JPH0414099B2 - - Google Patents

Info

Publication number
JPH0414099B2
JPH0414099B2 JP58075808A JP7580883A JPH0414099B2 JP H0414099 B2 JPH0414099 B2 JP H0414099B2 JP 58075808 A JP58075808 A JP 58075808A JP 7580883 A JP7580883 A JP 7580883A JP H0414099 B2 JPH0414099 B2 JP H0414099B2
Authority
JP
Japan
Prior art keywords
general formula
formula
represent
derivative represented
acetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58075808A
Other languages
Japanese (ja)
Other versions
JPS59204154A (en
Inventor
Akira Tanabe
Noritada Matsuo
Sumio Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58075808A priority Critical patent/JPS59204154A/en
Publication of JPS59204154A publication Critical patent/JPS59204154A/en
Publication of JPH0414099B2 publication Critical patent/JPH0414099B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般式() 〔式中、R1およびR2は共に低級アルキル基を表
わすか、またはR1とR2とが末端で係合し、アル
キレン基を表わし、R3は水素原子または低級ア
シル基を表わす。〕 で示されるアセタール誘導体およびその製造法に
関する。 最近、合成ピレスロイドとして、一般式() 〔式中、R4は水素原子または塩素原子を表わし、
R5は水素原子、シアノ基、エチニル基または1
−プロピニル基を表わす。R6は一般式
The present invention is based on the general formula () [In the formula, R 1 and R 2 both represent a lower alkyl group, or R 1 and R 2 are engaged at the terminals to represent an alkylene group, and R 3 represents a hydrogen atom or a lower acyl group. ] The present invention relates to an acetal derivative shown in the following and a method for producing the same. Recently, as a synthetic pyrethroid, the general formula () [In the formula, R 4 represents a hydrogen atom or a chlorine atom,
R 5 is a hydrogen atom, a cyano group, an ethynyl group, or 1
- represents a propynyl group. R 6 is a general formula

【式】または[expression] or

【式】 (ここで、Xは塩素原子または臭素原子を表わ
す。)で示される基を表わす。〕 で示される新規なエステル化合物が、優れた殺
虫、殺ダニ活性を有することが見出されている。 本発明者らは、上記一般式()で示されるエ
ステル化合物の、アルコール成分の合成法につき
種々検討を重ねた結果、上記一般式()で示さ
れるアセタール誘導体と、一般式() 〔式中、R4は前述と同じ意味を有する。〕 で示されるブロムベンゼン誘導体を、塩基と銅ま
たは銅化合物の存在下に反応させ、次いで、必要
に応じ脱アシル化した後、脱アセタール化するこ
とにより、上記一般式()で示されるエステル
化合物の合成原料となる一般式() 〔式中、R4は前述と同じ意味を有する。〕 で示されるアルデヒド化合物が、効率よく得られ
ることを見出すと共に、前記一般式()で示さ
れるアセタール誘導体がその重要な中間体となる
ことを見出し、本発明を完成するに至つた。 即ち、本発明は、前記一般式()で示される
アセタール誘導体と、その製造法として、一般式
() 〔式中、R1およびR2は前述と同じ意味を有す
る。〕 で示されるニトロベンゼン誘導体を、接触還元す
ることによる一般式(′) 〔式中、R1およびR2は前述と同じ意味を有す
る。〕 で示されるアセタール誘導体の製造法および該ア
セタール誘導体にさらに低級カルボン酸無水物ま
たは低級カルボン酸ハライドを反応させることに
よる一般式(″) 〔式中、R1およびR2は前述と同じ意味を有し、
R′3は低級アシル基を表わす。〕 で示されるアセタール誘導体の製造法を提供する
ものである。 以下に、本発明につき詳しく説明する。 前記一般式()で示されるアセタール誘導体
において、置換基R1およびR2としては、メチル
基、エチル基、n−プロピル基などの低級アルキ
ル基または、R1とR2とが一緒になつて、エチレ
ン基を表わす場合などを挙げることができる。 一般式()で示される本発明のアセタール誘
導体の製造法において、一般式()で示される
ニトロベンゼン誘導体を接触還元する際の触媒と
しては、パラジウム−炭素、二酸化白金に代表さ
れる、芳香族ニトロ化合物をアニリン誘導体に還
元するのに用いられる通常の触媒が用いられる、
その使用量は、前記一般式()で示されるニト
ロベンゼン誘導体に対し、0.01〜10モル%、好ま
しくは、0.1〜5モル%の範囲である。 また、本接触還元反応において使用される溶媒
としては、メタノール、エタノールなどのアルコ
ール系溶媒や酢酸エチルなどの不活性溶媒が挙げ
られる。 使用される水素ガスの圧力は1〜10気圧、好ま
しくは1〜3気圧の範囲であり、反応温度は0℃
から使用する溶媒の沸点、好ましくは10〜30℃の
範囲である。 上記のような接触還元反応の後、触媒の除去お
よび触媒の留去を行なうことにより、目的とする
一般式(′)で示されるアセタール誘導体を得
ることができ、この時、溶媒の留去に先立ち、予
め反応溶媒を乾燥しておくことが望ましい。 このようにして得られる一般式(′)で示さ
れるアセタール誘導体に、低級カルボン酸無水物
または低級カルボン酸クロリドをピリジン、トリ
エチルアミンなどの脱酸剤の存在下に、反応させ
ることによる、通常のアシル化反応により、一般
式(″)で示されるアセタール誘導体を得るこ
とができる。 尚、本発明に関する一般式()で示されるニ
トロベンゼン誘導体は、4−フルオロ−3−ニト
ロベンズアルデヒドに、p−トルエンスルホン酸
や硫酸の存在下、エチレングリコール、オルト蟻
酸メチル、オルト蟻酸エチルなどを反応させるこ
とによる、通常のアセタール化反応により容易に
得ることができる。 以下に、実施例および参考例にて、本発明をさ
らに詳細に説明するが、勿論、本発明がこれらに
限定されるものではない。 実施例 1 4−フルオロ−3−ニトロ−ベンズアルデヒド
エチレンアセタール3.0gを酢酸エチル100mlに溶
解し、これに二酸化白金100mgを加え、常圧下に
水素ガスを導入しながら、常温にて3時間接触還
元反応を行つた。 この時点において、も早水素ガスの吸収は認め
られず、また反応生成物のガスクロマトグラフイ
ーによる分析の結果、原料化合物は残存していな
かつた。 次いで、反応液をセライト過し、得られた
液を無水硫酸マグネシウムで乾燥後、溶媒を留去
し、ほぼ純粋な3−アミノ−4−フルオロ−ベン
ズアルデヒドエチレンアセタール2.5gを得た。 収 率 97% m.p 48〜49.5℃ 実施例 2 4−フルオロ−3−ニトロ−ベンズアルデヒド
エチレンアセタール3.0gを99.5%エタノール100
mlに溶解し、これに5%パラジウム−炭素200mg
を加え、常圧下に水素ガスを導入しながら、室温
にて3時間還元反応を行つた。 次いで、反応液にさらに200mgの5%パラジウ
ム−炭素を加え、同条件下に1時間接触還元反応
を行つた。 この時点において、も早水素ガスの吸収は認め
られず、また反応生成物のガスクロマトグラフイ
ーによる分析の結果、原料化合物は残存しなかつ
た。 次いで、反応液をセライト過し、得られた
液を約50mlになるまで濃縮した後、飽和炭酸水素
ナトリウム水溶液50mlに注加し、エーテルで抽出
した。 有機層を水および飽和食塩水で洗浄し、無水硫
酸マグネシウムで乾燥後、溶媒を留去し、残渣と
して2.7gの生成物を得た。 該生成物を乾燥ピリジン20mlに溶解し、氷冷下
に、無水酢酸2.0gを撹拌しながら滴下した。滴
下後、さらに8時間室温で撹拌を続けた後、反応
液を氷50gに注加し、エーテルで抽出した。 有機層を水および硫酸銅水溶液で洗浄し、ピリ
ジンを除去した後、さらに飽和炭酸水素ナトリウ
ム水溶液で2回洗浄し、無水硫酸マグネシウムで
乾燥後、溶媒を留去し、残渣として2.6gの生成
物を得た。 次いで、該生成物をシリカゲルカラムクロマト
グラフイー(溶出液:クロロホルム)で精製し、
純粋な3−アセトアミノ−4−フルオロ−ベンズ
アルデヒドエチレンアセタール1.90gを得た。 収 率 59% m.p 53.2℃ 参考例 1 4−フルオロ−3−アセトアミノベンズアルデ
ヒドエチレンアセタール0.52g、炭酸カリウム
0.42g、塩化第一銅0.07gおよびブロモベンゼン
3.62gを反応器に入れ、窒素気流下に内温140〜
150℃で13時間撹拌した。 反応液を放冷した後、セライト過し、得られ
た液をエーテルで2回抽出した。抽出液を飽和
炭酸水素ナトリウム水溶液で1回洗浄し、無水硫
酸ナトリウムで乾燥後、溶媒を留去し、残渣とし
て0.95gの生成物を得た。 次いで、該生成物に、1N−水酸化ナトリウム
水溶液20mlを加え、室温下に2時間撹拌した後、
水浴で冷却しながら、これに10%塩酸20mlを徐々
に滴下し、滴下後2時間撹拌した。 反応液をエーテルで2回抽出し、抽出液を飽和
炭酸水素ナトリウム水溶液で洗浄し、次いで無水
硫酸マグネシウムで乾燥後、エーテルを留去し
た。 得られた残渣をシリカゲルカラムクロマトグラ
フイー(溶出液:塩化メチレン)で精製し、純粋
な3−アニリノ−4−フルオロベンズアルデヒド
0.40gを得た。 収 率 81% m.p 115〜117℃ 参考例 2 3−アミノ−4−フルオロベンズアルデヒドエ
チレンアセタール0.30g、炭酸カリウム0.27g、
塩化第一銅0.05gおよびブロモベンゼン1.30gを
反応容器に入れ、窒素気流下に内温130〜140℃で
10時間撹拌した。 反応液を放冷した後、これに10%塩酸10mlを加
え、50℃で2時間撹拌し、次いで反応液をセライ
ド過し、液を水酸化ナトリウム水溶液で中和
後、エーテルで2回抽出した。 抽出液を飽和炭酸水素ナトリウム水溶液で1回
洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を
留去した。 得られた残渣をシリカゲルカラムクロマトグラ
フイー(溶出液:塩化メチレン)で精製し、純粋
な3−アニリノ−4−フルオロベンズアルデヒド
0.14gを得た。 収 率 33% 参考例 3 4−フルオロ−3−ニトロベンズアルデヒド10
g、エチレングリコール5.5gおよびp−トルエ
ンスルホン酸100mgをトルエン50mlに溶解した後、
加熱還流下にトルエン100mlを滴加しながら、共
沸脱水を行ない、水を含むトルエン液約100mlを
2時間を要し留出させた。 内溶液をガスクロマトグラフイーにて分析した
ところ、原料の転換率は98%であつた。 反応液を放冷後、飽和炭酸水素ナトリウム水溶
液に注加し、分液した。 有機層を、水および飽和食塩水で洗浄し、無水
硫酸マグネシウムで乾燥後、溶媒を留去し、淡黄
色の油状物質として、4−フルオロ−3−ニトロ
−ベンズアルデヒドエチレンアセタール12.3gを
得た(収率:97.6%)。 該生成物は、そのガスクロマトグラムおよび
NMRスペクトルから、ほぼ純粋であつた。 n22 D 1.5080 NMRデータ(CDCl3、TMS) 6.80〜7.80(m、3H) 5.70 (s、1H) 3.90〜4.10(m、4H) 実施例 3 4−フルオロ−3−ニトロベンズアルデヒドジ
エチルアセタール2.43gを酢酸エチル100mlに溶
解し、これに二酸化白金100mgを加え、常圧下に
水素ガスを導入しながら室温にて6時間接触還元
反応を行つた。 この時点においても早、水素ガスの吸収は認め
られず、また反応生成物のガスクロマトグラフイ
ーによる分析の結果、原料化合物は残存していな
かつた。次いで反応液をセライト過し、得られ
た液を無水硫酸マイグネシウムで乾燥後、溶媒
を留去し、ほぼ純粋な3−アミノ−4−フルオロ
ベンズアルデヒドジエチルアセタール1.50gを得
た。 収 率 70% n23.0 D 1.5020 参考例 4 4−フルオロ−3−ニトロベンズアルデヒド
5.0gをオルソギ酸エチル13.1gに溶解させ、p
−トルエンスルホン酸100mgを加え、室温下5時
間放置した。内容液をガスクロマトグラフイーに
て分析したところ、原料の転換率は95%であつ
た。 次いで、過剰のオルソギ酸エチルを留去した
後、減圧蒸留を行つたところ、淡黄色の油状物質
として、4−フルオロ−3−ニトロベンズアルデ
ヒドジエチルアセタール5.5gを得た。 該化合物は、そのガスクロマトグラムおよび
NMRスペクトから、ほぼ純粋であつた。 102〜108℃/0.1mmHg 収 率 76% NMRデータ(CDCl3、TMS、δ値) 7.10〜8.30(m、3H) 5.50(s、1H) 3.55(g、4H) 1.20(t、6H) 参考例 5 4−フルオロ−3−アセトアミノベンズアルデ
ヒドジエチルアセタール1.0g、炭酸カリウム
0.73g、塩化第一銅0.13gおよびブロモベンゼン
6.45gを反応容器に入れ、窒素気流下に内温140
〜150℃で15時間撹拌した。 反応液を放冷した後、セライト過し、上物
をエーテルで洗い込んだ。得られた液を飽和炭
酸水素ナトリウム水溶液で1回洗浄し、無水硫酸
ナトリウムで乾燥後、溶媒を留去し、残渣として
1.98gの生成物を得た。 次いで、該生成物に1N−水酸化ナトリウム水
溶液20mlを加え、室温下に2時間撹拌した後、水
浴で冷却しながら、これに10%塩酸20mlを徐々に
滴下し、そのまま2時間撹拌した。 反応液をエーテルで2回抽出し、抽出液を飽和
炭酸水素ナトリウム水溶液で洗浄し、次いで無水
硫酸マグネシウムで乾燥後、エーテルを留去し
た。 得られた残渣をシリカゲルカラムクロマトグラ
フイー(溶出液:塩化メチレン)で精製し、純粋
な3−アニリノ−4−フルオロベンズアルデヒド
0.49gを得た。 収 率 55%
[Formula] (where X represents a chlorine atom or a bromine atom). ] It has been discovered that the novel ester compound shown below has excellent insecticidal and acaricidal activity. As a result of various studies on the method of synthesizing the alcohol component of the ester compound represented by the above general formula (), the present inventors discovered that the acetal derivative represented by the above general formula () and the general formula () [In the formula, R 4 has the same meaning as above. ] The bromobenzene derivative represented by the formula () is reacted with a base in the presence of copper or a copper compound, then deacylated if necessary, and then deacetalized to produce an ester compound represented by the above general formula (). The general formula () is the raw material for the synthesis of [In the formula, R 4 has the same meaning as above. ] It was discovered that the aldehyde compound represented by the formula () can be obtained efficiently, and the acetal derivative represented by the above general formula () was found to be an important intermediate thereof, leading to the completion of the present invention. That is, the present invention provides an acetal derivative represented by the general formula () and a method for producing the same. [In the formula, R 1 and R 2 have the same meanings as above. ] General formula (′) obtained by catalytic reduction of the nitrobenzene derivative shown by [In the formula, R 1 and R 2 have the same meanings as above. ] A method for producing an acetal derivative represented by the general formula ('') by further reacting the acetal derivative with a lower carboxylic acid anhydride or a lower carboxylic acid halide. [In the formula, R 1 and R 2 have the same meanings as above,
R′ 3 represents a lower acyl group. ] The present invention provides a method for producing an acetal derivative represented by the following. The present invention will be explained in detail below. In the acetal derivative represented by the general formula (), the substituents R 1 and R 2 are lower alkyl groups such as methyl group, ethyl group, n-propyl group, or R 1 and R 2 together. , represents an ethylene group, etc. In the method for producing the acetal derivative of the present invention represented by the general formula (), the catalyst used for the catalytic reduction of the nitrobenzene derivative represented by the general formula () is an aromatic nitrobenzene derivative represented by palladium-carbon or platinum dioxide. The usual catalysts used to reduce compounds to aniline derivatives are used,
The amount used is in the range of 0.01 to 10 mol%, preferably 0.1 to 5 mol%, based on the nitrobenzene derivative represented by the general formula (). Furthermore, examples of the solvent used in this catalytic reduction reaction include alcoholic solvents such as methanol and ethanol, and inert solvents such as ethyl acetate. The pressure of the hydrogen gas used is in the range of 1 to 10 atm, preferably 1 to 3 atm, and the reaction temperature is 0°C.
to the boiling point of the solvent used, preferably in the range of 10 to 30°C. After the catalytic reduction reaction as described above, the desired acetal derivative represented by the general formula (') can be obtained by removing the catalyst and distilling the catalyst off. It is desirable to dry the reaction solvent in advance. The acetal derivative represented by the general formula (') thus obtained is reacted with a lower carboxylic acid anhydride or a lower carboxylic acid chloride in the presence of a deoxidizing agent such as pyridine or triethylamine. The acetal derivative represented by the general formula ('') can be obtained by the reaction.The nitrobenzene derivative represented by the general formula () according to the present invention is obtained by adding p-toluenesulfone to 4-fluoro-3-nitrobenzaldehyde. It can be easily obtained by a normal acetalization reaction by reacting ethylene glycol, methyl orthoformate, ethyl orthoformate, etc. in the presence of an acid or sulfuric acid. will be explained in more detail, but of course the present invention is not limited thereto.Example 1 3.0 g of 4-fluoro-3-nitro-benzaldehyde ethylene acetal was dissolved in 100 ml of ethyl acetate, and platinum dioxide was added to the solution. 100 mg was added, and catalytic reduction reaction was carried out at room temperature for 3 hours while introducing hydrogen gas under normal pressure. At this point, no early absorption of hydrogen gas was observed, and gas chromatography of the reaction product showed that As a result of the analysis, no starting compound remained.Next, the reaction solution was filtered through Celite, and the obtained solution was dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain almost pure 3-amino-4-fluorocarbon. 2.5 g of -benzaldehyde ethylene acetal was obtained. Yield 97% mp 48-49.5°C Example 2 3.0 g of 4-fluoro-3-nitro-benzaldehyde ethylene acetal was added to 99.5% ethanol 100
ml and add 200 mg of 5% palladium-carbon to this.
was added, and a reduction reaction was carried out at room temperature for 3 hours while introducing hydrogen gas under normal pressure. Next, 200 mg of 5% palladium-carbon was further added to the reaction solution, and a catalytic reduction reaction was carried out under the same conditions for 1 hour. At this point, no premature hydrogen gas absorption was observed, and analysis of the reaction product by gas chromatography revealed that no starting compound remained. Next, the reaction solution was filtered through Celite, and the resulting solution was concentrated to about 50 ml, poured into 50 ml of saturated aqueous sodium bicarbonate solution, and extracted with ether. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain 2.7 g of the product as a residue. The product was dissolved in 20 ml of dry pyridine, and 2.0 g of acetic anhydride was added dropwise under ice cooling with stirring. After the dropwise addition, stirring was continued for further 8 hours at room temperature, and then the reaction solution was poured into 50 g of ice and extracted with ether. The organic layer was washed with water and an aqueous copper sulfate solution to remove pyridine, then further washed twice with a saturated aqueous sodium bicarbonate solution, dried over anhydrous magnesium sulfate, and the solvent was distilled off to leave 2.6 g of the product as a residue. I got it. Then, the product was purified by silica gel column chromatography (eluent: chloroform),
1.90 g of pure 3-acetamino-4-fluoro-benzaldehyde ethylene acetal was obtained. Yield 59% mp 53.2℃ Reference example 1 4-fluoro-3-acetaminobenzaldehyde ethylene acetal 0.52g, potassium carbonate
0.42g, cuprous chloride 0.07g and bromobenzene
Put 3.62g into the reactor and bring the internal temperature to 140~140 under nitrogen flow.
The mixture was stirred at 150°C for 13 hours. After the reaction solution was allowed to cool, it was filtered through Celite, and the resulting solution was extracted twice with ether. The extract was washed once with a saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, and then the solvent was distilled off to obtain 0.95 g of the product as a residue. Next, 20 ml of 1N aqueous sodium hydroxide solution was added to the product, and after stirring at room temperature for 2 hours,
While cooling in a water bath, 20 ml of 10% hydrochloric acid was gradually added dropwise thereto, and the mixture was stirred for 2 hours after the dropwise addition. The reaction solution was extracted twice with ether, the extract was washed with a saturated aqueous sodium bicarbonate solution, and then dried over anhydrous magnesium sulfate, and the ether was distilled off. The obtained residue was purified by silica gel column chromatography (eluent: methylene chloride) to obtain pure 3-anilino-4-fluorobenzaldehyde.
0.40g was obtained. Yield 81% mp 115-117℃ Reference example 2 3-amino-4-fluorobenzaldehyde ethylene acetal 0.30g, potassium carbonate 0.27g,
Put 0.05 g of cuprous chloride and 1.30 g of bromobenzene into a reaction container, and heat at an internal temperature of 130 to 140°C under a nitrogen stream.
Stirred for 10 hours. After the reaction solution was allowed to cool, 10 ml of 10% hydrochloric acid was added thereto and stirred at 50°C for 2 hours.Then, the reaction solution was filtered through ceride, neutralized with an aqueous sodium hydroxide solution, and extracted twice with ether. . The extract was washed once with a saturated aqueous sodium hydrogen carbonate solution, dried over anhydrous magnesium sulfate, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (eluent: methylene chloride) to obtain pure 3-anilino-4-fluorobenzaldehyde.
0.14g was obtained. Yield 33% Reference example 3 4-fluoro-3-nitrobenzaldehyde 10
After dissolving 5.5 g of ethylene glycol and 100 mg of p-toluenesulfonic acid in 50 ml of toluene,
Azeotropic dehydration was carried out while 100 ml of toluene was added dropwise under heating under reflux, and about 100 ml of toluene liquid containing water was distilled out over a period of 2 hours. When the internal solution was analyzed by gas chromatography, the conversion rate of the raw material was 98%. After the reaction solution was allowed to cool, it was poured into a saturated aqueous sodium hydrogen carbonate solution, and the layers were separated. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain 12.3 g of 4-fluoro-3-nitro-benzaldehyde ethylene acetal as a pale yellow oil ( Yield: 97.6%). The product is shown in its gas chromatogram and
The NMR spectrum showed that it was almost pure. n 22 D 1.5080 NMR data (CDCl 3 , TMS) 6.80-7.80 (m, 3H) 5.70 (s, 1H) 3.90-4.10 (m, 4H) Example 3 2.43 g of 4-fluoro-3-nitrobenzaldehyde diethylacetal It was dissolved in 100 ml of ethyl acetate, 100 mg of platinum dioxide was added thereto, and a catalytic reduction reaction was carried out at room temperature for 6 hours under normal pressure while introducing hydrogen gas. At this point, no absorption of hydrogen gas was observed, and analysis of the reaction product by gas chromatography revealed that no starting compound remained. The reaction solution was then filtered through Celite, and the resulting solution was dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain 1.50 g of almost pure 3-amino-4-fluorobenzaldehyde diethyl acetal. Yield 70% n 23.0 D 1.5020 Reference example 4 4-Fluoro-3-nitrobenzaldehyde
Dissolve 5.0g in 13.1g of ethyl orthoformate,
- 100 mg of toluenesulfonic acid was added and left at room temperature for 5 hours. When the content liquid was analyzed by gas chromatography, the conversion rate of the raw material was 95%. Next, after distilling off excess ethyl orthoformate, vacuum distillation was performed to obtain 5.5 g of 4-fluoro-3-nitrobenzaldehyde diethyl acetal as a pale yellow oily substance. The compound has a gas chromatogram and
The NMR spectrum showed that it was almost pure. 102~108℃/0.1mmHg Yield 76% NMR data ( CDCl3 , TMS, δ value) 7.10~8.30 (m, 3H) 5.50 (s, 1H) 3.55 (g, 4H) 1.20 (t, 6H) Reference example 5 4-fluoro-3-acetaminobenzaldehyde diethylacetal 1.0g, potassium carbonate
0.73g, cuprous chloride 0.13g and bromobenzene
Put 6.45g into a reaction container and heat it to an internal temperature of 140 under nitrogen flow.
Stirred at ~150°C for 15 hours. After the reaction solution was allowed to cool, it was filtered through Celite, and the supernatant was washed with ether. The resulting liquid was washed once with a saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, and the solvent was distilled off to form a residue.
1.98g of product was obtained. Next, 20 ml of 1N aqueous sodium hydroxide solution was added to the product, and the mixture was stirred at room temperature for 2 hours. Then, while cooling in a water bath, 20 ml of 10% hydrochloric acid was gradually added dropwise thereto, and the mixture was stirred for 2 hours. The reaction solution was extracted twice with ether, the extract was washed with a saturated aqueous sodium bicarbonate solution, and then dried over anhydrous magnesium sulfate, and the ether was distilled off. The obtained residue was purified by silica gel column chromatography (eluent: methylene chloride) to obtain pure 3-anilino-4-fluorobenzaldehyde.
0.49g was obtained. Yield 55%

Claims (1)

【特許請求の範囲】 1 一般式 〔式中、R1およびR2は共に低級アルキル基を表
わすか、またはR1とR2とが末端で結合し、アル
キレン基を表わし、R3は水素原子または低級ア
シル基を表わす。〕 で示されるアセタール誘導体。 2 一般式 〔式中、R1およびR2は共に低級アルキル基を表
わすか、またはR1とR2とが末端で結合し、アル
キレン基を表わす。〕 で示されるニトロベンゼン誘導体を、接触還元す
ることを特徴とする一般式 〔式中、R1およびR2は前述と同じ意味を有す
る。〕 で示されるアセタール誘導体の製造法。 3 一般式 〔式中、R1およびR2は共に低級アルキル基を表
わすか、またはR1とR2とが末端で結合し、アル
キレン基を表わす。〕 で示されるニトロベンゼン誘導体を、接触還元
し、得られる一般式 〔式中、R1およびR2は前述と同じ意味を有す
る。〕 で示されるアセタール誘導体に低級カルボン酸無
水物または低級カルボン酸ハライドを反応させる
ことを特徴とする一般式 〔式中、R1およびR2は前述と同じ意味を表わし、
R′3は低級アシル基を表わす。〕 で示されるアセタール誘導体の製造法。
[Claims] 1. General formula [In the formula, R 1 and R 2 both represent a lower alkyl group, or R 1 and R 2 are bonded at the terminals to represent an alkylene group, and R 3 represents a hydrogen atom or a lower acyl group. ] An acetal derivative represented by 2 General formula [In the formula, R 1 and R 2 both represent a lower alkyl group, or R 1 and R 2 are bonded at the terminal to represent an alkylene group. ] A general formula characterized by catalytic reduction of a nitrobenzene derivative represented by [In the formula, R 1 and R 2 have the same meanings as above. ] A method for producing an acetal derivative shown in 3 General formula [In the formula, R 1 and R 2 both represent a lower alkyl group, or R 1 and R 2 are bonded at the terminal to represent an alkylene group. ] The general formula obtained by catalytic reduction of the nitrobenzene derivative represented by [In the formula, R 1 and R 2 have the same meanings as above. ] A general formula characterized by reacting an acetal derivative represented by a lower carboxylic acid anhydride or a lower carboxylic acid halide. [In the formula, R 1 and R 2 represent the same meanings as above,
R′ 3 represents a lower acyl group. ] A method for producing an acetal derivative shown in
JP58075808A 1983-04-28 1983-04-28 Acetal derivative and production thereof Granted JPS59204154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075808A JPS59204154A (en) 1983-04-28 1983-04-28 Acetal derivative and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075808A JPS59204154A (en) 1983-04-28 1983-04-28 Acetal derivative and production thereof

Publications (2)

Publication Number Publication Date
JPS59204154A JPS59204154A (en) 1984-11-19
JPH0414099B2 true JPH0414099B2 (en) 1992-03-11

Family

ID=13586860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075808A Granted JPS59204154A (en) 1983-04-28 1983-04-28 Acetal derivative and production thereof

Country Status (1)

Country Link
JP (1) JPS59204154A (en)

Also Published As

Publication number Publication date
JPS59204154A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JP3202607B2 (en) Method for producing 2- (4-alkoxy-3-cyanophenyl) thiazole derivative
JPH075500B2 (en) Hydroquinone derivative and method for producing the same
JPH0414099B2 (en)
CN112174823B (en) Intermediate for synthesizing 2, 2-dimethyl-3-oxetanone and preparation method and application thereof
US4009172A (en) 2,3,3A,6,7,7A-Hexahydro-thieno[3,2-b]pyridin-(4H)5-ones
US5874611A (en) Butenyl hydroquinone derivatives
JPS61137834A (en) Novel phenol ketone derivative and preparation of (6)-gingerol or (6)-shogaol via said derivative
US5243096A (en) Optically active pentane derivatives and intermediates thereof, and process for manufacturing same
WO2002072505A1 (en) Optical resolver and method of optically resolving alcohol with the same
JPS5989638A (en) Manufacture of aryloxyalkyl compound
JP2004506628A (en) Intermediates for use in preparing vitamin E
JPS5825664B2 (en) Production method of guanidinocaproic acid ester
JPH027583B2 (en)
JPS59204155A (en) Benzaldehyde derivative and production thereof
FR2487338A1 (en) 4:methoxyethyl phenol prodn. from a 4:alkoxyphenyl bromide - and a methoxy aldehyde, nitrile or ester, used as intermediate for the cardiovascular agent metoprolol
JP2977591B2 (en) Method for producing benzene derivative
JPH0148267B2 (en)
KR800000335B1 (en) Process for preparation of daunorubicin derivatives
JPS6036415B2 (en) Method for producing 2-pentene derivatives
JP2002322114A (en) Carbinol derivative
JPH0380131B2 (en)
JPH0462314B2 (en)
JPH0822830B2 (en) 2 (Z) -Pentenyl substituted cyclopentanes and novel intermediates thereof
JPS6036416B2 (en) Method for producing 2-(cis-2-pentenyl)cyclopentanone derivative
JPH03101674A (en) Novel 4h pyran and its preparation