JPH0413949B2 - - Google Patents
Info
- Publication number
- JPH0413949B2 JPH0413949B2 JP60224743A JP22474385A JPH0413949B2 JP H0413949 B2 JPH0413949 B2 JP H0413949B2 JP 60224743 A JP60224743 A JP 60224743A JP 22474385 A JP22474385 A JP 22474385A JP H0413949 B2 JPH0413949 B2 JP H0413949B2
- Authority
- JP
- Japan
- Prior art keywords
- gto
- current
- diode
- parallel
- diodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011084 recovery Methods 0.000 claims description 15
- 230000006698 induction Effects 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 101100449816 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GTO1 gene Proteins 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 208000025174 PANDAS Diseases 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/505—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/515—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はGTOインバータ装置に係り、特に、
GTOと直列にリアクトルとダイオードの並列体
を接続した回路に好適なGTOインバータ回路に
関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a GTO inverter device, and in particular,
This invention relates to a GTO inverter circuit suitable for a circuit in which a parallel body of a reactor and a diode are connected in series with a GTO.
第1図は従来のGTOインバータ装置を示す。
GTOは、そのゲート端子に与えられるオン信号、
オフ信号で主回路電流をオンオフ制御できる自己
消弧型半導体素子である。この回路の動作をU相
を例にとり説明する。先ず、上側アームのGTO1
をターンオンするとパンダグラフDtとフイルタ
回路(コンデンサCfとリアクトルLfから構成され
る)を介して得られる直流電源からアノードリア
クトルAL1→GTO1を経て、負荷の誘導電動機U
相に電流が流れ、この電流はV相或いはW相の下
側アームを介して直流電源に戻る。GTO1をター
ンオフすると誘導電動機U相の電流は下側アーム
のダイオードDL2,DF2を介して環流する。次に、
下側アームのGTO2をターンオンすると直流電源
からV相或いはW相の上側アームを介して誘導電
動機U相に電流が流れ、この電流はGTO2→AL2
を経て直流電源に戻る。GTO2をターンオフする
と誘導電動機U相の電流は上側のダイオード
DL1,DF1を還流する。前述の上側アームGTO1と
下側アームGTO2のターンオフで誘動電動機に流
れる電流は互いに逆向きで、いわゆる交流電流が
流れることになる。このようにして、U・V・W
各相の上・下アームの各GTOを所定の順序に従
つて繰返し制御することにより、誘導電動機に供
給される3相交流の電圧と周波数を可変制御す
る。
Figure 1 shows a conventional GTO inverter device.
GTO has an on signal given to its gate terminal,
This is a self-extinguishing semiconductor device that can control the main circuit current on and off using an off signal. The operation of this circuit will be explained using the U phase as an example. First, GTO 1 on the upper arm
When turned on, the DC power obtained via the panda graph D t and the filter circuit (consisting of a capacitor C f and a reactor L f ) is passed through the anode reactor AL 1 → GTO 1 to the load induction motor U.
A current flows through the phase, and this current returns to the DC power supply via the lower arm of the V or W phase. When GTO 1 is turned off, the current in the U-phase of the induction motor circulates through the diodes D L2 and D F2 in the lower arm. next,
When the lower arm GTO 2 is turned on, current flows from the DC power supply to the induction motor U phase via the V phase or W phase upper arm, and this current flows from GTO 2 → AL 2
After that, it returns to DC power supply. When GTO 2 is turned off, the current in the induction motor U phase flows through the upper diode.
Reflux D L1 and D F1 . When the above-mentioned upper arm GTO 1 and lower arm GTO 2 are turned off, the currents flowing in the induction motor are in opposite directions, so that a so-called alternating current flows. In this way, U.V.W.
By repeatedly controlling each GTO of the upper and lower arms of each phase in a predetermined order, the voltage and frequency of the three-phase AC supplied to the induction motor are variably controlled.
なお、アノードリアクトルAL1,AL2は、
GTOのターンオン直後の電流増大、及び転流失
敗時の電流増大を抑制するもので、並列接続され
たダイオードDL1,DL2はGTOターンオフ時に
GTOに過大電圧が印加されることを抑制するも
のである。 In addition, the anode reactors AL 1 and AL 2 are
This suppresses the current increase immediately after the GTO is turned on, and the current increase when commutation fails, and the parallel-connected diodes D L1 and D L2 are used when the GTO is turned off.
This prevents excessive voltage from being applied to the GTO.
このようなGTOインバータ回路においては、
GTOのターンオン時にダイオードの逆阻止能力
回復現象のためにGTOに流れる電流が過渡的に
非常に大きくなる問題点がある。これについて、
第2図の動作波形で説明する。第2図イはGTO1
のトリガパルスを示し、ロはGTO1の端子電圧を
示している。先ず、GTO1がターンオンする直前
までダイオードDF2,DL2には第2図ホに示すよ
うに誘導電動機電流IDF2,IDL2が流れている。時
刻t1において、GTO1がターンオンされると、第
2図ハに示すGTO1に流れる電流IGTO1が増大し
(その電流上昇率はアノードリアクトルAL2がダ
イオードDL2でバイパスされるためVs/Al1とな
る)、反対にダイオードDF2,DL2の電流IDF2,IDL2
が減少する。そして、GTO1に流れる電流IGTO1誘
導電動機電流IMに等しくなる時刻t2において、
ダイオードDF2,DL2に流れる電流IDF2,IDL2が零
となる。その後、このダイオードDF2,DL2の電
流IDF2,IDL2は反対方向に増大し、その電流時間
積つまり電荷量がダイオードDF2,DL2の持つ逆
回復電荷量(リカバリ電荷量)Orに等しくなつ
た時刻t3において、ダイオードDF2,DL2は非導通
となる。この間、GTO1に流れる電流IGTO1は増大
し続け、更に、ダイオードDF2,DL2が完全に非
導通状態になつて時刻t3以後もこれらDF2,DL2の
スナバ回路(特に図示しない)に流れる電流のた
めに、第2図ハに示すような大きな電流となる。
このようなターンオン直後における過渡的な大き
な電流はGTO1のスイツチングパワー増大を招
き、素子耐量の向上や冷却装置の強化等の対策が
必要となつてくる。
In such a GTO inverter circuit,
There is a problem in that when the GTO is turned on, the current flowing through the GTO becomes transiently very large due to the diode's reverse blocking ability recovery phenomenon. about this,
This will be explained using the operating waveforms shown in FIG. Figure 2 A is GTO 1
shows the trigger pulse of , and b shows the terminal voltage of GTO 1 . First, induction motor currents I DF2 and I DL2 flow through the diodes D F2 and D L2 as shown in FIG. 2E until just before the GTO 1 is turned on. At time t 1 , when GTO 1 is turned on, the current I GTO1 flowing through GTO 1 shown in FIG . On the other hand, the currents of diodes D F2 , D L2 I DF2 , I DL2
decreases. Then, at time t 2 when the current I flowing through GTO 1 becomes equal to the GTO 1 induction motor current IM,
The currents I DF2 and I DL2 flowing through the diodes D F2 and D L2 become zero. After that, the currents I DF2 and I DL2 of the diodes D F2 and D L2 increase in the opposite direction, and the current time product, that is, the amount of charge, becomes the amount of reverse recovery charge (recovery charge amount) Or possessed by the diodes D F2 and D L2 . At time t3 when they become equal, the diodes D F2 and D L2 become non-conductive. During this period, the current I GTO1 flowing through GTO 1 continues to increase, and furthermore, the diodes D F2 and D L2 become completely non-conductive, and the snubber circuit (not particularly shown) of these D F2 and D L2 continues after time t3 . Because of the current flowing through the casing, a large current as shown in Fig. 2 (c) results.
Such a large transient current immediately after turn-on causes an increase in the switching power of GTO 1 , necessitating countermeasures such as improving element durability and strengthening the cooling device.
本発明の目的は、GTOターンオン直後の過大
電流を抑制したGTOインバータ装置を提供する
にある。 An object of the present invention is to provide a GTO inverter device that suppresses excessive current immediately after GTO turn-on.
本発明の特徴は、リアクトルと並列接続された
ダイオードの逆回復電荷量をGTOに並列接続さ
れたダイオードのそれよりも小さく選ぶことにあ
る。
A feature of the present invention is that the amount of reverse recovery charge of the diode connected in parallel with the reactor is selected to be smaller than that of the diode connected in parallel with the GTO.
これにより、リアクトルに並列接続されたダイ
オードの逆回復電荷量が小さい分だけ、逆阻止状
態になるのが速められ、そのダイオードの電流が
リアクトルに流れて絞られるので、ターンオン直
後にGTOに流れる電流のピークを低減できるの
である。 As a result, the reverse blocking state is accelerated by the small amount of reverse recovery charge of the diode connected in parallel to the reactor, and the current in that diode flows to the reactor and is throttled, so the current flowing to the GTO immediately after turn-on It is possible to reduce the peak of
第1図及び第3図に本発明の一実施例を示す。
GTOインバータ回路接続図としては、従来と全
く同様に表現されるが、本発明ではアノードリア
クトルAL1,AL2に並列接続されたダイオード
DL1,DL2の逆回復電荷量を、GTO1及びGTO2に
並列接続されたダイオードDF1,DF2の逆回復電
荷量よりも小さく選んである。
An embodiment of the present invention is shown in FIGS. 1 and 3.
The GTO inverter circuit connection diagram is expressed in exactly the same way as before, but in the present invention, diodes connected in parallel to the anode reactors AL 1 and AL 2 are shown.
The amount of reverse recovery charge of D L1 and D L2 is selected to be smaller than the amount of reverse recovery charge of diodes D F1 and D F2 connected in parallel to GTO 1 and GTO 2 .
本発明における動作波形を第3図に示す。
GTO1がターンオンされる時刻t1から、ダイオー
ドDF2,DL2の電流IDF2,IDL2が零となるまでの時
刻t2までは第2図の動作波形と同じである。時刻
t2以後にダイオードDF2,DL2に逆回復電流が流
れるとダイオードDF2の逆回復電荷量Orとダイオ
ードDL2の逆回復電荷量Or′はOr>Or′の関係か
ら、時刻t3においてダイオードDL2が先に逆回復
する。ダイオードDL2が逆回復するとアノードリ
アクトルAL2が回路に挿入されるため、時刻t3以
後のGTO1に流れる電流の上昇率はVs/(Ll1+
Ll2)となり従来回路のVs/AL1よりも抑制され
る。その結果、ダイオードDF2の逆回復電流も抑
制され、ダイオードDF2は時刻t4において逆阻止
状態になる。GTO1には、時刻t4以後も、ダイオ
ードDF2のスナバ回路に流れる電流が流れるが、
アノードリアクトルAL2が挿入されているのでそ
の値は従来よりも抑制される。すなわち、第3図
ハの動作波形に示されるように、ターンオン直後
のGTO1に流れる電流は従来のそれ(点線で示し
ている)よりも十分小さな値に抑制されることが
わかる。 FIG. 3 shows operating waveforms in the present invention.
The operating waveforms from time t 1 when GTO 1 is turned on to time t 2 when the currents I DF2 and I DL2 of diodes D F2 and D L2 become zero are the same as those in FIG. 2. time
When a reverse recovery current flows through the diodes DF2 and D L2 after t 2 , the reverse recovery charge amount Or of the diode D F2 and the reverse recovery charge amount Or′ of the diode D L2 are related to Or>Or′, so at time t 3 the diode D L2 recovers first. When diode D L2 recovers reversely, anode reactor AL 2 is inserted into the circuit, so the rate of increase in the current flowing through GTO 1 after time t 3 is Vs/(Ll 1 +
Ll 2 ), which is suppressed more than Vs/AL 1 of the conventional circuit. As a result, the reverse recovery current of diode D F2 is also suppressed, and diode D F2 enters the reverse blocking state at time t4 . Current flows through the snubber circuit of diode D F2 in GTO 1 even after time t 4 , but
Since the anode reactor AL 2 is inserted, its value is suppressed more than before. That is, as shown in the operating waveforms in FIG. 3C, it can be seen that the current flowing through GTO 1 immediately after turn-on is suppressed to a sufficiently smaller value than that in the conventional case (indicated by the dotted line).
本発明の実施例によれば、アノードリアクトル
に並列接続されたダイオードの逆阻止状態になる
のが速められるので、ターンオン直後にGTOに
流れる電流のピークを低減できる効果がある。な
お、ダイオードの一般的性質として逆回復電荷量
の小さいものは、順方向に流れる電流による電圧
降下が高くなる傾向にあるので、アノードリアク
トルに並列接続されたダイオードを逆回復電荷量
Orの小さいものにすることは順方向電圧降下も
大きくなるので、その分ダイオードからアノード
リアクトルに分流する電流分が大きくなるので、
第3図ヘに実線で示したようにダイオードの電流
が少なくなつたことで、更に、ダイオードの逆阻
止状態になるのが速められ、ターンオン直後に
GTOに流れる電流のピーク値が一層低減させら
れる効果がある。 According to the embodiments of the present invention, the diode connected in parallel with the anode reactor is brought into the reverse blocking state more quickly, so that the peak of the current flowing through the GTO immediately after turn-on can be reduced. Note that as a general property of diodes, those with a small reverse recovery charge tend to have a high voltage drop due to the current flowing in the forward direction.
Setting Or to a smaller value also increases the forward voltage drop, which increases the amount of current shunted from the diode to the anode reactor.
As shown by the solid line in Figure 3, the reduction in diode current further accelerates the diode's transition to the reverse blocking state, causing the diode to turn on immediately after turning on.
This has the effect of further reducing the peak value of the current flowing through the GTO.
以上説明したように、本発明によれば、リアク
トルに並列接続されたダイオードの逆回復電荷量
が小さい分だけ、逆阻止状態になるのが速めら
れ、そのダイオードの電流がリアクトルに流れて
絞られるので、ターンオン直後にGTOに流れる
電流のピークを低減できる効果がある。
As explained above, according to the present invention, as the amount of reverse recovery charge of the diode connected in parallel with the reactor is small, the reverse blocking state is accelerated, and the current of the diode flows to the reactor and is throttled. Therefore, it has the effect of reducing the peak of the current flowing through the GTO immediately after turn-on.
第1図は本発明か適用されるGTOインバータ
回路図、第2図は第1図回路の動作図、第3図は
第1図回路に本発明を適用した場合の動作図であ
る。
Dt……パンタグラフ、HB……高速度遮断器、
Lf……フイルタリアクトル、Cfフイルタコンデン
サ、U……インバータのU相、V……インバータ
のV相、W……インバータのW相、AL1〜AL2…
…アノードリアクトル、DL1〜DL2……ダイオー
ド、DF1〜DF2……ダイオード、GTO1〜GTO2…
…ゲートターンオフサイリスタ、IM……誘導電
動機。
FIG. 1 is a circuit diagram of a GTO inverter to which the present invention is applied, FIG. 2 is an operation diagram of the circuit shown in FIG. 1, and FIG. 3 is an operation diagram when the present invention is applied to the circuit shown in FIG. Dt...Pantograph, HB...High speed circuit breaker,
L f ...filter reactor, C f filter capacitor, U...U phase of the inverter, V...V phase of the inverter, W...W phase of the inverter, AL 1 to AL 2 ...
…Anode reactor, D L1 ~ D L2 … Diode, D F1 ~ D F2 … Diode, GTO 1 ~ GTO 2 …
…Gate turn-off thyristor, IM…Induction motor.
Claims (1)
体とGTOにダイオードを並列接続した並列体と
を直列接続してアームを形成し、該アームを複数
組用いてブリツジ回路を構成してなるGTOイン
バータ装置において、前記リアクトルに並列接続
したダイオードの逆回復電荷量を前記GTOに並
列接続したダイオードの逆回復電荷量よりも小さ
く選定したことを特徴とするGTOインバータ装
置。1. In a GTO inverter device in which a parallel body in which diodes are connected in parallel to a reactor and a parallel body in which diodes are connected in parallel to a GTO are connected in series to form an arm, and a bridge circuit is constructed by using multiple sets of the arms, A GTO inverter device, characterized in that the amount of reverse recovery charge of the diode connected in parallel to the reactor is selected to be smaller than the amount of reverse recovery charge of the diode connected in parallel to the GTO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224743A JPS6188768A (en) | 1985-10-11 | 1985-10-11 | Gto inverter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224743A JPS6188768A (en) | 1985-10-11 | 1985-10-11 | Gto inverter device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6188768A JPS6188768A (en) | 1986-05-07 |
JPH0413949B2 true JPH0413949B2 (en) | 1992-03-11 |
Family
ID=16818540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60224743A Granted JPS6188768A (en) | 1985-10-11 | 1985-10-11 | Gto inverter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6188768A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088780B2 (en) * | 1986-05-27 | 1996-01-29 | 三菱電機株式会社 | Inverter circuit |
-
1985
- 1985-10-11 JP JP60224743A patent/JPS6188768A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6188768A (en) | 1986-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5982646A (en) | Voltage clamp snubbers for three level converter | |
US3376492A (en) | Solid state power circuits employing new autoimpulse commutation | |
US7417409B2 (en) | Power losses reduction in switching power converters | |
JPS61112583A (en) | Power converter | |
US4392172A (en) | Reactive snubber for inductive load clamp diodes | |
US3721836A (en) | Current limited transistor switch | |
US4405977A (en) | Commutation circuits for thyristor inverters | |
US4482946A (en) | Hybrid inverter | |
JPH0413949B2 (en) | ||
US4346309A (en) | Controllable rectifier circuit | |
JP2711534B2 (en) | Condenser switch type induction motor drive | |
CA1118492A (en) | Traction motor current control apparatus | |
JPH10209832A (en) | Semiconductor switch circuit | |
JP3265400B2 (en) | Inverter device with instantaneous overcurrent limit control system | |
JP2000312480A (en) | Current inverter | |
KR910000542B1 (en) | Inverter | |
JPS6116794Y2 (en) | ||
JPH04506895A (en) | Circuits and components with switch protection | |
SU1089736A1 (en) | Versions of three-phase a.c.voltage-to-a.c.voltage converter | |
Grant | Using HEXFET III in PWM inverters for motor drives and UPS systems | |
JPS626826Y2 (en) | ||
Kotsopoulos et al. | A new soft-switched, thyristor-based, regenerative, quasi-resonant, current regulated inverter suitable for high-power applications | |
JPH01198277A (en) | Semi-conductor power converter | |
Simpson et al. | High-power Electronics | |
JPH06505621A (en) | Minimizing GTO gate driver losses when anti-parallel diodes conduct |