JPH04142517A - Production of transparent electrode - Google Patents

Production of transparent electrode

Info

Publication number
JPH04142517A
JPH04142517A JP26669990A JP26669990A JPH04142517A JP H04142517 A JPH04142517 A JP H04142517A JP 26669990 A JP26669990 A JP 26669990A JP 26669990 A JP26669990 A JP 26669990A JP H04142517 A JPH04142517 A JP H04142517A
Authority
JP
Japan
Prior art keywords
substrate
thin film
adhesive
transparent conductive
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26669990A
Other languages
Japanese (ja)
Inventor
Junichi Aoyama
淳一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Printing Corp
Original Assignee
Miura Printing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Printing Corp filed Critical Miura Printing Corp
Priority to JP26669990A priority Critical patent/JPH04142517A/en
Publication of JPH04142517A publication Critical patent/JPH04142517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain transparent electrodes by bringing a substrate and the thin-film surface of a sheet formed with a transparent conductive thin film on a base into light contact with each other via an adhesive layer by photoirradiation and further subjecting the surface to the photoirradiation via a mask, then peeling the sheet to allow the thin films of prescribed patterns to remain on the substrate. CONSTITUTION:The way that the adhesive power of the adhesive layer used for tight contact of the substrate and the sheet is changed by the photoirradiation includes the way that the adhesive power is intensified by a photopolymn. or photocrosslinking reaction and the way that the adhesive power is weakened by a photodecomposition reaction according to the compsn. of the adhesive layer. The adhesive layers of both are separated by the photoirradiation to the part where the transparent conductive thin film has the strong adhesive power to the substrate and the part where the adhesive power of the transfer sheet to the base is strong. The thin film of the part where the adhesive power to the substrate is strong remains on the substrate and the thin film of the part where the adhesive power to the base is strong is peeled together with the transfer sheet at the time of peeling the transfer sheet, by which the transparent electrode patterns are formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、液晶表示装置、太陽電池、透明タブレット、
液晶調光ガラス、防曇カラス等に使用される透明電極の
製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to liquid crystal display devices, solar cells, transparent tablets,
The present invention relates to a method for manufacturing transparent electrodes used in liquid crystal light control glasses, anti-fog glasses, etc.

〈従来の技術〉 従来、透明電極の製造方法としては酸化錫等の薄膜を加
水分解を利用するスプレー法や塗布法、熱分解反応を利
用する化学的気相蒸着法(以下「CVD法」と略称する
。)等の化学的成膜法、または、酸化インジウム、酸化
錫などの金属酸化物薄膜や金、銀、銅、パラジウム、ロ
ジウム、アルミニウム等の金属薄膜を物理的気相堆積法
(以下rPVD法」と略称する。)により透明電極を形
成せしめる基板に直接形成していた。
<Conventional technology> Conventionally, methods for manufacturing transparent electrodes include spraying and coating methods that utilize hydrolysis of thin films such as tin oxide, and chemical vapor deposition (hereinafter referred to as "CVD method") that utilizes thermal decomposition reactions. ), or physical vapor deposition methods (hereinafter referred to as It was formed directly on the substrate on which the transparent electrode was to be formed by the rPVD method.

また、透明電極のパターンニング方法としてはフォトレ
ジストを用いて必要部分を保護した後、塩酸等の酸によ
るエツチング処理を施すのか一般的であった。
In addition, a common method for patterning transparent electrodes is to protect necessary portions using a photoresist and then perform etching treatment with an acid such as hydrochloric acid.

〈発明が解決しようとする問題点〉 スプレー法や塗布法は一般的に処理温度が高く、基板温
度が400′C〜600℃になることが多かった。この
ため、染料および有機顔料を発色材料としているカラー
フィルタを有するガラス基板に透明電極を設ける場合は
該染料および有機顔料が退色してしまうという欠点があ
った。
<Problems to be Solved by the Invention> Spraying methods and coating methods generally require high processing temperatures, with substrate temperatures often ranging from 400'C to 600C. For this reason, when a transparent electrode is provided on a glass substrate having a color filter using dyes and organic pigments as coloring materials, there is a drawback that the dyes and organic pigments discolor.

CVD法は酸化錫で数多く試みられているが、原料とし
ては気化しやすい液体や固体しか用いることか出来ない
ので、原料の選択範囲が限られてしまうという欠点があ
った。
Many attempts have been made to use the CVD method using tin oxide, but it has had the disadvantage that only liquids and solids that are easily vaporized can be used as raw materials, which limits the range of raw materials that can be selected.

PVD法には真空蒸着法、イオンブレーティング法、ス
パッタ蒸着法、分子線結晶成長法などが含まれるが、い
ずれも真空状態での成膜処理であるために多くの場合バ
ッチ処理にならざるを得ず、生産時間を長くする原因の
一つになっていた。
PVD methods include vacuum evaporation, ion blating, sputter evaporation, and molecular beam crystal growth, but since all of them are film-forming processes in a vacuum, they often require batch processing. This was one of the causes of longer production times.

また、成膜処理温度が非常に高いために、基板温度が2
000C以上に上昇することが多く、耐熱性の弱い基板
には利用できないという欠点があった。
In addition, since the film-forming process temperature is extremely high, the substrate temperature is 2.
The temperature often rises to 000C or higher, which has the disadvantage that it cannot be used for substrates with weak heat resistance.

従来の透明電極の製造方法には上記のような欠点の他に
透明電極のパターン化が困難であるという欠点があり、
透明電極を基板上にパターン形成する場合には、各々の
方法で透明導電薄膜を全面成膜した後でフォトレジスト
を用いてパターンを形成し、これをエツチングのレジス
トとして塩酸等でエツチング処理を施し、透明電極のパ
ターンを形成する等の工程が必要であった。
In addition to the drawbacks mentioned above, conventional methods for manufacturing transparent electrodes have the drawback that patterning of transparent electrodes is difficult.
When patterning a transparent electrode on a substrate, after forming a transparent conductive thin film on the entire surface using each method, a pattern is formed using a photoresist, and this is used as an etching resist for etching with hydrochloric acid or the like. , steps such as forming a transparent electrode pattern were required.

〈問題を解決するための手段〉 基板に所定のパターンを有する透明電極を形成する際に
、該透明電極を形成せしめる基板と支持体上に透明導電
薄膜が形成されているシートの透明導電4膜面を光照射
により接着力が変化する接着層を介して密着し、所定の
パターン状に光を透過あるいは不透過させるマスクを介
して光照射することにより所定のパターンに対応して該
接着層と基板との接着力を変化せしめ、該シートを剥離
する際に所定のパターン状の透明導電薄膜を該基板上に
残存させることにより透明電極を形成す〈発明の作用〉 本発明では、支持体上に透明導電1膜が形成されている
シート(以下、 「転写シート」と略称する。)を用い
、転写法により基板に透明電極を形成する。これには二
つの作用がある。ひとつは、基板に透明電極を形成する
工程と全く別の工程で転写シートの製造が出来るために
、基板に透明電極を形成する工程の所要時間が著しく短
縮されることである。他のひとつは、透明導電薄膜を目
的の基板以外の物質に成膜するために、透明導電薄膜を
成膜する際に必要な高温等の条件に耐久性のない基板に
も透明電極を形成できることである。
<Means for solving the problem> When forming a transparent electrode having a predetermined pattern on a substrate, a transparent conductive 4-film sheet in which a transparent conductive thin film is formed on a substrate and a support on which the transparent electrode is formed is used. The surfaces are brought into close contact with each other through an adhesive layer whose adhesive strength changes when irradiated with light, and the adhesive layer is bonded to the adhesive layer in a predetermined pattern by irradiating light through a mask that transmits or blocks light in a predetermined pattern. A transparent electrode is formed by changing the adhesive force with the substrate and leaving a transparent conductive thin film in a predetermined pattern on the substrate when the sheet is peeled off. A transparent electrode is formed on a substrate by a transfer method using a sheet on which a transparent conductive film is formed (hereinafter referred to as a "transfer sheet"). This has two effects. One is that since the transfer sheet can be manufactured in a completely separate process from the process of forming transparent electrodes on the substrate, the time required for the process of forming transparent electrodes on the substrate is significantly shortened. Another is that in order to deposit a transparent conductive thin film on a material other than the intended substrate, transparent electrodes can be formed on substrates that cannot withstand the high temperatures and other conditions required when depositing a transparent conductive thin film. It is.

すなわち、従来のカラー液晶表示装置においては染色方
式で形成されたカラーフィルタ上にスパッタリングによ
りITo薄展を成膜し、エツチングによりパターン形成
グして透明電極を形成していた。しかるに、カラーフィ
ルタの耐熱性が弱いためにIT○薄膜の成膜温度を低温
にしなければならず、その結果、ITOJ膜の導電性が
劣ることが多かった。本発明によれば耐熱性のある支持
体に十分な温度条件で成膜したIT○薄膜を転写するこ
とにより耐熱性の劣るカラーフィルタが形成されている
ような基板にも導電性の優れた透明電極を形成すること
が出来る。
That is, in a conventional color liquid crystal display device, a thin ITo film was formed by sputtering on a color filter formed by a dyeing method, and a pattern was formed by etching to form a transparent electrode. However, since the heat resistance of the color filter is weak, the film forming temperature of the IT○ thin film must be kept at a low temperature, and as a result, the conductivity of the ITOJ film is often inferior. According to the present invention, by transferring an IT○ thin film formed under sufficient temperature conditions to a heat-resistant support, a transparent film with excellent conductivity can be applied to a substrate on which a color filter with poor heat resistance is formed. Electrodes can be formed.

転写シートの支持体としてはポリイミド、ポリエーテル
サルフオン、ポリエステル、ポリカーボネート、ポリビ
ニルアルコール、ナイロン、シリコン樹脂、フッ素樹脂
等のフィルムあるいは薄い鋼板、アルミニウム、ステン
レス等の金属フィルムあるいはグラシン紙、パラフィン
紙等がある。
The support for the transfer sheet may be a film made of polyimide, polyether sulfone, polyester, polycarbonate, polyvinyl alcohol, nylon, silicone resin, fluororesin, etc., a metal film made of thin steel plate, aluminum, stainless steel, glassine paper, paraffin paper, etc. be.

透明導電薄膜の材料としては酸化インジウム、酸化錫等
の金属酸化物、金、銀、銅、パラジウム、ロジウム、ア
ルミニウム等の金属、ポリピロール、ポリアセチレン、
ポリアニリン等の導電性有機物がある。透明導電薄膜の
製造方法としては金属および金属酸化物ではスプレー法
、化学的気相蒸着法、真空蒸着法、イオンブレーティン
グ法、スパッタ蒸着法、ゾル−ゲル法等、導電性有機物
では気相重合法を用いる。また、透明導電薄膜の転写性
を良くするために支持体と透明導電薄膜の間に剥離層を
設けることもできる。このようにして転写シートは作製
されるが材料および製造方法は上記の内容に限定されな
い。
Materials for the transparent conductive thin film include metal oxides such as indium oxide and tin oxide, metals such as gold, silver, copper, palladium, rhodium, and aluminum, polypyrrole, polyacetylene,
There are conductive organic materials such as polyaniline. Methods for manufacturing transparent conductive thin films include spray method, chemical vapor deposition method, vacuum evaporation method, ion blasting method, sputter deposition method, sol-gel method for metals and metal oxides, and vapor phase deposition method for conductive organic materials. Use legal. Further, in order to improve the transferability of the transparent conductive thin film, a release layer may be provided between the support and the transparent conductive thin film. Although the transfer sheet is produced in this manner, the materials and manufacturing method are not limited to those described above.

所定のパターン状に光を透過あるいは不透過させるマス
ク(以下、 「フォトマスク」と略称する。)を介して
光照射する方法および高強度の微小光線束を走置してパ
ターン描画する方法はICやLSIの製造にも用いられ
ている技術で、解像度および寸法精度に優れている。フ
ォトマスクには透明フィルムに銀塩感光層を設けた写真
フィルム、ガラスに銀塩感光層を設けた写真乾板等を露
光・現像したものやガラスにクロム等の金属を蒸着した
ものをエツチングでパターン描画グしたもの等がある。
A method of irradiating light through a mask that transmits or blocks light in a predetermined pattern (hereinafter referred to as a "photomask") and a method of drawing a pattern by scanning a high-intensity minute beam of light are IC techniques. This technology is also used in the manufacture of LSIs and LSIs, and has excellent resolution and dimensional accuracy. Photomasks are made by etching patterns on photographic film, which is a transparent film with a silver salt photosensitive layer, photographic plates, etc., with a silver salt photosensitive layer on glass, exposed and developed, or glass with metal such as chromium vapor-deposited. There are some drawings etc.

光照射により接着力が変化する接着剤としてはポリエス
テル系、不飽和ポリエステル系、ポリエーテル系、ポリ
ウレタン系、エポキシ系、ポリブタジェン系の光重合性
オリゴマーおよびブタンジオール、ヘキサンジオール、
トリメチロールプロパン、ペンタエリスリトール等の多
価アルコール類のポリアクリレート系あるいはポリメタ
アクリレート系光重合性モノマーの少なくとも1種とベ
ンゾフェノン、ベンジル、ベンゾインアルキルエーテル
、p−tert−ブチル−ジクロロアセトフェノン、2
,2−ジメトキシ−2−フェニルアセトフェノン、塩素
化アセトフェノン誘導体、ジチオカルバメート等の感光
性物質の組合せ、あるいはポリ塩化ビニル、ポリ酢酸ビ
ニル、ポリエチレンオキサイド等のポリマーとアジド化
合物、ジアゾ化合物等の感光性物質との組合せがある。
Adhesives whose adhesive strength changes when exposed to light include photopolymerizable oligomers such as polyester, unsaturated polyester, polyether, polyurethane, epoxy, and polybutadiene, as well as butanediol, hexanediol,
At least one photopolymerizable monomer of polyacrylate or polymethacrylate of polyhydric alcohols such as trimethylolpropane and pentaerythritol, and benzophenone, benzyl, benzoin alkyl ether, p-tert-butyl-dichloroacetophenone, 2
, 2-dimethoxy-2-phenylacetophenone, a chlorinated acetophenone derivative, a combination of photosensitive substances such as dithiocarbamate, or a photosensitive substance such as a polymer such as polyvinyl chloride, polyvinyl acetate, polyethylene oxide, and an azide compound or diazo compound. There is a combination of

パターン状の透明電極を形成しようとする基板はガラス
、プラスチックあるいはこれらのラミネート物などの公
知のものであり、また、基板には産業上の利用分野に述
べたところのもの、例えば、太陽電池、液晶表示装置に
使用されるカラーフィルタ等の機能を持つ中間品が形成
されていても良い。
The substrate on which the patterned transparent electrode is to be formed is a known material such as glass, plastic, or a laminate of these materials, and the substrate may include those mentioned in the industrial application field, such as solar cells, An intermediate product having a function such as a color filter used in a liquid crystal display device may be formed.

接着層が光照射により接着力が変化する仕方は接着層の
組成により、光重合あるいは光架橋反応で接着力が強ま
るものと光分解反応で接着力が弱まるものとがある。両
者とも透明導電薄膜が基板との接着力の強い部分と、転
写シートの支持体との接着力の強い部分とに接着層が分
離され、転写シートを剥離する際に、基板との接着力の
強い部分の透明導電薄膜は基板上に残り、支持体との接
着力の強い部分の透明導電薄膜は転写シートと共に剥離
され透明電極パターンが形成される。また、接着層が光
照射により接着力が変化する仕方は特公昭37−189
79、同38−9663、同39−8436、同43−
22901、同49−10689、同49−39200
および特開昭48−94503、同50−46315、
同52−9501等の明細書に記載されている方法、あ
るいは日本写真学会誌41巻4号245頁および250
頁に記載されている方法を参考にすることもできる。
Depending on the composition of the adhesive layer, the adhesive strength of the adhesive layer changes when exposed to light; in some cases, the adhesive strength increases due to photopolymerization or photocrosslinking reaction, and in other cases, the adhesive force weakens due to photodecomposition reaction. In both cases, the adhesive layer is separated into areas where the transparent conductive thin film has strong adhesion to the substrate and areas where the transfer sheet has strong adhesion to the support, and when the transfer sheet is peeled off, the adhesive layer with the substrate is The transparent conductive thin film in the strong parts remains on the substrate, and the transparent conductive thin film in the parts with strong adhesion to the support is peeled off together with the transfer sheet to form a transparent electrode pattern. In addition, the manner in which the adhesive strength of the adhesive layer changes due to light irradiation was disclosed in Japanese Patent Publication No. 37-189.
79, 38-9663, 39-8436, 43-
22901, 49-10689, 49-39200
and JP-A-48-94503, JP-A-50-46315,
52-9501, or the method described in the specifications of the Japanese Society of Photography, Vol. 41, No. 4, pp. 245 and 250.
You can also refer to the method described on the page.

〈実施例1〉 (転写シートの製造) 支持体としてポリイミドフィルムを用い、スパッタリン
グにより工TO′4膜を0. 3μmの厚さで全面に形
成した。スパッタリング温度は3゜0℃とした。形成さ
れたIT○薄膜の光透過率は90%、表面電気抵抗値は
2Ω/口であった。
<Example 1> (Manufacture of transfer sheet) Using a polyimide film as a support, a processed TO'4 film was deposited at 0.001 by sputtering. It was formed on the entire surface with a thickness of 3 μm. The sputtering temperature was 3°0°C. The formed IT○ thin film had a light transmittance of 90% and a surface electrical resistance value of 2Ω/hole.

(フォトマスクの製造) 富士写真フィルム■製リスフィルムPF−175Aに線
1100μm、  線長100mmの直線を200μm
のピッチで500本並べたパターンをフォトプロッター
で露光し、現像・定着処理をして作製した。
(Manufacture of photomask) Line 1100 μm, line length 100 mm straight line 200 μm on Fuji Photo Film ■ Lith Film PF-175A
A pattern of 500 lines lined up at a pitch of 500 was exposed using a photoplotter, developed and fixed.

(接着剤の製造) ポリ塩化ビニル2.5gおよび2,6−ジー(4−−ア
ジドベンザル)−4−メチルシクロへキサノン1gをテ
トラヒドロフラン96.5gに溶解して作製した。
(Manufacture of adhesive) An adhesive was prepared by dissolving 2.5 g of polyvinyl chloride and 1 g of 2,6-di(4-azidobenzal)-4-methylcyclohexanone in 96.5 g of tetrahydrofuran.

(透明電極の製造) 基板としてアクリル板を用いた。基板の表面に接着剤を
2μmの厚さに塗布し、転写シートのITO薄膜面に密
着させた。接着層の固化後、基板の接着面とは反対側の
面にフォトマスクを密着し、高圧水銀灯を用いて20秒
間露光した。次に、80℃で3分間熱処理をした後、転
写シートを剥離したところ解像度および寸法精度の良い
パターンを有する透明電極が形成された。
(Manufacture of transparent electrode) An acrylic plate was used as a substrate. An adhesive was applied to the surface of the substrate to a thickness of 2 μm and brought into close contact with the ITO thin film surface of the transfer sheet. After the adhesive layer was solidified, a photomask was closely attached to the surface of the substrate opposite to the adhesive surface, and exposed for 20 seconds using a high-pressure mercury lamp. Next, after heat treatment was performed at 80° C. for 3 minutes, the transfer sheet was peeled off, and a transparent electrode having a pattern with good resolution and dimensional accuracy was formed.

〈実施例2〉 (接着剤の製造) 高粘度ビスフェノール型エポキシアクリレ−)20g、
ペンタエリスリトールトリアクリレート7g、ベンゾイ
ンイソブチルエーテル0.6gをジクロロメタン72.
4gに溶解して作製した。
<Example 2> (Production of adhesive) 20 g of high viscosity bisphenol type epoxy acrylate,
7 g of pentaerythritol triacrylate and 0.6 g of benzoin isobutyl ether were added to 72 g of dichloromethane.
It was prepared by dissolving 4g of the product.

(転写シートの製造) 支持体としてポリイミドフィルムを用い、スパッタリン
グによりIrO2膜を0.3μmの厚さで全面に形成し
た。スパッタリング温度は300℃とした。形成された
IT○薄膜の光透過率は9o%、表面電気抵抗値は2Ω
/口であった。次に、先に作製した接着剤をIT○薄膜
上全面に塗布し、自然乾燥させた。乾燥後の接着剤層の
膜厚は1μmであった。
(Manufacture of transfer sheet) A polyimide film was used as a support, and an IrO2 film with a thickness of 0.3 μm was formed on the entire surface by sputtering. The sputtering temperature was 300°C. The light transmittance of the formed IT○ thin film is 9o%, and the surface electrical resistance value is 2Ω.
/It was a mouth. Next, the previously prepared adhesive was applied to the entire surface of the IT◯ thin film and allowed to air dry. The thickness of the adhesive layer after drying was 1 μm.

(フォトマスクの製造) 富士写真フィルム■製リスフィルムPF−175Aに線
@100μm、  線長1100rnの直線を200μ
mのピッチで500本並べたパターンをフォトプロッタ
ーで露光し、現像・定着処理をして作製した。
(Production of photomask) Draw a straight line of 200 μm at 100 μm and a line length of 1100 rn on Fuji Photo Film ■'s Lith Film PF-175A.
A pattern of 500 lines lined up at a pitch of m was exposed using a photoplotter, developed, and fixed.

(透明電極の製造) 基板としてアクリル板を用いた。基板に転写シートの接
着剤層を密着させ、2kg/Cm2の圧力を室温で1分
間加えた。次に、基板の接着面とは反対側の面にフォト
マスクを密着し、高圧水銀灯を用いて20秒間露光した
。次に、転写シートを剥離したところ解像度および寸法
精度の良いパターンを有する透明電極が形成された。
(Manufacture of transparent electrode) An acrylic plate was used as a substrate. The adhesive layer of the transfer sheet was brought into close contact with the substrate, and a pressure of 2 kg/Cm2 was applied for 1 minute at room temperature. Next, a photomask was closely attached to the surface of the substrate opposite to the adhesive surface, and exposure was performed for 20 seconds using a high-pressure mercury lamp. Next, when the transfer sheet was peeled off, a transparent electrode having a pattern with good resolution and dimensional accuracy was formed.

〈発明の効果〉 本発明によれば、透明電極の材料として酸化インジウム
、酸化錫などの金属酸化物薄膜や金、銀、銅、パラジウ
ム、ロジウム、アルミニウム等の金属薄膜あるいはポリ
ピロール、ポリアセチレン、ポリアニリン等の導電性有
機物薄膜を用いることが出来るので導電率の高い電極を
製造することが出来る。透明電極パターンの解像度、寸
法精度においても光学的手法を用いているために非常に
優れている。また、短時間の光照射および剥離作業だけ
で従来の製造方法における透明導電薄膜の成膜、エツチ
ングレジストの塗布、パターン露光、現像、エツチング
、レジスト除去の全工程を代替することが出来るために
作業工程・時間の著しい短縮が可能である。さらに、処
理温度が低いために耐熱性の弱い基板にも導電性の優れ
た透明電極を形成することが出来、エツチング処理を伴
わないために酸、溶剤に弱い基板にも透明電極を形成す
ることが出来る。
<Effects of the Invention> According to the present invention, thin films of metal oxides such as indium oxide and tin oxide, thin films of metals such as gold, silver, copper, palladium, rhodium, aluminum, etc., or polypyrrole, polyacetylene, polyaniline, etc. can be used as materials for transparent electrodes. Since it is possible to use a conductive organic thin film, an electrode with high conductivity can be manufactured. The resolution and dimensional accuracy of the transparent electrode pattern are also excellent because optical methods are used. In addition, the entire process of forming a transparent conductive thin film, applying etching resist, pattern exposure, development, etching, and removing resist in conventional manufacturing methods can be replaced with just a short time of light irradiation and peeling. It is possible to significantly shorten the process and time. Furthermore, because the processing temperature is low, transparent electrodes with excellent conductivity can be formed even on substrates with weak heat resistance, and since no etching treatment is involved, transparent electrodes can be formed even on substrates that are sensitive to acids and solvents. I can do it.

特許出願人  三浦印刷株式会社Patent applicant: Miura Printing Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)基板に所定のパターンを有する透明電極を形成す
る際に、該透明電極を形成せしめる基板と支持体上に透
明導電薄膜が形成されているシートの透明導電薄膜面を
光照射により接着力が変化する接着層を介して密着し、
所定のパターン状に光を透過あるいは不透過させるマス
クを介して光照射することにより所定のパターンに対応
して該接着層と基板との接着力を変化せしめ、該シート
を剥離する際に所定のパターン状の透明導電薄膜を該基
板上に残存させることを特徴とする透明電極の製造方法
(1) When forming a transparent electrode having a predetermined pattern on a substrate, the transparent conductive thin film surface of the sheet on which the transparent conductive thin film is formed on the substrate and the support on which the transparent electrode is formed is irradiated with adhesive strength. adheres to each other through a changing adhesive layer,
By irradiating light through a mask that transmits or blocks light in a predetermined pattern, the adhesive force between the adhesive layer and the substrate is changed in accordance with the predetermined pattern, and when the sheet is peeled off, the adhesive force between the adhesive layer and the substrate is changed according to the predetermined pattern. A method for producing a transparent electrode, characterized by leaving a patterned transparent conductive thin film on the substrate.
(2)特許請求の範囲第1項記載の支持体と透明導電薄
膜との間に該透明導電薄膜の該基板への転移を容易なら
しめる少なくとも1層以上の剥離層を設けることを特徴
とする透明電極の製造方法。
(2) At least one peeling layer is provided between the support described in claim 1 and the transparent conductive thin film to facilitate the transfer of the transparent conductive thin film to the substrate. Method for manufacturing transparent electrodes.
(3)特許請求の範囲第1項記載のマスクを介して光照
射する方法を高強度の微小光線束を走査してパターンを
描画する方法で代替することを特長とする透明電極の製
造方法。
(3) A method for producing a transparent electrode, characterized in that the method of irradiating light through a mask as set forth in claim 1 is replaced by a method of drawing a pattern by scanning a small beam of high intensity light.
JP26669990A 1990-10-04 1990-10-04 Production of transparent electrode Pending JPH04142517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26669990A JPH04142517A (en) 1990-10-04 1990-10-04 Production of transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26669990A JPH04142517A (en) 1990-10-04 1990-10-04 Production of transparent electrode

Publications (1)

Publication Number Publication Date
JPH04142517A true JPH04142517A (en) 1992-05-15

Family

ID=17434457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26669990A Pending JPH04142517A (en) 1990-10-04 1990-10-04 Production of transparent electrode

Country Status (1)

Country Link
JP (1) JPH04142517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320582A (en) * 1992-05-22 1993-12-03 Hayakawa Rubber Co Ltd Active energy ray-curable heat-sensitive adhesive and method for transferring foil using the same
US6617541B1 (en) * 1994-02-22 2003-09-09 Koninklijke Philips Electronics N.V. Laser etching method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320582A (en) * 1992-05-22 1993-12-03 Hayakawa Rubber Co Ltd Active energy ray-curable heat-sensitive adhesive and method for transferring foil using the same
US6617541B1 (en) * 1994-02-22 2003-09-09 Koninklijke Philips Electronics N.V. Laser etching method

Similar Documents

Publication Publication Date Title
JP4508863B2 (en) Method for forming a patterned thin film conductor on a substrate
US3837860A (en) PHOTOSENSITIVE MATERIALS COMPRISING POLYMERS HAVING RECURRING PENDENT o-QUINONE DIAZIDE GROUPS
CN101631746B (en) Method of synthesizing ITO electron-beam resist and method of forming ITO pattern using the same
JPH11174464A (en) Photosensitive film for forming resin spacer
CA2502254A1 (en) Photosensitive resin printing plate precursor, method for producing the same, and method for producing letterpress printing plate using the same
JPH04142517A (en) Production of transparent electrode
CN109179312B (en) A kind of preparation method of pattern metal film
WO2013094918A1 (en) Transparent substrate having nano pattern and method of manufacturing the same
JP3244181B2 (en) Method of forming fine pattern
JP2720238B2 (en) Photopolymerizable composition, color filter using the same, and method for producing the same
JPS62154413A (en) Manufacture of resin for transparent electrode with uneven surface
JP3033632B2 (en) Method for manufacturing color filter and liquid crystal display element
US20130235363A1 (en) Device-specific markings
WO2021000851A1 (en) Method for preparing patterned polymer
JPH02827A (en) Production of transparent substrate having transparent conductive pattern separated by light shieldable insulating film and surface colored body
TW483294B (en) Laminate for pattern formation
JPH04115202A (en) Formation of transparent protective layer
JPH0462518A (en) Insulatable light shielding film pattern and formation thereof
CN115094374A (en) Materials and methods for making patterned metal oxide thin films
JP3283604B2 (en) Relief image for black matrix substrate
JPH08152513A (en) Production of color filter
JPS61208050A (en) Formation of conductive film pattern
JPH04301069A (en) Method for formation of transparent conductive layer
JPH05297579A (en) Fine resist pattern forming material
JPH0219483A (en) Formation of electrically conductive film pattern