JPH041392A - Column erection - Google Patents

Column erection

Info

Publication number
JPH041392A
JPH041392A JP2102141A JP10214190A JPH041392A JP H041392 A JPH041392 A JP H041392A JP 2102141 A JP2102141 A JP 2102141A JP 10214190 A JP10214190 A JP 10214190A JP H041392 A JPH041392 A JP H041392A
Authority
JP
Japan
Prior art keywords
hole
excavation
ground
radar
exploration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2102141A
Other languages
Japanese (ja)
Other versions
JPH0762428B2 (en
Inventor
Hikoitsu Watanabe
渡辺 彦逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chiko Co Ltd
Original Assignee
Nippon Chiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chiko Co Ltd filed Critical Nippon Chiko Co Ltd
Priority to JP10214190A priority Critical patent/JPH0762428B2/en
Publication of JPH041392A publication Critical patent/JPH041392A/en
Publication of JPH0762428B2 publication Critical patent/JPH0762428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PURPOSE:To discriminate the existence or non-existence of embedded objects exactly and save labor by excavating ground hydraulically after radar investigation on ground, to insert a bore hole radar antenna into a hole for the radar investigation on ground, and by excavating an excavating hole to be widened to form a final diameter and to erect a column. CONSTITUTION:With a radar measuring equipment 2, from a ground level, an electromagnetic wave 2a is shot in ground 3, and the existence or non-existence of an embedded object 4 in the ground 3 is investigated. After that, a paved section 3a is cut out with a core cutter, and with a water jet machine 5, an excavating hole 6 is excavated. After that, a pipe 9 is inserted, and into an internal cavity, a bore hole radar antenna 8 is inserted, and in the peripheral direction of the excavating hole 6, an electromagnetic wave 8a is shot, and the embedded object 4 is investigated. Then, with a bore cutter 7, the paved section is excavated to be widened, and with an earth auger drill 10, the excavating hole 6 is widened to enlarge a diameter, and a column erecting hole 11 is obtained to erect a column. As a result, a reliable investigation result is obtained, and excavation excellent in safety can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は、特に市街地等の土中に電柱を建て込むための
孔(以下、「建柱孔」という)を掘削する建柱工法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a pole construction method for excavating a hole (hereinafter referred to as a "pole construction hole") for erecting a utility pole into the soil, particularly in an urban area or the like.

[従来の技術] 建柱孔の掘削には通常アースオーガドリルが用いられる
が、ガス管及び水道管等の埋設物が複雑に敷設された市
街地では、このアースオーガドリルによる掘削孔では埋
設物を破損するおそれがあるため、手掘りによって埋設
物を探りながら掘削作業を進めるのが現状である。
[Conventional technology] An earth auger drill is usually used to drill a hole for pillar construction, but in urban areas where buried objects such as gas pipes and water pipes are laid in a complicated manner, it is difficult to drill holes using this earth auger drill. Due to the risk of damage, the current practice is to proceed with excavation work while searching for buried objects by hand.

ところが、建柱孔には2〜3メ一トル程度の深さが要求
されるため、手掘りによる場合、段堀となって掘削スペ
ースを広く必要とし、また掘削土が大量に出て掘削孔周
辺にもある程度のスペースを確保しておく必要がある。
However, since the depth of the pillar hole is required to be approximately 2 to 3 meters, manual digging requires a large excavation space due to the stepped trench, and a large amount of excavated soil comes out, making it difficult to dig the hole. It is necessary to secure a certain amount of space around the area.

また、掘削の途中で埋設物に当たった場合、掘削位置を
変えてまた堀り直さなければならず、それまでの作業が
徒労となり、或は無駄な埋設孔を埋めたり、市街地の舗
装部分のはつり、またその直し等甚大な労力を要するこ
ととなる。
In addition, if you hit a buried object during excavation, you will have to change the excavation location and start digging again, making the previous work a waste of time. It would require a tremendous amount of effort to remove and repair it.

[発明が解決しようとする課題] 近年、このような事情に鑑みて、掘削の前に予め土中の
埋設物を地上からレーダー探査することが行われるよう
になった。
[Problems to be Solved by the Invention] In recent years, in view of such circumstances, radar exploration from the ground of buried objects in the soil has been carried out in advance before excavation.

このレーザー探査法は、電磁波を地表から土中に発射さ
せ、土中にて進行した電磁波が土と異なる誘電率の埋設
物にて屈折・反射現象を起こすことによる反射情報を計
測することにより埋設物の位置を検知する方法である。
This laser exploration method emits electromagnetic waves from the ground surface into the soil, and measures the reflection information caused by the electromagnetic waves traveling in the soil causing refraction and reflection phenomena at buried objects with a dielectric constant different from that of the soil. This is a method of detecting the position of objects.

ところが、この従来の埋設物レーダー探査法では、埋設
物によっては土と近似した誘電率を示すものがあったり
、地表から遠距離になるほど探査誤りが生じる等の理由
から、正確な探査が困難であるのが現状である。
However, with this conventional buried object radar detection method, accurate exploration is difficult because some buried objects have a dielectric constant similar to that of soil, and detection errors occur as the distance from the ground increases. That is the current situation.

従って、このような従来のレーダー探査法によれば、地
上から地下−帯の探査を行い、しかして埋設物無しとの
一応の探査結果を得れば、当初より最終目的径の掘削孔
(例えば、450φ)を掘削するが、埋設物に当たると
再び別の位置を探査し掘削するという作業を繰り返すこ
ととなる。また、このレーダー探査法による掘削では、
土中の水道管或はガス管等の埋設物を破損するおそれが
あって甚大な危険を伴い、その補修工事等の後処理及び
探査誤りのあった掘削孔を穴埋めするのに費やす労力及
び時間に多大な無駄が生ずるものであった。
Therefore, according to such conventional radar exploration methods, if an underground zone is explored from the surface and a preliminary exploration result indicating that there are no buried objects is obtained, a borehole of the final target diameter (for example, , 450φ), but if a buried object is hit, the work of searching and excavating another location will be repeated. In addition, in drilling using this radar exploration method,
The effort and time spent on post-processing such as repair work and filling in excavation holes where there was an error in exploration, which poses a huge risk of damaging underground water pipes, gas pipes, etc. This resulted in a huge amount of waste.

本発明は、このような事情に鑑みて成さハたもので、建
柱孔を掘削する際、埋設物の有無をより正確に判断する
ことにより掘削労力の無駄を省き、たとえ掘削途中にお
いて水道管あるいはガス管等の埋設物に当った場合でも
これらの埋設物を破損するおそれがない建柱工法を提供
することを目的とする。
The present invention was made in view of the above circumstances, and it is possible to eliminate waste of excavation labor by more accurately determining the presence or absence of buried objects when excavating a pillar hole. It is an object of the present invention to provide a method for constructing pillars that does not cause damage to buried objects such as pipes or gas pipes even if they hit them.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は下記の工程を有する本発明により解決され
る。即ち、 地上レーダー探査により深さ方向の埋設物の有無を探査
する一次探査、 前記探査した土中を水圧塩りによって最終深さまでの小
径掘削孔を得る1次掘削、 前記掘削孔にボアホール用レーダーアンテナを挿入して
該掘削孔の周方向の埋設物の有無をレーダー探査する2
次探査、 前記掘削孔を最終径に拡削する2次掘削。
The above problems are solved by the present invention, which includes the following steps. That is, primary exploration to detect the presence or absence of buried objects in the depth direction using ground radar exploration, primary excavation to obtain a small-diameter borehole to the final depth by hydraulic salting of the surveyed soil, and borehole radar installed in the borehole. Insert an antenna and conduct a radar search for the presence or absence of buried objects in the circumferential direction of the borehole 2
Next exploration: Secondary drilling to enlarge the drilled hole to its final diameter.

を順次縁ることを特徴とする建柱工法。A pillar construction method characterized by sequentially edging.

〔作用〕[Effect]

本発明は上記1次及び2次レーダー探査を経て土中の埋
設物の有無を探査し、夫々の埋設物探査後に深さ方向の
1次掘削及び掘削した孔をさらに拡削する2次掘削を行
うことにより、建柱孔を掘削することを特徴とするもの
である。
The present invention detects the presence or absence of buried objects in the soil through the above-mentioned primary and secondary radar exploration, and after each buried object exploration, performs primary excavation in the depth direction and secondary excavation to further enlarge the excavated hole. This method is characterized by excavating a hole for pillar erection.

まず、1次探査において、地上レーダー探査により深さ
方向の埋設物の有無が探査される。
First, in the primary exploration, the presence or absence of buried objects in the depth direction is investigated by ground radar exploration.

次いで、上記1次探査により埋設物無しの一応の探査結
果が得られた箇所を水圧塩りにより最終深さまで掘削す
る(1次掘削)。この掘削は水圧塩りによるものである
ため、探査誤りによって掘削途中に埋設物があった場合
でも水道管或はガス管等の埋設物は破損されることな(
敷設状況を維持できる。
Next, the locations where a tentative exploration result with no buried objects was obtained through the primary exploration are excavated to the final depth using hydraulic salting (primary excavation). Since this excavation is carried out using hydraulic salting, even if there is a buried object during excavation due to a survey error, the buried object such as water pipes or gas pipes will not be damaged.
The installation status can be maintained.

また、この掘削による孔は2次探査におけるボアホール
用レーダーアンテナの挿入が確実にできる程度の小径で
よく、探査誤りがあって穴埋めする場合でもさほど労力
を要せず無駄が最小限度に留められる。
In addition, the diameter of the hole created by this excavation can be small enough to ensure the insertion of a borehole radar antenna during secondary exploration, and even if there is a mistake in exploration and the hole needs to be filled, it does not require much effort and waste can be kept to a minimum.

なお、2次探査は1次掘削による孔の周方向における埋
設物の有無をレーダー探査するためのものであるため、
1次掘削においては建柱に必要な最終深さまで掘削して
おくことが不可欠となる。
Note that the secondary exploration is a radar survey for the presence or absence of buried objects in the circumferential direction of the hole created by the primary excavation.
During the primary excavation, it is essential to excavate to the final depth required for the pillar erection.

2次探査は、前記1次掘削による孔にボアホル用レーダ
ーアンテナを挿入することにより行われる。
The secondary exploration is performed by inserting a borehole radar antenna into the hole created by the primary excavation.

この2次レーダー探査によれば一次掘削による掘削孔周
方向の至近距離の探査が可能であるから、地上レーダー
探査におけるより格段に確かな探査結果が得られる。
According to this secondary radar exploration, it is possible to explore at close range in the circumferential direction of the borehole by primary excavation, so that much more reliable exploration results can be obtained than in ground radar exploration.

そして、2次探査により掘削孔周方向における埋設物無
しとの探査結果が得られた場合、建柱に必要な最終径に
拡大掘削孔され、かくして所定径及び所定深さの建柱孔
が得られる。
If the secondary exploration results show that there are no buried objects in the circumferential direction of the excavation hole, the hole is enlarged to the final diameter required for the pillar erection, and thus a pillar erection hole of the predetermined diameter and predetermined depth is obtained. It will be done.

[実施例] 以下、本発明の実施例を図面を参照しながら説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図fal乃至fe] は、本発明の建柱工法による
探査及び掘削の工程を示す図であり、最終径450φ、
最終深さ3mの建柱孔を掘削する具体的実施例を示す。
Figures 1 fal to fe] are diagrams showing the process of exploration and excavation by the pillar construction method of the present invention, with a final diameter of 450φ,
A specific example of excavating a pillar hole with a final depth of 3 m will be shown.

まず、第1図fal において、レーダー計測システム
2により建柱すべく予定された地上箇所から電磁波2a
を土中3の深さ方向に発射し、該土中の埋設物の有無を
探査する(1次探査終了)。この地上レーダー探査にお
いて水道管或はガス管等の埋設管4無しとの一応の探査
結果が得られたら、舗装部分3aをコアカッターで切除
しく不図示)、第1図fb)に示すように、ジェット噴
水機5により最終径より小径200φの水圧堀りを最終
深さ3mまで掘削し掘削孔6を得る(1次掘削終了)。
First, in Fig. 1fal, electromagnetic waves 2a are transmitted from the ground location where the pole is planned to be erected by the radar measurement system 2.
is fired in the depth direction of the soil 3 to search for the presence or absence of buried objects in the soil (first exploration completed). If it is found in this ground radar survey that there is no buried pipe 4 such as a water pipe or gas pipe, the paved portion 3a is cut out with a core cutter (not shown), as shown in Fig. 1 fb). , a hydraulic trench with a smaller diameter of 200φ than the final diameter is excavated to a final depth of 3 m using the jet fountain 5 to obtain an excavated hole 6 (first excavation completed).

次いで、第1図icl に示すように、掘削孔6の土壁
の崩れを防止するためにバイブ9を挿着し、このバイブ
は電磁波を透過可能な材質で作られ、該内腔にボアホー
ルレーダー用アンテナ8を挿入し、掘削孔6の周方向に
N磁波8aを発射して約600φ範囲までの埋設物探査
を行う(2次探査)。しかして、該掘削孔周方向の土中
3に埋設物無しとの探査結果が得られたら、掘削孔6か
らバイブ9を抜き、第1図(d)に示すように、500
φボアカツター7により舗装部分の拡削を行い、次いで
、第1図tel に示すように、450φのアースオー
ガドリル10で上記掘削による深さ3mの掘削孔6に対
し450φの掘削を行い建柱孔11を得る(2次掘削終
了)、かくして得られた建柱孔11に対し、通常の方法
で建柱を行う。
Next, as shown in FIG. Antenna 8 is inserted, and N magnetic waves 8a are emitted in the circumferential direction of the excavated hole 6 to conduct buried object exploration up to an approximately 600φ range (secondary exploration). When the exploration result that there is no buried object in the soil 3 in the circumferential direction of the excavation hole is obtained, the vibrator 9 is removed from the excavation hole 6, and as shown in FIG.
The paved portion is expanded using a φ bore cutter 7, and then, as shown in Figure 1, a 450 φ earth auger drill 10 is used to drill a 450 φ hole in the 3 m deep excavation hole 6 created by the above excavation to create a pillar erection hole. 11 is obtained (secondary excavation completed), and a pillar is erected in the pillar erecting hole 11 obtained in this way by a normal method.

r発明の効果〕 以上説明したように、本発明の建柱工法によれば、地上
レーダー探査により深さ方向の埋設物の有無が探査され
、次いで建柱に必要な最終深さの掘削孔を得る1次掘削
に移行するが、この掘削は仮に掘削途中において埋設物
に当った場合でも該埋設物を破損しない水圧堀りによる
ものであるから、埋設物該当位置を掘削するという不測
の事態にも安全に対処でき、また無駄となった掘掘削孔
の穴埋めも最小限度の労力ですみ、さらに該掘削孔の周
方向をレーダー探査することにより地上探査より一層確
かな探査結果を得、しかして前記小径孔が建柱に必要な
最終径まで拡大するよう拡削することにより目的の建柱
孔を得ることができる。
r Effects of the invention] As explained above, according to the pillar erection method of the present invention, the presence or absence of buried objects in the depth direction is detected by ground radar exploration, and then the excavation hole is drilled to the final depth required for the pillar erection. However, this excavation is based on hydraulic excavation that will not damage buried objects even if it hits a buried object during excavation, so there is no possibility of unforeseen situations in which excavation occurs at the location of the buried object. can be handled safely, and filling up wasted drilling holes requires minimal effort.Furthermore, by conducting radar exploration in the circumferential direction of the drilling hole, more reliable exploration results than ground exploration can be obtained. By enlarging the small diameter hole to the final diameter required for pillar erection, the desired pillar erection hole can be obtained.

従って、従来の地上探査による掘削法に比べ格段に信頼
性のおける探査結果が得られ、また安全性の面でもすこ
ぶる優れた掘削が可能となり、特に危険埋設物の多い市
街地等において安全且つ省労力による建柱孔の掘削を可
能とした建柱工法を得ることができる。
Therefore, it is possible to obtain much more reliable exploration results than the conventional ground exploration method, and it is also possible to carry out extremely superior excavation in terms of safety, making it safe and labor-saving, especially in urban areas where there are many dangerous buried objects. It is possible to obtain a pillar construction method that makes it possible to excavate a pillar hole.

【図面の簡単な説明】 第1図fa)乃至telは、本発明の建柱工法による探
査及び掘削の工程を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 fa) to tel are diagrams showing the process of exploration and excavation using the pillar erection method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)土中の埋設物の有無を探査して所定の建柱孔を掘
削する建柱工法であって、 地上レーダー探査により深さ方向の埋設物の有無を探査
する一次探査、 前記探査した土中を水圧堀りによって最終深さまでの小
径掘削孔を得る1次掘削、 前記掘削孔にボアホール用レーダーアンテナを挿入して
該掘削孔の周方向の埋設物の有無をレーダー探査する2
次探査、 前記掘削孔を最終径に拡削する2次掘削、 を順次経ることを特徴とする建柱工法。
(1) A pillar construction method in which the presence or absence of buried objects in the soil is investigated and a predetermined pillar erection hole is excavated, and the primary exploration is to search for the presence or absence of buried objects in the depth direction by ground radar exploration; Primary excavation to obtain a small-diameter excavation hole to the final depth by hydraulic excavation in the soil; Inserting a borehole radar antenna into the excavation hole and conducting a radar search for the presence or absence of buried objects in the circumferential direction of the excavation hole.2
A pillar erection method characterized by sequentially performing the following steps: secondary exploration, and secondary excavation for enlarging the excavated hole to its final diameter.
JP10214190A 1990-04-18 1990-04-18 Construction pillar method Expired - Lifetime JPH0762428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10214190A JPH0762428B2 (en) 1990-04-18 1990-04-18 Construction pillar method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10214190A JPH0762428B2 (en) 1990-04-18 1990-04-18 Construction pillar method

Publications (2)

Publication Number Publication Date
JPH041392A true JPH041392A (en) 1992-01-06
JPH0762428B2 JPH0762428B2 (en) 1995-07-05

Family

ID=14319487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10214190A Expired - Lifetime JPH0762428B2 (en) 1990-04-18 1990-04-18 Construction pillar method

Country Status (1)

Country Link
JP (1) JPH0762428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732559B2 (en) 2008-01-18 2017-08-15 Halliburton Energy Services, Inc. EM-guided drilling relative to an existing borehole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148101A (en) * 1977-05-31 1978-12-23 Nissho Kogyo Kk Detecting device for berried metals in case of utilizing boring machine and antena for detection
JPS5445601A (en) * 1977-06-24 1979-04-11 Schlumberger Overseas Searching method and apparatus of boring hole
JPS57155491A (en) * 1981-03-17 1982-09-25 Aaru Emu Shii Densetsu Kikou K Method of digging hole to base rock by three-function pillar erecting car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148101A (en) * 1977-05-31 1978-12-23 Nissho Kogyo Kk Detecting device for berried metals in case of utilizing boring machine and antena for detection
JPS5445601A (en) * 1977-06-24 1979-04-11 Schlumberger Overseas Searching method and apparatus of boring hole
JPS57155491A (en) * 1981-03-17 1982-09-25 Aaru Emu Shii Densetsu Kikou K Method of digging hole to base rock by three-function pillar erecting car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732559B2 (en) 2008-01-18 2017-08-15 Halliburton Energy Services, Inc. EM-guided drilling relative to an existing borehole

Also Published As

Publication number Publication date
JPH0762428B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP4066196B2 (en) Construction method of foundation using calcareous ground as support layer
CN112147671A (en) Comprehensive advanced forecasting method for geological structure containing poor water diversion of tunnel
CN114035239A (en) Comprehensive survey method for deep-buried long tunnel
CN108150101A (en) A kind of pipeline three-dimensional construction method for crossing
JP2009174178A (en) Method of constructing underground structure
US6732816B2 (en) Method of forming a trenchless flowline
JPH041392A (en) Column erection
Davis et al. Groundwater control and stability in an excavation in Magnesian Limestone near Sunderland, NE England
CN108005065A (en) The constructing structure and construction method of PHC static pressure pipe piles
CN110144903B (en) Construction method for foundation pit support in air defense cavity
KR102199353B1 (en) Horizontal directional drilling using a plurality of checking holes
CN103603371B (en) Environments such as subsea pipe-jacking project is removed obstacles backfill jacking construction method in advance
Sterling No-dig techniques and challenges
CN110847809A (en) Pile foundation pore-forming method next to underground structure
CN116464833A (en) Underground large-diameter pipeline migration-cutting-connecting structure and method
Fuentez Feasibility of Utilizing Autonomous, Trenchless Tunneling Technology
Ezeokonkwo et al. Review of Trenchless Technologies’ Successes and their Dependence on Precise Geotechnical Investigation
Taylor Search for Hidden Construction Shafts within the Welsh Railway Tunnels
CN115185014A (en) Method for accurately detecting existing underground pipeline
CN114923031A (en) Trenchless detection method for ultra-buried depth complex pipeline in pipe jacking construction
Saracin et al. Georadar technique and microtunnelling
JPS6213480B2 (en)
Barlow et al. The Role of Geotechnical Investigation for Directionally Drilled River Crossings
AU2002237434B2 (en) Method of forming a trenchless flowline
CN110714734A (en) Pipeline touch construction method for effectively preventing underground pipeline from being damaged