量を調整する。続い
て、原子を蒸発するターゲットと基板1、の間を遮断じ
た状態とするためにシャッターを閉じてプラズマを形成
じ、約5分間ターゲット表面を清浄化した。次に、高周
波電力を所定の値に設定した後ンヤンターを開け、所定
時間スパッタリングを行い、n型半導体層3を形成した
。n型半導体層3は、硫化カドミウムCdS焼結体(純
度99.99%、直径101.6mm、厚さ5胛)およ
び硫化亜鉛ZnS焼結体(純度99.99%、直径10
1.6鵬、厚さ5皿)をターゲットとし、基板1を回転
させながら同時にスパッタリングすることにより形成し
た。The n-type semiconductor layer 3 and the n-type semiconductor layer 4 formed on the transparent electrode 2 were formed by a high-frequency sputtering method, which is one of the physical vapor deposition methods. Regarding the formation of the n-type semiconductor layer 3, the cleaned glass substrate 1 with the transparent electrode 2 is placed in a high frequency sputtering device, and 5. Ox 10-7T
After evacuation to , , and heating the substrate 1 to a predetermined temperature,
Argon was introduced into the chamber and the pressure was increased to 5. Ox
The flow rate is adjusted to 10-" Torr. Next, the shutter is closed to create a state of isolation between the target for evaporating atoms and the substrate 1, and plasma is formed, and the target surface is heated for about 5 minutes. Next, after setting the high frequency power to a predetermined value, the tanker was opened and sputtering was performed for a predetermined time to form an n-type semiconductor layer 3.The n-type semiconductor layer 3 was made of a cadmium sulfide CdS sintered body. (purity 99.99%, diameter 101.6 mm, thickness 5 pieces) and zinc sulfide ZnS sintered body (purity 99.99%, diameter 10 pieces)
The substrate 1 was formed by sputtering at the same time while rotating the substrate 1 using a target of 1.6 mm and 5 plates thick.
このとき、両ターゲットの電極に負荷する高周波電力を
成膜時間に合わせて制御し、n型半導体層3における厚
さ方向の硫化亜鉛ZnSの固溶量を第2図に示すように
、n型半導体層4との接合面に近い側で大きく、透明電
極2との接合面に近づくにつれて小さくなるように変化
させた。n型半導体層4を構成するCuInSezとの
面間隔の整合性を考慮すると、n型半導体層4との接合
面(第2図においてd−〇)付近の硫化亜鉛ZnSの固
溶量は、5〜10%程度が適当であると考えられる。ま
た、素子の内部抵抗を低下させるため、透明電極2との
接合面(第2図においてd=d、)付近の硫化亜鉛Zn
Sの固溶量は1〜3%が適当であると考えられる。At this time, the high-frequency power applied to the electrodes of both targets is controlled in accordance with the film formation time, and the amount of solid solution of zinc sulfide ZnS in the thickness direction in the n-type semiconductor layer 3 is adjusted as shown in FIG. It was changed so that it was large on the side near the bonding surface with the semiconductor layer 4 and became smaller as it approached the bonding surface with the transparent electrode 2. Considering the consistency of the interplanar spacing with CuInSez constituting the n-type semiconductor layer 4, the solid solution amount of zinc sulfide ZnS near the junction surface with the n-type semiconductor layer 4 (d-○ in FIG. 2) is 5. It is considered that about 10% is appropriate. In addition, in order to reduce the internal resistance of the element, zinc sulfide (Zn) near the bonding surface with the transparent electrode 2 (d=d in FIG. 2)
It is considered that an appropriate solid solution amount of S is 1 to 3%.
n型半導体層3に引き続いて、同しく高周波スパッタリ
ング法によりn型半導体層4を形成した。Following the n-type semiconductor layer 3, an n-type semiconductor layer 4 was formed by the same high-frequency sputtering method.
形成要領は、n型半導体層3と同様であるが、n型半導
体層4の場合、#rIJcu(純度99.99%)、イ
ンジウムIn(純度99.99%)およびセレンS e
−pJ’c u合金(F120重量%)をターゲット
とし、それぞれの高周波電流を調整することにより、組
成を制御した。The formation procedure is the same as that for the n-type semiconductor layer 3, but in the case of the n-type semiconductor layer 4, #rIJcu (purity 99.99%), indium In (purity 99.99%), and selenium S e
-pJ'cu alloy (F120% by weight) was targeted, and the composition was controlled by adjusting each high frequency current.
本実施例では、n型半導体層3およびn型半導体層4を
形成する際の基板温度および膜厚は、それぞれ下記の通
りとした。In this example, the substrate temperature and film thickness when forming the n-type semiconductor layer 3 and the n-type semiconductor layer 4 were set as follows.
n型半導体層4;こ引続き、厚さ0.5μmのモリブデ
ンMOからなる金属電極5を高周波スパッタリング法に
より形成した。N-type semiconductor layer 4: Subsequently, a metal electrode 5 made of molybdenum MO having a thickness of 0.5 μm was formed by high-frequency sputtering.
本実施例の素子と比較評価するためn型半導体層3にお
シする硫化亜鉛ZnSの固溶量を均一にL、n型半導体
層3以外の成膜条件は本実施例と同一とした従来型の素
子を製作し、透明電極2側から模擬太陽光(スペクトル
AM1.5、照射強度100mW−cm〜2)を照射し
、素子特性を評価した。In order to perform a comparative evaluation with the device of this example, the solid solution amount of zinc sulfide ZnS applied to the n-type semiconductor layer 3 was uniformly L, and the film forming conditions other than the n-type semiconductor layer 3 were the same as those of this example. A type of element was manufactured, and simulated sunlight (spectrum AM1.5, irradiation intensity 100 mW-cm~2) was irradiated from the transparent electrode 2 side to evaluate the element characteristics.
その結果、本実施例のn型半導体層3の組成を傾斜させ
た素子は、組成を均一とした従来型の素子に比べ、短絡
電流および曲線因子が10〜20%増大することが確認
された。As a result, it was confirmed that the device in which the composition of the n-type semiconductor layer 3 of this example was graded increased the short-circuit current and fill factor by 10 to 20% compared to the conventional device in which the composition was uniform. .
上記において、n型半導体層3はn型半導体層4との接
合面付近の組成が調整され、格子の整合性が改善されて
いるため、従来の素子に比べ局所的な歪みが緩和される
。この結果、電子および正孔の捕獲の中心となる欠陥の
発生が抑制される。In the above, the composition of the n-type semiconductor layer 3 near the junction with the n-type semiconductor layer 4 is adjusted and the lattice matching is improved, so that local strain is alleviated compared to the conventional element. As a result, the generation of defects that play a central role in trapping electrons and holes is suppressed.
また、n型半導体層3はn型半導体層4との接合面から
透明電極2との接合面に近づくにつれて徐々に硫化亜鉛
Zn5O固溶量を減少させているため、組成の傾斜とと
もに導電率が増大する。この結果、素子の内部抵抗が減
少する。In addition, since the n-type semiconductor layer 3 gradually decreases the solid solution amount of zinc sulfide Zn5O from the bonding surface with the n-type semiconductor layer 4 to the bonding surface with the transparent electrode 2, the conductivity increases with the composition gradient. increase As a result, the internal resistance of the element is reduced.
上記により、本実施例の光電変換素子では、良好なPn
接合が形成され、半導体内で光発生した電子および正孔
が効率的に外部回路に取り出されるため、短絡電流およ
び曲線因子の増大を期待することができる。As a result of the above, the photoelectric conversion element of this example has good Pn
Since a junction is formed and electrons and holes photogenerated within the semiconductor are efficiently taken out to an external circuit, an increase in short circuit current and fill factor can be expected.
[発明の効果〕
本発明の光電変換素子は、一方の面にP型半導体層が接
合され、他方の面に透明電極が接合されたn型半導体層
について、その硫化亜鉛ZnSの固溶量をP型半導体層
の近くで大きくし透明電極の近(で小さくなるようにそ
の組成を厚さ方向に傾斜させることによって、Pn接合
面付近の欠陥の発生を抑制し、透明電極付近の導電率を
増大させ、半導体内で光発生した電子および正孔が効率
的に外部回路に取り出せるものとし、短絡電流および曲
線因子の増大を可能とする。[Effects of the Invention] The photoelectric conversion element of the present invention has a solid solution amount of zinc sulfide ZnS in an n-type semiconductor layer having a P-type semiconductor layer bonded to one surface and a transparent electrode bonded to the other surface. By tilting the composition in the thickness direction so that it is larger near the P-type semiconductor layer and smaller near the transparent electrode, the occurrence of defects near the Pn junction can be suppressed, and the conductivity near the transparent electrode can be reduced. This allows the electrons and holes photogenerated within the semiconductor to be efficiently taken out to an external circuit, making it possible to increase the short-circuit current and fill factor.
第1図は本発明の一実施例の説明図、第2図は上記一実
施例のn型半導体層における硫化亜鉛ZnSの固溶量の
変化の説明図、第3図は従来の装置の説明図である。
1・・・基板、 2・・・透明電極、
3・・・n型半導体層、 4・・・P型半導体層、5
・・・金属電極。
代理人 弁理士 坂 間 暁 外2名躬1区
躬2圀FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is an explanatory diagram of changes in the solid solution amount of zinc sulfide ZnS in the n-type semiconductor layer of the above-mentioned embodiment, and FIG. 3 is an explanation of a conventional device. It is a diagram. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Transparent electrode, 3... N-type semiconductor layer, 4... P-type semiconductor layer, 5
...Metal electrode. Agent: Patent Attorney Akira Sakama, 2 people, 1 district, 2 districts
Claims (1)
亜鉛ZnS固溶体よりなるn型半導体層、同半導体層の
光が入射する一方の面に接合された透明電極、および上
記n型半導体の他方の面に接合されたP型半導体層を備
え、上記n型半導体層の硫化亜鉛ZnSの固溶量をP型
半導体層との接合面に近い側で大きくし透明電極との接
合面に近づくにつれて小さくなるようにその組成を厚さ
方向に傾斜させたことを特徴とする化合物半導体多結晶
薄膜を用いた光電変換素子。an n-type semiconductor layer forming a window layer on the light incident side and made of a cadmium sulfide CdS-zinc sulfide ZnS solid solution; a transparent electrode bonded to one surface of the semiconductor layer on which light enters; and the other side of the n-type semiconductor. A solid solution amount of zinc sulfide ZnS in the n-type semiconductor layer is increased on the side closer to the bonding surface with the P-type semiconductor layer and becomes smaller as it approaches the bonding surface with the transparent electrode. 1. A photoelectric conversion element using a compound semiconductor polycrystalline thin film, characterized in that its composition is graded in the thickness direction so that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2116810A JP2706352B2 (en) | 1990-05-08 | 1990-05-08 | Photoelectric conversion device using compound semiconductor polycrystalline thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2116810A JP2706352B2 (en) | 1990-05-08 | 1990-05-08 | Photoelectric conversion device using compound semiconductor polycrystalline thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0414268A true JPH0414268A (en) | 1992-01-20 |
JP2706352B2 JP2706352B2 (en) | 1998-01-28 |
Family
ID=14696213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2116810A Expired - Fee Related JP2706352B2 (en) | 1990-05-08 | 1990-05-08 | Photoelectric conversion device using compound semiconductor polycrystalline thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2706352B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011072975A2 (en) * | 2009-12-18 | 2011-06-23 | Sulfurcell Solartechnik Gmbh | Chalcopyrite thin-film solar cell comprising cds/(zn(s,o) buffer layer and associated method of production |
-
1990
- 1990-05-08 JP JP2116810A patent/JP2706352B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011072975A2 (en) * | 2009-12-18 | 2011-06-23 | Sulfurcell Solartechnik Gmbh | Chalcopyrite thin-film solar cell comprising cds/(zn(s,o) buffer layer and associated method of production |
WO2011072975A3 (en) * | 2009-12-18 | 2012-06-07 | Sulfurcell Solartechnik Gmbh | Chalcopyrite thin-film solar cell comprising cds/(zn(s,o) buffer layer and associated method of production |
Also Published As
Publication number | Publication date |
---|---|
JP2706352B2 (en) | 1998-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0118579B1 (en) | Thin film heterojunction photovoltaic cells and methods of making the same | |
US5393675A (en) | Process for RF sputtering of cadmium telluride photovoltaic cell | |
US11728449B2 (en) | Copper, indium, gallium, selenium (CIGS) films with improved quantum efficiency | |
US9735301B2 (en) | Manufacture of N-type chalcogenide compositions and their uses in photovoltaic devices | |
JPH0557746B2 (en) | ||
US20140000690A1 (en) | Intrinsically Semitransparent Solar Cell and Method of Making Same | |
CN104362194A (en) | Back contact layer structure and CdTe solar battery comprising back contact layer structure | |
KR20120080045A (en) | Manufacturing method of solar cell | |
WO2012118771A2 (en) | Improved thin-film photovoltaic devices and methods of manufacture | |
JP3484259B2 (en) | Precursor for forming semiconductor thin film and method for producing semiconductor thin film | |
KR101415251B1 (en) | Multiple-Layered Buffer, and Its Fabrication Method, and Solor Cell with Multiple-Layered Buffer. | |
CN102237418B (en) | The cadmium sulfide layer used based on the film photovoltaic device of cadmium telluride and manufacture method thereof | |
CN113745359A (en) | Preparation method of cadmium telluride gradient absorption layer and solar cell | |
EP2402479B1 (en) | Method for sputtering a resistive transparent thin film for use in cadmium telluride based photovoltaic devices | |
Antohe et al. | Effect of protons irradiation on the performances of CdS/CdTe photovoltaic cells for space applications | |
KR20200078790A (en) | Photodetector using metal nanoparticles and transition metal chalcogen compounds, and method for manufacturing the same | |
KR101300791B1 (en) | Method for enhancing conductivity of molybdenum layer | |
JP3061342B2 (en) | Method for manufacturing transparent conductive film and photoelectric conversion semiconductor device | |
JPH0414268A (en) | Photoelectric transducer using compound semiconductor polycrystalline thin film | |
WO2020020217A1 (en) | Buffer layer of copper-indium-gallium-selenium thin film solar cell chip and manufacturing method therefor, and copper-indium-gallium-selenium thin film solar cell chip | |
CN109545881B (en) | CdS/CdTe solar cell based on monocrystalline silicon wafer substrate | |
JPH07226410A (en) | Method for manufacturing thin film made of chalcopyrite type compound, and solar cell having the thin film | |
KR101843292B1 (en) | Thin film solar cell and Method of fabricating the same | |
JPH11224953A (en) | Photovolatic device and manufacture thereof | |
CN109545869A (en) | A kind of flexible cadmium telluride solar cell of two-sided three terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |