JPH04142083A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPH04142083A
JPH04142083A JP2263026A JP26302690A JPH04142083A JP H04142083 A JPH04142083 A JP H04142083A JP 2263026 A JP2263026 A JP 2263026A JP 26302690 A JP26302690 A JP 26302690A JP H04142083 A JPH04142083 A JP H04142083A
Authority
JP
Japan
Prior art keywords
pipe
container
cryostat
cylindrical container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2263026A
Other languages
Japanese (ja)
Inventor
Michitaka Ono
通隆 小野
Yoshinao Sanada
眞田 芳直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2263026A priority Critical patent/JPH04142083A/en
Publication of JPH04142083A publication Critical patent/JPH04142083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To inhibit the penetration of heat and avoid the clogging of piping by maintaining in the piping a gap through which gas flows and laying out a thin wall cylindrical vessel coaxially. CONSTITUTION:A vacuum cylindrical vessel 11 is coaxially laid out in a pipeline 7 used for the injection of very low temperature refrigerant 2, the collection of vapor gas, and the guide of current lead in order to prevent the generation of convection. The optimum value is available, which specifies the diameter, material, and thickness of the cylindrical vessel in conformity with the penetration heat of cryostats used. More specifically, when the diameter of a vacuum cylindrical vessel exceeds a certain level, the clearance between the pipe and the vacuum cylindrical vessel is narrower than a total thickness of a natural convection border layer which develops on the pipe wall of both the pipeline and the vessel, which inhibits the generation of downstream. On the other hand, it is desirable to take up a large gas flow passage cross section area as much as possible in order to protect the pipeline from being clogged. This construction makes it possible to prevent the introduction of hot gas in an ambient temperature section into a low temperature section and inhibit the penetration of heat from the piping.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導機器等に使用されるタライオスタット
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a taliostat used in superconducting equipment and the like.

(従来の技術) 従来、超電導マグネット等を極低温に保持するためのク
ライオスタットは、極低温冷媒の蒸発を極力少なくする
ため以下のような構成となっている。即ち、極低温冷媒
を収容する冷媒容器と、この冷媒容器を覆うとともに、
冷媒容器との間に真空断熱層を形成する真空容器と、断
熱層内に設けられた熱シールドと、一端側が前記冷媒容
器に通じるとともに、他端側か前記真空断熱層、熱シル
トおよび真空容器の壁を貫通して常温部に位置するよう
に設けられ、極低温冷媒の注入、蒸発気体の回収、電流
リードの案内等に供される配管とで構成されている。
(Prior Art) Conventionally, a cryostat for maintaining a superconducting magnet or the like at a cryogenic temperature has the following configuration in order to minimize evaporation of a cryogenic refrigerant. That is, a refrigerant container containing a cryogenic refrigerant, covering this refrigerant container,
A vacuum container that forms a vacuum insulation layer between itself and the refrigerant container, a heat shield provided within the insulation layer, one end communicating with the refrigerant container, and the other end connecting the vacuum insulation layer, thermal silt, and the vacuum container. The pipe is installed so as to penetrate the wall of the pipe and is located in the normal temperature part, and is used for injection of cryogenic refrigerant, recovery of evaporated gas, guidance of current leads, etc.

このように構成されたクライオスタットにあっては、前
記配管以外の冷媒容器への侵入熱は、小型冷凍機等の設
置により数mwまでおさえることができる。しかし、前
記配管に関わる侵入熱は、一般に数十mwであり、冷媒
の蒸発量を低減する上で大きな問題となる。この配管に
関わる侵入熱は、配管内の蒸発気体の対流によるものか
大きな要因となっている。例えば、垂直配管の場合、配
管からの侵入熱によって、配管内の管壁近傍では上昇流
が、配管中央部では下降流が生じ、この対流現象によっ
て常温部の暖かいガスが低温部に持ち込まれ蒸発量か増
加する。
In the cryostat configured in this manner, the heat that enters the refrigerant container other than the piping can be suppressed to several mw by installing a small refrigerator or the like. However, the intrusion heat related to the piping is generally several tens of mW, which poses a big problem in reducing the amount of evaporation of the refrigerant. A major factor in the intrusion heat related to this piping is probably due to the convection of evaporated gas within the piping. For example, in the case of vertical piping, the heat intruding from the pipe causes an upward flow near the pipe wall and a downward flow in the center of the pipe, and due to this convection phenomenon, warm gas from the normal temperature area is brought to the low temperature area and evaporates. amount or increase.

この蒸発気体の対流による蒸発量の増加は配管の断面積
を小さくすれば、それに応じて対流も抑制されるため、
抑えられる。しかしなから、超電導マグネットのクエン
チによる冷媒容器の内圧上昇を抑えるために、配管径を
ある程度以下に出来ない。また、配管径を小さくすると
空気の混入したとき配管が閉塞しやすくなり、最悪の場
合にはクライオスタットを破損させることになる。
The increase in evaporation due to convection of evaporated gas can be suppressed by reducing the cross-sectional area of the piping, so convection can be suppressed accordingly.
It can be suppressed. However, in order to suppress the rise in internal pressure of the refrigerant container due to quenching of the superconducting magnet, the pipe diameter cannot be reduced to a certain level. Furthermore, if the pipe diameter is made smaller, the pipe becomes more likely to become clogged when air gets mixed in, and in the worst case, the cryostat will be damaged.

このため、従来のクライオスタットでは、特開昭E14
−59911に示されるように管軸方向に多数の小孔を
有する筒状体を配置するものか提案されている。
For this reason, conventional cryostat
It has been proposed to arrange a cylindrical body having a large number of small holes in the tube axis direction, as shown in No. 59911.

しかしながら、上述のような構成では、それ程大きな効
果は得られない。このことは以下のように説明される。
However, such a configuration as described above does not provide such a great effect. This is explained as follows.

前記配管内に前述のような対流防止板を挿入することで
、対流による侵入熱は減少するものの、挿入した多数の
小孔を有する筒状体の伝導による侵入熱が増加するため
侵入熱はそれ程減少しない。
By inserting the above-mentioned convection prevention plate into the piping, the heat intrusion due to convection is reduced, but the heat intrusion due to conduction through the inserted cylindrical body with many small holes increases, so the intrusion heat is not so much. Does not decrease.

さらに、小孔を多数設ける構造は各流路断面積か小さく
、大気などの混入による配管の閉塞を促進することにな
る。
Furthermore, a structure in which a large number of small holes are provided has a small cross-sectional area for each flow path, which promotes clogging of the piping due to intrusion of air and the like.

また、特開昭57−62580、同56−28384、
同57−89277などに、示される様に前記配管内の
対流防止対策として、緊急放出管と冷媒の注液、回収な
どに係わる配管とを分離し緊急放出管は低温側および常
温側に破裂板を設け、その内部を真空にして構成する。
Also, JP-A-57-62580, JP-A-56-28384,
57-89277, etc., as a measure to prevent convection in the piping, the emergency discharge pipe is separated from the piping related to refrigerant injection, recovery, etc., and the emergency discharge pipe has a rupture plate on the low temperature side and the normal temperature side. It is constructed by providing a vacuum inside.

一方、注液、回収のための配管はその管径を可能なかぎ
り小さくし、配管内の対流を防止する方法が提案されて
いる。
On the other hand, a method has been proposed in which the diameter of the piping for liquid injection and collection is made as small as possible to prevent convection within the piping.

しかしながら、この方法では、口径の大きい緊急放出配
管からの伝導による侵入熱を、蒸発ガスによって冷却で
きないため、低侵入熱のクライオスタットでは、この侵
入熱が大きな問題となる。
However, in this method, it is not possible to cool the intruding heat due to conduction from the large-diameter emergency discharge pipe with the evaporative gas, so this intruding heat becomes a big problem in a cryostat with low intrusive heat.

(発明が解決しようとする課題) 上述のごとく、配管内に前述のような対流防止板、ある
いは、別置きの緊急放出配管を設けた1=けでは、侵入
熱を押さえることができない上、配管の閉塞の可能性か
高くなる。
(Problems to be Solved by the Invention) As described above, if the piping is provided with a convection prevention plate or a separate emergency release piping, it is not possible to suppress the intrusion heat, and the piping The possibility of blockage increases.

そこで本発明は、配管内を通して極低温冷媒容器に入っ
てくる侵入熱を確実に抑制できると同時に、配管の閉塞
の可能性が低く、たとえ配管が閉塞した場合でもクライ
オスタットには被害が及ばず、かつ復旧が容易なりライ
オスタットを提供することを目的とする。
Therefore, the present invention can reliably suppress the intrusion heat that enters the cryogenic refrigerant container through the piping, and at the same time has a low possibility of clogging the piping, and even if the piping is clogged, the cryostat will not be damaged. The purpose is to provide a rhiostat that is easy to restore.

[発明の構成] (課題を解決するための手段) 本発明のクライオスタットでは、極低温冷媒の注入、蒸
発気体の回収、緊急時のガス放出、電流リードの案内等
に供される配管内に蒸発ガスが流れるすきまを保持して
薄肉の筒状容器を同軸上に配置し、この筒状容器の低温
側および常温側に破裂板などの安全弁を具えた構成にす
る。
[Structure of the Invention] (Means for Solving the Problems) In the cryostat of the present invention, evaporation is carried out in the piping used for injection of cryogenic refrigerant, collection of evaporated gas, discharge of gas in an emergency, guidance of current leads, etc. A thin-walled cylindrical container is coaxially arranged to maintain a gap for gas flow, and safety valves such as rupture discs are provided on the low-temperature side and the room-temperature side of the cylindrical container.

(作用) 配管内に筒状容器を同軸上に設けることで、流路断面全
体に自然対流による境界層が発達し、流路断面全域にわ
たって上昇流が流れることになり、配管内での対流を抑
えることができる。即ち、常温部の暖かいガスが低温部
に持ち込まれることがなくなり、配管部からの侵入熱を
抑えることができる。
(Function) By providing a cylindrical container coaxially within the pipe, a boundary layer due to natural convection develops over the entire cross section of the flow path, and upward flow flows over the entire cross section of the flow path, reducing convection within the pipe. It can be suppressed. That is, warm gas from the normal temperature section is not brought into the low temperature section, and heat intrusion from the piping section can be suppressed.

超電導マグネットかクエンチした場合でも、前記真空円
筒容器に設けた安全弁により、冷媒容器の内圧上昇を確
実に抑えることができる。
Even if the superconducting magnet is quenched, the safety valve provided in the vacuum cylindrical container can reliably suppress an increase in the internal pressure of the refrigerant container.

(実施例) 以下、本発明の実施例を図面を参照しながら説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例に係わるクライオスタット
を示すもので、基本的な構成は従来のクライオスタット
と同じであるが、本発明が従来のものと異なる点は、配
管7の内部に真空円筒容器11を同軸上に配置したこと
である。
FIG. 1 shows a cryostat according to an embodiment of the present invention. The basic configuration is the same as a conventional cryostat, but the difference between the present invention and the conventional cryostat is that there is a vacuum inside the pipe 7. This is because the cylindrical containers 11 are arranged coaxially.

すなわち、この実施例のクライオスタットでは、極低温
冷媒2の注入、蒸発気体の回収、電流リードの案内等に
供される配管7の内部に対流防止の目的て、真空円筒容
器11を同軸上に配置する。
That is, in the cryostat of this embodiment, a vacuum cylindrical container 11 is disposed coaxially inside the pipe 7, which is used for injecting the cryogenic refrigerant 2, recovering evaporated gas, guiding the current lead, etc., for the purpose of preventing convection. do.

そもそも、配管7の内部に対流が生じる理由は、配管を
通して侵入する熱によって壁近傍に自然対流による上昇
流が生じ、この上昇流によって系外に持ち去られるガス
の質量が、対流以外の侵入熱こよって蒸発するガスの質
量よりも大きい場合に、管路断面における質量流量のバ
ランスを取るために配管中央部に下降流が生じる。この
下降流によって熱が低温部に持ち込まれ冷媒の蒸発量が
増加し系内がバランスする。
In the first place, the reason why convection occurs inside the pipe 7 is that the heat that enters through the pipe causes an upward flow near the wall due to natural convection, and the mass of the gas carried out of the system by this upward flow is due to the intruding heat other than the convection. Therefore, when the mass of the gas is greater than the mass of the gas to be evaporated, a downward flow occurs in the center of the pipe in order to balance the mass flow rate in the pipe cross section. This downward flow brings heat to the low-temperature part, increases the amount of evaporation of the refrigerant, and balances the system.

上述のような過程によって対流がおこるため、配管7内
に配置する真空円筒11の直径、材質、厚さなどは、使
用するクライオスタットの侵入熱に応じて最適値が存在
する。その−例を図2に示す。
Since convection occurs due to the process described above, the diameter, material, thickness, etc. of the vacuum cylinder 11 disposed within the pipe 7 have optimum values depending on the intrusion heat of the cryostat used. An example is shown in FIG.

図中、横軸は真空円筒の直径、縦軸は冷媒蒸発量である
。図2に示すように挿入する真空円筒容器の直径が増加
していくと(前記配管と挿入する真空円筒のすきまが減
少していくと)ある値までは、蒸発量が減少して行くが
それ以後は殆ど変化しなくなる。これは、真空円筒容器
の直径かある程度以上になると図3、図4に示すように
、配管と真空円筒のすきまか両者の管壁に発達する自然
対流境界層の合計厚さより狭くなり、下降流か生じなく
なる。このため、それ以後は対流による侵入熱が殆どな
くなるため、蒸発量が変化しなくなる。
In the figure, the horizontal axis is the diameter of the vacuum cylinder, and the vertical axis is the amount of refrigerant evaporation. As shown in Figure 2, as the diameter of the vacuum cylindrical container to be inserted increases (as the gap between the piping and the vacuum cylinder to be inserted decreases), the amount of evaporation decreases up to a certain value. After that, it hardly changes. As shown in Figures 3 and 4, when the diameter of the vacuum cylindrical container exceeds a certain level, the gap between the piping and the vacuum cylinder becomes narrower than the total thickness of the natural convection boundary layer that develops on the walls of both pipes, and the downward flow or will no longer occur. Therefore, after that, almost no heat enters due to convection, so the amount of evaporation does not change.

一方、配管7の閉塞を防ぐためには、できる限りガスの
流路断面積を大きく取ることが望ましい。
On the other hand, in order to prevent clogging of the pipe 7, it is desirable to make the cross-sectional area of the gas flow path as large as possible.

従って、この真空円筒容器の直径には、最適値が存在し
、その値は図2に示すように蒸発量の変化が殆どなくな
る点である。
Therefore, there is an optimum value for the diameter of this vacuum cylindrical container, and that value is the point at which there is almost no change in the amount of evaporation, as shown in FIG.

この様に、本構成によれば配管内の対流が抑制され、蒸
発量は減少し、かつ閉塞の可能性を少なくできる。
In this manner, according to this configuration, convection within the pipe is suppressed, the amount of evaporation is reduced, and the possibility of blockage can be reduced.

また、前記真空円筒の低温側および常温側に破裂板など
の安全弁を有する構成にすることで、仮に配管が閉塞し
た場合でも、あるいは、超電導マグネットかクエンチし
た場合でも、前記真空円筒容器に設けた破裂板が破れ、
蒸発ガスを安全に系外に導くことができ、冷媒容器の内
圧上昇を抑えることができる。
In addition, by configuring the vacuum cylinder to have safety valves such as rupture discs on the low-temperature side and the normal-temperature side, even if the piping is blocked or the superconducting magnet is quenched, the safety valves installed in the vacuum cylinder container can be used. The rupture disc ruptures,
Evaporated gas can be safely led out of the system, and an increase in internal pressure in the refrigerant container can be suppressed.

また、前記真空円筒容器を高真空に維持するために、前
記真空円筒容器の低温側内壁に活性炭を塗布することは
、非常に有効な方法である。
Furthermore, in order to maintain the vacuum cylindrical container at a high vacuum, it is a very effective method to apply activated carbon to the inner wall of the vacuum cylindrical container on the low temperature side.

なお、本発明では、上述した、実施例に限定されるもの
ではなく、種々の変形例が考えられる。
Note that the present invention is not limited to the embodiments described above, and various modifications can be made.

すなわち、配管7の流路断面の形状によらず同様に構成
を用いることもできる。
That is, the same configuration can be used regardless of the shape of the flow path cross section of the pipe 7.

(他の実施例) また、配管7が重力方向に対して傾けて設置されている
場合などは、図5 (a) 、 (b)に示す様な構成
が有効である。即ち、真空円筒容器11の内壁あるいは
外壁に、蒸発ガスの導管を螺旋状に配置する構成である
。この様な構成にすることで、配管7を傾けた時に発生
する対流を押さえることができる。当然、この構成は配
管7が重力方向に置かれた場合も有効である。
(Other Embodiments) When the pipe 7 is installed at an angle with respect to the direction of gravity, the configurations shown in FIGS. 5(a) and 5(b) are effective. In other words, the evaporative gas conduit is spirally arranged on the inner or outer wall of the vacuum cylindrical container 11. With such a configuration, convection that occurs when the pipe 7 is tilted can be suppressed. Naturally, this configuration is also effective when the pipe 7 is placed in the direction of gravity.

[発明の効果] 以上述べたように、本発明によれば、極低温冷媒の注入
、蒸発気体の回収、電流リードの案内等に供される配管
を通して、対流によって侵入する熱量を大幅に低減でき
、かつ、閉塞の可能性が少なく、仮に配管が閉塞した場
合でも、あるいは、超電導マグネットがクエンチした場
合でも、冷媒容器の内圧上昇を抑えることができるクラ
イオスタットを提供できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to significantly reduce the amount of heat that enters by convection through piping used for injection of cryogenic refrigerant, recovery of evaporated gas, guidance of current leads, etc. In addition, it is possible to provide a cryostat that has a low possibility of blockage and can suppress an increase in the internal pressure of the refrigerant container even if the pipe is blocked or the superconducting magnet is quenched.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のクライオスタットの概略断
面図、第2図は真空円筒の径による蒸発量の変化を示す
曲線図、第3図は配管内の蒸発ガスの速度分布の図、第
4図は本実施例の真空容器を挿入した場合の配管内速度
分布の図、第5図(a) 、 (b)は本発明の他の実
施例のクライオスタットの配管部を示す図である。 1・・・超電導コイル、   2・・・極低温冷媒、3
・・・極低温冷媒容器、 4・・・真空断熱層、5・・
・真空容器、     6・・・熱シールド、7・・・
配管、       8・・・サーマルアンカ、9・・
・小型冷凍機、   11・・・真空円筒容器、12・
・・破裂板、     13・・・活性炭、15・・・
螺旋管。
FIG. 1 is a schematic sectional view of a cryostat according to an embodiment of the present invention, FIG. 2 is a curve diagram showing changes in the amount of evaporation depending on the diameter of the vacuum cylinder, and FIG. 3 is a diagram of the velocity distribution of evaporated gas in the pipe. FIG. 4 is a diagram showing the velocity distribution in the piping when the vacuum container of this embodiment is inserted, and FIGS. 5(a) and (b) are diagrams showing the piping section of the cryostat according to another embodiment of the present invention. . 1... Superconducting coil, 2... Cryogenic refrigerant, 3
... Cryogenic refrigerant container, 4... Vacuum insulation layer, 5...
・Vacuum container, 6... Heat shield, 7...
Piping, 8... Thermal anchor, 9...
・Small refrigerator, 11... Vacuum cylindrical container, 12.
...Rupture disc, 13...Activated carbon, 15...
spiral tube.

Claims (1)

【特許請求の範囲】 (1)極低温冷媒を収容する冷媒容器と、この冷媒容器
を覆うとともに冷媒容器との間に真空断熱層を形成する
真空容器と、一端側が前記冷媒容器に通じるとともに他
端側が前記真空断熱層と真空容器の壁を貫通して常温部
に位置する配管とを備えてなるクライオスタットにおい
て、前記配管内に、内部が真空である薄肉の筒状容器を
配置し、前記配管と前記筒状容器の隙間を前記極低温冷
媒の蒸発ガス流路として構成したことを特徴とするクラ
イオスタット。 (2)配管内の筒状容器は、低温端および常温端に破裂
板あるいは安全弁を有することを特徴とする請求項(1
)記載のクライオスタット。 (3)破裂板あるいは安全弁のうち、常温端に設置され
るものは、圧力が一定値以下になると閉じる安全弁で構
成されたことを特徴とする請求項(2)記載のクライオ
スタット。(4)筒状容器の内壁の低温側に活性炭など
の吸着材を塗布したことを特徴とする請求項(1)記載
のクライオスタット。 (5)配管の断面が円形でない場合において、配管断面
と相似形の断面を持つ筒状容器を配管内に同軸上に配置
したことを特徴とする請求項(1)記載のクライオスタ
ット。 (6)配管と筒状容器の隙間を各壁面に発達した境界層
の厚みの合計よりも小さくしたことを特徴とする請求項
(1)記載のクライオスタット。 (7)筒状容器の内周あるいは外周に蒸発ガス配管を螺
旋状に取付けたことを特徴とする請求項(1)記載のク
ライオスタット。 (8)筒状容器は着脱可能であることを特徴とする請求
項(1)記載のクライオスタット。
[Scope of Claims] (1) A refrigerant container containing a cryogenic refrigerant; a vacuum container that covers the refrigerant container and forms a vacuum insulation layer between the refrigerant container; one end communicates with the refrigerant container and the other In a cryostat, the end side of which is provided with a pipe that penetrates the vacuum insulation layer and the wall of the vacuum container and is located in a room temperature section, a thin-walled cylindrical container with a vacuum inside is arranged in the pipe, and the pipe A cryostat characterized in that a gap between the cylindrical container and the cylindrical container is configured as an evaporative gas flow path of the cryogenic refrigerant. (2) Claim (1) characterized in that the cylindrical container in the pipe has a rupture disc or a safety valve at the low temperature end and the normal temperature end.
) Cryostat described. (3) The cryostat according to claim (2), wherein the rupture disc or the safety valve installed at the normal temperature end is a safety valve that closes when the pressure falls below a certain value. (4) The cryostat according to claim (1), characterized in that an adsorbent such as activated carbon is coated on the low temperature side of the inner wall of the cylindrical container. (5) The cryostat according to claim (1), wherein when the cross section of the pipe is not circular, a cylindrical container having a cross section similar to the cross section of the pipe is disposed coaxially within the pipe. (6) The cryostat according to claim (1), wherein the gap between the pipe and the cylindrical container is made smaller than the total thickness of boundary layers developed on each wall surface. (7) The cryostat according to claim (1), characterized in that an evaporative gas pipe is spirally attached to the inner or outer circumference of the cylindrical container. (8) The cryostat according to claim (1), wherein the cylindrical container is removable.
JP2263026A 1990-10-02 1990-10-02 Cryostat Pending JPH04142083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263026A JPH04142083A (en) 1990-10-02 1990-10-02 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263026A JPH04142083A (en) 1990-10-02 1990-10-02 Cryostat

Publications (1)

Publication Number Publication Date
JPH04142083A true JPH04142083A (en) 1992-05-15

Family

ID=17383853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263026A Pending JPH04142083A (en) 1990-10-02 1990-10-02 Cryostat

Country Status (1)

Country Link
JP (1) JPH04142083A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531807A (en) * 1976-06-28 1978-01-10 Hitachi Ltd Cylindrical supporter
JPS5628364A (en) * 1979-08-09 1981-03-19 Mitsubishi Electric Corp Emergency gas discharging device
JPS5789277A (en) * 1980-11-26 1982-06-03 Toshiba Corp Emergency discharge tube for cryostat
JPH01206832A (en) * 1988-02-12 1989-08-21 Toshiba Corp Superconducting current limiter
JPH0418774A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Current lead of superconductive magnet device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531807A (en) * 1976-06-28 1978-01-10 Hitachi Ltd Cylindrical supporter
JPS5628364A (en) * 1979-08-09 1981-03-19 Mitsubishi Electric Corp Emergency gas discharging device
JPS5789277A (en) * 1980-11-26 1982-06-03 Toshiba Corp Emergency discharge tube for cryostat
JPH01206832A (en) * 1988-02-12 1989-08-21 Toshiba Corp Superconducting current limiter
JPH0418774A (en) * 1990-05-11 1992-01-22 Fuji Electric Co Ltd Current lead of superconductive magnet device

Similar Documents

Publication Publication Date Title
US4655045A (en) Cryogenic vessel for a superconducting apparatus
JPS6051624B2 (en) Cooling system
JP2005310811A (en) Superconductive magnet device
KR20140110104A (en) Over-pressure limiting arrangement for a cryogen vessel
KR100843389B1 (en) Undercooled horizontal cryostat configuration
JPH04142083A (en) Cryostat
KR101751841B1 (en) Leakage Liquefied Gas of Storage Tank Treatment System and Method
US3059804A (en) Safety device for insulated tank
Cavallari et al. Pressure protection against vacuum failures on the cryostats for LEP SC cavities
JPS588900A (en) Low temperature tank having double safety
KR20200047567A (en) Gas fuel supply system and valve
JP4622906B2 (en) Liquefied gas filling method
JP2575517B2 (en) Cryostat
KR20180137636A (en) Storage vessel for extremely low temperature material with cryogenic jacket
JPH0555032A (en) Crystal for superconducting magnet use
JP2637280B2 (en) Cryostat
JPS6229755Y2 (en)
JPH09202393A (en) Flammable liquefied gas storage facilities
RU2105235C1 (en) Vessel to store cryogenic liquid
JP2760572B2 (en) Refrigerant gas discharge device
US20240271760A1 (en) Pressure accumulator
JP2000102517A (en) Cooling device for living body magnetographic device
JPH0441276Y2 (en)
JPS61164277A (en) Cryogenic container
JPH01145477A (en) Relief valve for protecting extremely low temperature cryogen container