JPH0414205A - Plastic magnet - Google Patents

Plastic magnet

Info

Publication number
JPH0414205A
JPH0414205A JP2116371A JP11637190A JPH0414205A JP H0414205 A JPH0414205 A JP H0414205A JP 2116371 A JP2116371 A JP 2116371A JP 11637190 A JP11637190 A JP 11637190A JP H0414205 A JPH0414205 A JP H0414205A
Authority
JP
Japan
Prior art keywords
powder
rare earth
flux density
magnetic flux
ferromagnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2116371A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Terumi Toufun
藤墳 照実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2116371A priority Critical patent/JPH0414205A/en
Publication of JPH0414205A publication Critical patent/JPH0414205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To enhance the magnetizability for facilitating the multipolar magnetization applying the low magnetic field by a method wherein the mixed powder of rare earth alloy powder with ferromagnetic body powder not exceeding a specific value in weight is molded in specific shape using plastic as a binding agent. CONSTITUTION:The mixed powder of rare earth alloy powder with ferromagnetic body powder not exceeding 50wt.% is molded in specific shape. The rare earth alloy is an alloy comprising a rare earth metal, ferrous metal whereto such elements as B, C, N, Si, P, etc., are added is necessary normally in particle diameter of about 150-250mum. The ferromagnetic body powder is in high saturated magnetic flux density comprising Fe, Ni, Co or alloy thereof preferably in particle diameter not exceeding 3.0mm. Polyamide, melamine resin, etc., as applicable plastic is added to the mixed powder by about 1-10wt.%. Furthermore, the residual magnetic flux density declines very little within the range of 50wt.% in the additive amount of the ferromagnetic body powder so that the surface magnetic flux density may be kept in excellent value even if the ferromagnetic body powder is magnetized in multiplorities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類合金粉末を用いたプラスチック磁石に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plastic magnet using rare earth alloy powder.

〔発明の背景〕[Background of the invention]

5IIl−CO系あるいはNd−Fe−B系等の希土類
合金粉末を用いたプラスチック磁石においては、肉薄リ
ング状の小型な磁石が容易に製造出来る等の利点があり
、最近ではOA機器を中心に非常に需要が伸びる傾向に
ある。
Plastic magnets using rare earth alloy powders such as 5IIl-CO or Nd-Fe-B have the advantage of being easy to manufacture small, thin-walled ring-shaped magnets, and have recently become very popular mainly in office automation equipment. Demand is on the rise.

〔従来の技術〕[Conventional technology]

上記プラスチック磁石はS m −Co系あるいはNd
−Fe−B系等の希土類合金粉末をポリアミド。
The above plastic magnet is S m -Co based or Nd
- Polyamide with rare earth alloy powder such as Fe-B type.

ポリイミド、エポキシ樹脂等のプラスチックバインダー
で結着し、所定形状にプレス成形して製造される。
It is manufactured by binding with a plastic binder such as polyimide or epoxy resin and press-molding it into a predetermined shape.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記従来の希土類プラスチック磁石は、着
磁に強い磁界が必要であり、例えば多極状のステッピン
グモーターのマグネットローターとして用いるような場
合には、磁石外周に10極以上の多極着磁する必要があ
るが、このような多極着磁に充分な着磁磁界が得られず
、希土類プラスチック磁石の持つ特性を充分に発揮させ
ることが出来ないと云う問題点があった。
However, the above-mentioned conventional rare earth plastic magnets require a strong magnetic field for magnetization, and for example, when used as a magnetic rotor for a multipolar stepping motor, it is necessary to magnetize the outer circumference of the magnet with 10 or more poles. However, there was a problem in that a sufficient magnetizing magnetic field could not be obtained for such multi-pole magnetization, and the characteristics of rare earth plastic magnets could not be fully demonstrated.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記従来の課題を解決する手段として希土類合
金粉末に50重量%以下の強磁性体粉末を混合した混合
粉末を、プラスチックを結着剤として、所定形状に成形
したプラスチック磁石を提供するものである。
As a means of solving the above-mentioned conventional problems, the present invention provides a plastic magnet in which a mixed powder obtained by mixing rare earth alloy powder with 50% by weight or less of ferromagnetic powder is molded into a predetermined shape using plastic as a binder. It is.

本発明に用いられる希土類合金はCe、Pr。The rare earth alloys used in the present invention are Ce and Pr.

Nd、Pm、 Ss、 Eu、 Gd、 Tb、 Dy
、 Ho、 Er。
Nd, Pm, Ss, Eu, Gd, Tb, Dy
, Ho, Er.

Tm、Yb、Lu等の希土類金属とFe、Co、Ni等
の鉄系金属と、所望なればB、C,N、Si、P等の元
素を添加した合金であり、該希土類合金は通常的150
〜250μmの粒径を有する粉体として用いられる。該
希土類合金としては例えばNd−Fe−B合金、Sm−
Co合金等がある。
It is an alloy of rare earth metals such as Tm, Yb, and Lu, iron-based metals such as Fe, Co, and Ni, and, if desired, elements such as B, C, N, Si, and P. 150
It is used as a powder with a particle size of ~250 μm. Examples of the rare earth alloy include Nd-Fe-B alloy, Sm-
There are Co alloys, etc.

本発明に用いる強磁性体粉末は高飽和磁束密度を持つも
のであり、例えばFe、 Ni、 Co、あるいはFe
−Ni合金、Fe−Co合金、F e −Cr合金等を
使用することが望ましい。該強磁性体粉末は好ましくは
3.0mm以下の粒径を有する粉末とされ、通常、上記
希土類合金粉末に50重量%以下の添加量で混合される
The ferromagnetic powder used in the present invention has a high saturation magnetic flux density, such as Fe, Ni, Co, or Fe.
-Ni alloy, Fe-Co alloy, Fe-Cr alloy, etc. are preferably used. The ferromagnetic powder preferably has a particle size of 3.0 mm or less, and is usually mixed with the rare earth alloy powder in an amount of 50% by weight or less.

本発明にバインダーとして用いるプラスチックとしては
、ポリアミド、ポリイミド、エポキシ樹脂、尿素樹脂、
メラミン樹脂等があり、通常上記混合粉末に対して1〜
10重量%程度添加される。
Plastics used as binders in the present invention include polyamides, polyimides, epoxy resins, urea resins,
There are melamine resins, etc., and it is usually 1 to 1 for the above mixed powder.
It is added in an amount of about 10% by weight.

上記希土類合金粉末−強磁性体粉末−プラスチックの混
合物は通常ホットプレス、冷間プレス、静水圧プレス等
によって所定形状(例えば肉薄リング状)に成形され、
その後所望なれば適当な温度に加熱される。このように
して得られた成形物はその後、磁場内に置かれて磁界を
印加し着、磁されるが、本発明においては望ましくは4
極以上の多極状に着磁される。
The mixture of rare earth alloy powder, ferromagnetic powder, and plastic is usually molded into a predetermined shape (for example, a thin ring shape) by hot pressing, cold pressing, isostatic pressing, etc.
It is then heated to a suitable temperature if desired. The molded product thus obtained is then placed in a magnetic field and magnetized by applying a magnetic field.
It is magnetized in a multipolar shape with more than one pole.

〔作用〕[Effect]

本発明のプラスチック磁石は上記したように希土類合金
粉末と強磁性体粉末とからなるが、該強磁性体粉末を添
加することによって、磁石の保磁力は低下し着磁性が改
善される。−力強磁性体粉末の添加量が50重量%まで
は、残留磁束密度の値の低下は極くわずかであり、多極
状に着磁しても表面磁束密度は優れた値となる。
As described above, the plastic magnet of the present invention is made of rare earth alloy powder and ferromagnetic powder, and by adding the ferromagnetic powder, the coercive force of the magnet is reduced and the magnetization is improved. - When the amount of ferromagnetic powder added is up to 50% by weight, the residual magnetic flux density value decreases only slightly, and even when magnetized in a multipolar configuration, the surface magnetic flux density remains at an excellent value.

〔実施例〕〔Example〕

29重量%Nd−1,3重量%B−残部Feなる組成を
有する希土類合金の超急冷粉(粒径200μm)に、鉄
粉(粒径150μm以下)を種々の比率で添加した混合
粉末に、エポキシ樹脂を3重量%混合し、粉末プレスに
て外径20+m+、内径18m、厚さ10mmのリング
状に成形し、該成形物はその後150℃、1時間加熱し
て硬化させた。このようにして得られたリング状磁石を
磁場内において磁界を印加し、着磁して磁気特性を測定
した。
A mixed powder made by adding iron powder (particle size of 150 μm or less) at various ratios to ultra-quenched rare earth alloy powder (particle size of 200 μm) having a composition of 29% by weight Nd-1,3% by weight B-balance Fe, 3% by weight of epoxy resin was mixed and molded into a ring shape with an outer diameter of 20+m+, an inner diameter of 18m, and a thickness of 10mm using a powder press, and the molded product was then heated at 150° C. for 1 hour to harden. A magnetic field was applied to the thus obtained ring-shaped magnet in a magnetic field to magnetize it, and its magnetic properties were measured.

第1図には鉄粉添加量と、保磁力IHcおよび残留磁束
密度Brとの関係が示される。
FIG. 1 shows the relationship between the amount of iron powder added, coercive force IHc, and residual magnetic flux density Br.

第1図によれば、鉄粉添加量に比例して保磁力が略直線
的に低下して、着磁性が改善されるが、一方残留磁束密
度は鉄粉添加量が40重量%まではほとんど低下せず、
多極着磁の表面磁束密度は優れた値となることが認めら
れる。
According to Figure 1, the coercive force decreases almost linearly in proportion to the amount of iron powder added, and the magnetization is improved, but on the other hand, the residual magnetic flux density is almost constant until the amount of iron powder added is 40% by weight. does not decrease,
It is recognized that the surface magnetic flux density of multipolar magnetization has an excellent value.

第2図には鉄粉30重量%を添加した本実施例の磁石と
、鉄粉を添加しないNd−Fe−B合金のみを用いた従
来の磁石との比較において、印加磁界と残留磁束密度と
の関係が示される。
Figure 2 shows the relationship between the applied magnetic field and the residual magnetic flux density when comparing the magnet of this example with 30% by weight of iron powder added and a conventional magnet using only Nd-Fe-B alloy without adding iron powder. The relationship between is shown.

第2図のよれば1本発明では希土類合金粉末に強磁性体
粉末を添加することによって保磁力が低下した結果、着
磁性が改善されて、低い着磁磁界で高い残留磁束密度が
得られることが認められる。
According to Figure 2, 1. In the present invention, the coercive force is reduced by adding ferromagnetic powder to the rare earth alloy powder, and as a result, the magnetization is improved and a high residual magnetic flux density can be obtained with a low magnetizing magnetic field. is recognized.

第3図には第2図に用いた本実施例の磁石と従来の磁石
との比較において、外周48極着磁した場合の表面磁束
密度が示される6 第3図によれば、本実施例の磁石は従来の磁石では得ら
れない高い表面磁束密度約3KGが得られる。(従来品
は約2.5KG)ことがわかる。
FIG. 3 shows the surface magnetic flux density when the magnet of this example used in FIG. 2 and a conventional magnet are magnetized with 48 poles on the outer circumference6. With this magnet, a high surface magnetic flux density of approximately 3 KG, which cannot be obtained with conventional magnets, can be obtained. (The conventional product weighs approximately 2.5 kg).

しかも第3図をみれば表面磁束密度のばらつきが従来の
磁石よりも小さく、ステッピングモーターとして用いた
場合には、モーターの振れおよび出力ぶれが極端にツノ
)さくなることが分かった6〔効果〕 したがって本発明においては、希土類プラスチック磁石
の着磁性が改善され、低い磁界を適用して多極状に着磁
することが極めて容易になり、表面磁束密度も高くかつ
ばらつきがない磁石が得られ、48極、96極などのD
M型超多極のステッピングモーターが実用化される可能
性が見出された。
Moreover, as shown in Figure 3, the variation in surface magnetic flux density is smaller than that of conventional magnets, and when used as a stepping motor, the motor runout and output fluctuation become extremely sharp.6 [Effect] Therefore, in the present invention, the magnetization of the rare earth plastic magnet is improved, it is extremely easy to magnetize it into a multipolar shape by applying a low magnetic field, and a magnet with a high surface magnetic flux density and no variation can be obtained. D such as 48 poles and 96 poles
It has been discovered that there is a possibility that an M-type ultra-multipolar stepping motor will be put to practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の磁石の鉄粉添加量(重量%)と保磁力
I Hcおよび残留磁束密度Brとの関係を示すもので
あり、第2図は実施例の磁石と従来の磁石との比較にお
ける印加磁界と残留磁束密度Brとの関係を示すもので
あり、第3図は実施例の磁石と従来の磁石とを外周48
極着磁した場合の表面磁束密度を示すものである。 第2図において・−・は本実施例のグラフ、O−○は従
来のグラフである。 特許出願人 大同特殊鋼株式会社 代   理   人   宇  佐  見  忠  昇
給1回 鉄粉配合割合(重量’/、)
Figure 1 shows the relationship between the amount of iron powder added (wt%), coercive force IHc, and residual magnetic flux density Br in the magnet of the example, and Figure 2 shows the relationship between the magnet of the example and the conventional magnet. The relationship between the applied magnetic field and the residual magnetic flux density Br in comparison is shown in FIG.
This shows the surface magnetic flux density when polarized. In FIG. 2, -- is a graph of this embodiment, and O-- is a conventional graph. Patent applicant: Daido Steel Co., Ltd. Representative: Tadashi Usa Mi Tadashi Usa One pay raise Iron powder blending ratio (weight'/,)

Claims (2)

【特許請求の範囲】[Claims] 1.希土類合金粉末に50重量%以下の強磁性体粉末を
混合した混合粉末を、プラスチックを結着剤として、所
定形状に成形したことを特徴とするプラスチック磁石。
1. A plastic magnet characterized in that a mixed powder obtained by mixing rare earth alloy powder with 50% by weight or less of ferromagnetic powder is molded into a predetermined shape using plastic as a binder.
2.該プラスチック磁石は4極以上の多極状に着磁され
ている特許請求の範囲1に記載のプラスチック磁石。
2. 2. The plastic magnet according to claim 1, wherein the plastic magnet is magnetized in a multi-pole form of four or more poles.
JP2116371A 1990-05-02 1990-05-02 Plastic magnet Pending JPH0414205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116371A JPH0414205A (en) 1990-05-02 1990-05-02 Plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116371A JPH0414205A (en) 1990-05-02 1990-05-02 Plastic magnet

Publications (1)

Publication Number Publication Date
JPH0414205A true JPH0414205A (en) 1992-01-20

Family

ID=14685326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116371A Pending JPH0414205A (en) 1990-05-02 1990-05-02 Plastic magnet

Country Status (1)

Country Link
JP (1) JPH0414205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113871A (en) * 2007-11-01 2009-05-28 Sharp Corp Fluorescent tube collecting container, collecting method of fluorescent tube using it, and recycling method of liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113871A (en) * 2007-11-01 2009-05-28 Sharp Corp Fluorescent tube collecting container, collecting method of fluorescent tube using it, and recycling method of liquid crystal display device

Similar Documents

Publication Publication Date Title
CN107077934B (en) The sintered magnet and preparation method thereof based on MnBi of thermal stability with raising
JPS6032306A (en) Permanent magnet
JPH03227502A (en) Heat-resisting bond magnet and its manufacture and pm motor
EP0029071B1 (en) Process for producing permanent magnet alloy
JPWO2004027795A1 (en) Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet
US5403408A (en) Non-uniaxial permanent magnet material
JPH01205403A (en) Rare earth iron resin coupling type magnet
JPH0414205A (en) Plastic magnet
Yoshizawa et al. Injection molded Sm/sub 2/Fe/sub 17/N/sub 3/anisotropic magnet using reduction and diffusion method
JPS60144908A (en) Permanent magnet material
JPS62241304A (en) Rare earth permanent magnet
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JPS60254707A (en) Manufacture of permanent magnet
JPH0414204A (en) Plastic magnet
JPH04308062A (en) Magnet alloy containing rare earth element and permanent magnet containing rare earth element
JP2002231540A (en) Magnetic core having magnet for magnetic bias and inductance part using it
JPS62257703A (en) Resin-bonded magnetic material
JPH01289883A (en) Ferromagnetic adhesive
CN1110426A (en) Multi-phase compound permanent-magnet material capable of regulating magnetic property step by step
JPS63160211A (en) Permanent magnet
JP2002184619A (en) Magnet roll
JP2000114013A (en) Magnetic material and its manufacture
JPS63166944A (en) Corrosion-resisting permanent magnet
JP2726991B2 (en) Rare earth composite magnet material
JP2000188214A (en) Dust core