JPH0762428B2 - Construction pillar method - Google Patents

Construction pillar method

Info

Publication number
JPH0762428B2
JPH0762428B2 JP10214190A JP10214190A JPH0762428B2 JP H0762428 B2 JPH0762428 B2 JP H0762428B2 JP 10214190 A JP10214190 A JP 10214190A JP 10214190 A JP10214190 A JP 10214190A JP H0762428 B2 JPH0762428 B2 JP H0762428B2
Authority
JP
Japan
Prior art keywords
excavation
hole
exploration
radar
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10214190A
Other languages
Japanese (ja)
Other versions
JPH041392A (en
Inventor
彦逸 渡辺
Original Assignee
日本地工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本地工株式会社 filed Critical 日本地工株式会社
Priority to JP10214190A priority Critical patent/JPH0762428B2/en
Publication of JPH041392A publication Critical patent/JPH041392A/en
Publication of JPH0762428B2 publication Critical patent/JPH0762428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Earth Drilling (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に市街地等の土中に電柱を建て込むための
孔(以下、「建柱孔」という)を掘削する建柱工法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a construction pillar construction method for excavating a hole (hereinafter, referred to as a "construction pillar hole") for burying a utility pole particularly in the soil such as an urban area.

〔従来の技術〕[Conventional technology]

建柱孔の掘削には通常アースオーガドリルが用いられる
が、ガス管及び水道管等の埋設物が複雑に敷設された市
街地では、このアースオーガドリルによる掘削孔では埋
設物を破損するおそれがあるため、手掘りによって埋設
物を探りながら掘削作業を進めるのが現状である。
An earth auger drill is usually used for excavating a building pillar hole, but in urban areas where buried objects such as gas pipes and water pipes are laid in a complicated manner, the earth auger drill may cause damage to the buried object. Therefore, it is the current situation that the excavation work is carried out while searching for the buried object by hand digging.

ところが、建柱孔には2〜3メートル程度の深さが要求
されるため、手掘りによる場合、段堀となって掘削スペ
ースを広く必要とし、また掘削土が大量に出て掘削孔周
辺にもある程度のスペースを確保しておく必要がある。
また、掘削の途中で埋設物に当たった場合、掘削位置を
変えてまた掘り直さなければならず、それまでの作業が
徒労となり、或は無駄な埋設孔を埋めたり、市街地の舗
装部分のはつり、またその直し等甚大な労力を要するこ
ととなる。
However, since the building pillar hole requires a depth of about 2 to 3 meters, when it is manually dug, it becomes a terraced excavation, which requires a large excavation space, and a large amount of excavated soil appears around the excavated hole. It is necessary to secure some space.
Also, if you hit a buried object in the middle of excavation, you have to change the excavation position and dig again, and the work up to that point will be a waste of work, or you will fill useless buried holes or scrape the pavement part of the urban area. In addition, it will require a great deal of work such as fixing it.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

近年、このような事情に鑑みて、掘削の前に予め土中の
埋設物を地上からレーダー探査することが行われるよう
になった。
In recent years, in view of such circumstances, it has become common to carry out radar surveys of buried objects in the ground from the ground before excavation.

このレーザー探査法は、電磁波を地表から土中に発射さ
せ、土中にて進行した電磁波が土と異なる誘電率の埋設
物にて屈折・反射現象を起こすことによる反射情報を計
測することにより埋設物の位置を検知する方法である。
This laser exploration method emits electromagnetic waves from the surface of the earth into the soil, and the electromagnetic waves traveling in the soil cause reflection and refraction phenomena in an embedded object with a dielectric constant different from that of the soil. This is a method of detecting the position of an object.

ところが、この従来の埋設物レーダー探査法では、埋設
物によっては土と近似した誘電率を示すものがあった
り、地表から遠距離になるほど探査誤りが生じる等の理
由から、正確な探査が困難であるのが現状である。
However, with this conventional buried object radar exploration method, it is difficult to perform accurate exploration due to the fact that some buried objects have a permittivity similar to that of soil, and that errors occur as the distance from the surface of the earth increases. It is the current situation.

従って、このような従来のレーダー探査法によれば、地
表から地下一帯の探査を行い、しかして埋設物無しとの
一応の探査結果を得れば、当初より最終目的径の掘削孔
(例えば、450φ)を掘削するが、埋設物に当たると再
び別の位置を探査し掘削するという作業を繰り返すこと
となる。また、このレーダー探査法による掘削では、土
中の水道管或はガス管等の埋設物を破損するおそれがあ
って甚大な危険を伴い、その補修工事等の後処理及び探
査誤りのあった掘削孔を穴埋めするのに費やす労力及び
時間に多大な無駄が生ずるものであった。
Therefore, according to such a conventional radar exploration method, if an exploration of the entire underground area is performed from the surface of the earth, and if a tentative exploration result with no buried object is obtained, a drill hole of the final target diameter from the beginning (for example, 450φ) is excavated, but if it hits the buried object, the work of exploring and excavating another position again will be repeated. In addition, excavation using this radar exploration method may cause damage to buried objects such as water pipes and gas pipes in the soil, which is extremely dangerous, and post-processing such as repair work and exploration with incorrect exploration A great waste of labor and time is required to fill the holes.

本発明は、このような事情に鑑みて成されたもので、建
柱孔を掘削する際、埋設物の有無をより正格に判断する
ことにより掘削労力の無駄を省き、たとえ掘削途中にお
いて水道管あるいはガス管等の埋設物に当った場合でも
これらの埋設物を破損するおそれがない建柱工法を提供
することを目的とする。
The present invention has been made in view of such circumstances, and when excavating a building pillar hole, wastefulness of excavation labor can be saved by more accurately determining the presence or absence of an embedded object, and even if a water pipe Alternatively, it is an object of the present invention to provide a building pillar construction method in which even if it hits a buried object such as a gas pipe, there is no fear of damaging the buried object.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題は下記の工程を有する本発明により解決され
る。即ち、 地上レーダー探査により深さ方向の埋設物の有無を探査
する一次探査、 前記探査した土中を水圧堀りによって最終深さまでの小
径掘削孔を得る1次掘削、 前記掘削孔にボアホール用レーダーアンテナを挿入して
該掘削孔の周方向の埋設物の有無をレーダー探査する2
次探査、 前記掘削孔を最終径に拡削する2次掘削、 を順次経ることを特徴とする建柱工法。
The above problems can be solved by the present invention having the following steps. That is, a primary exploration for investigating the presence or absence of a buried object in the depth direction by a ground radar exploration, a primary excavation for obtaining a small diameter excavation hole to the final depth by hydraulic excavation in the excavated soil, and a borehole radar for the excavation hole Insert an antenna to carry out radar surveys for the presence of buried objects in the circumferential direction of the borehole 2
A construction pillar method characterized by sequentially undergoing secondary exploration and secondary excavation for expanding the excavation hole to the final diameter.

〔作用〕[Action]

本発明は上記1次及び2次レーダー探査を経て土中の埋
設物の有無を探査し、夫々の埋設物探査後に深さ方向の
1次掘削及び掘削した孔をさらに拡削する2次掘削を行
うことにより、建柱孔を掘削することを特徴とするもの
である。
The present invention conducts primary excavation in the depth direction and secondary excavation for further excavating the excavated holes after investigating the presence or absence of buried objects in the soil through the above-mentioned primary and secondary radar searches. It is characterized by excavating the building pillar hole by carrying out.

まず、1次探査において、地上レーダー探査により深さ
方向の埋設物の有無が探査される。
First, in the primary exploration, the presence of buried objects in the depth direction is investigated by ground radar exploration.

次いで、上記1次探査により埋設物無しの一応の探査結
果が得られた箇所を水圧堀りにより最終深さまで掘削す
る(1次掘削)。この掘削は水圧堀りによるものである
ため、探査誤りによって掘削途中に埋設物があった場合
でも水道管或はガス管等の埋設物は破損されることなく
敷設状況を維持できる。
Next, the place where a temporary exploration result without a buried object is obtained by the above-mentioned primary exploration is excavated by hydraulic excavation to the final depth (primary excavation). Since this excavation is performed by hydraulic excavation, even if there is a buried object during the excavation due to an error in the exploration, the buried condition can be maintained without damaging the buried object such as the water pipe or the gas pipe.

また、この掘削による孔は2次探査におけるボアホール
用レーダーアンテナの挿入が確実にできる程度の小径で
よく、探査誤りがあって穴埋めする場合でもさほど労力
を要せず無駄が最小限度に留められる。
In addition, the hole formed by this excavation may have a small diameter such that the radar antenna for the borehole can be reliably inserted in the secondary exploration, and even if the hole is filled due to an error in the exploration, it does not require much labor and waste is minimized.

なお、2次探査は1次掘削による孔の周方向における埋
設物の有無をレーダー探査するためのものであるため、
1次掘削においては建柱に必要な最終深さまで掘削して
おくことが不可欠となる。
Since the secondary exploration is for radar exploration for the presence or absence of buried objects in the circumferential direction of the hole due to the primary excavation,
In the primary excavation, it is indispensable to excavate to the final depth required for the building columns.

2次探査は、前記1次掘削による孔にボアホール用レー
ダーアンテナを挿入することにより行われる。
The secondary exploration is performed by inserting a borehole radar antenna into the hole formed by the primary excavation.

この2次レーダー探査によれば1次掘削による掘削孔周
方向の至近距離の探査が可能であるから、地上レーダー
探査におけるより格段に確かな探査結果が得られる。
According to this secondary radar survey, it is possible to perform a close-up survey in the circumferential direction of the drill hole by the primary excavation, so a much more reliable survey result can be obtained in the ground radar survey.

そして、2次探査により掘削孔周方向における埋設物無
しとの探査結果が得られた場合、建柱に必要な最終径に
拡大掘削孔され、かくして所定径及び所定深さの建柱孔
が得られる。
Then, if the secondary exploration results show that there is no buried object in the circumferential direction of the excavation hole, the excavation hole is enlarged to the final diameter required for the building pillar, thus obtaining the building pillar hole with the predetermined diameter and the predetermined depth. To be

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図(a)乃至(b)は、本発明の建柱工法による探
査及び掘削の工程を示す図であり、最終径450φ、最終
深さ3mの建柱孔を掘削する具体的実施例を示す。
FIGS. 1 (a) and 1 (b) are diagrams showing the steps of exploration and excavation by the building pillar method of the present invention, and a concrete example of excavating a building pillar hole having a final diameter of 450φ and a final depth of 3 m. Show.

まず、第1図(a)において、レーダー計測システム2
により建柱すべく予定された地上箇所から電磁波2aを土
中3の深さ方向に発射し、該土中の埋設物の有無を探査
する(1次探査終了)。この地上レーダー探査において
水道管或はガス管等の埋設管4無しとの一応の探査結果
が得られたら、舗装部分3aをコアカッターで切除し(不
図示)、第1図(b)に示すように、ジェット噴水機5
により最終径より小径200φの水圧堀りを最終深さ3mま
で掘削し掘削孔6を得る(1次掘削終了)。
First, in FIG. 1 (a), the radar measurement system 2
The electromagnetic wave 2a is emitted from the ground location scheduled to be built by the in the depth direction of the soil 3, and the presence or absence of the buried object in the soil is searched (primary exploration is completed). In this ground radar survey, if a tentative survey result with no buried pipe 4 such as a water pipe or a gas pipe is obtained, the pavement portion 3a is cut with a core cutter (not shown), and is shown in FIG. 1 (b). So that the jet fountain 5
With this, a hydraulic excavation with a diameter of 200φ smaller than the final diameter is excavated to a final depth of 3 m to obtain the excavation hole 6 (primary excavation completed).

次いで、第1図(c)に示すように、掘削孔6の土壁の
崩れを防止するためにパイプ9を挿着し、このパイプは
電磁波を透過可能な材質で作られ、該内腔にボアホール
レーダー用アンテナ8を挿入し、掘削孔6の周方向に電
磁波8aを発射して約600φ範囲までの埋設物探査を行う
(2次探査)。しかして、該掘削孔周方向の土中3に埋
設物無しとの探査結果が得られたら、掘削孔6からパイ
プ9を抜き、第1図(d)に示すように、500φボアカ
ッター7により舗装部分の拡削を行い、次いで、第1図
(e)に示すように、450φのアースオーガドリル10で
上記掘削による深さ3mの掘削孔6に対し450φの掘削を
行い建柱孔11を得る(2次掘削終了)。かくして得られ
た建柱孔11に対し、通常の方法で建柱を行う。
Then, as shown in FIG. 1 (c), a pipe 9 is inserted to prevent the soil wall of the excavation hole 6 from collapsing, and this pipe is made of a material that can transmit electromagnetic waves, The borehole radar antenna 8 is inserted and an electromagnetic wave 8a is emitted in the circumferential direction of the excavation hole 6 to perform a buried object search up to a range of about 600φ (secondary search). Then, when an exploration result indicating that there is no buried object in the soil 3 in the circumferential direction of the excavation hole is obtained, the pipe 9 is pulled out from the excavation hole 6, and the 500φ bore cutter 7 is used as shown in FIG. 1 (d). The pavement is expanded, and then, as shown in FIG. 1 (e), the earth auger drill 10 of 450φ is used to excavate the borehole 6 having a depth of 3 m and the building pillar hole 11 Obtain (end of secondary drilling). The building pillar hole 11 thus obtained is formed by a usual method.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の建柱工法によれば、地上
レーダー探査により深さ方向の埋設物の有無が探査さ
れ、次いで建柱に必要な最終深さの掘削孔を得る1次掘
削に移行するが、この掘削は仮に掘削途中において埋設
物に当った場合でも該埋設物を破損しない水圧掘りによ
るものであり、さらに、その掘削孔径が次の2次探査に
おけるボアホール用レーダーアンテナの挿入ができる程
度の小径でよいから、埋設物該当位置を掘削するという
不測の事態にも安全に対処でき、また、それまでの1次
掘削の労力及び穴埋め・現状回復の労力も最小限度のも
のですみ、さらに該掘削孔の周方向をレーダー探査する
ことにより地上探査より一層確かな探査結果を得、しか
して前記小径孔が建柱に必要な最終径まで拡大するよう
拡削することにより目的の建柱孔を得ることができる。
As described above, according to the building pillar construction method of the present invention, the presence or absence of a buried object in the depth direction is searched by ground radar search, and then the primary drilling is performed to obtain a drilling hole of the final depth required for the building pillar. However, this excavation is due to hydraulic excavation that does not damage the buried object even if it hits the buried object during the excavation. Furthermore, the diameter of the drilled hole makes it possible to insert the borehole radar antenna in the next secondary exploration. Since the diameter is as small as possible, it is possible to safely cope with the unforeseen situation of excavating the relevant location of the buried object, and the effort for primary excavation and hole filling / recovery of the existing situation up to then is minimal. By further conducting a radar survey in the circumferential direction of the drilling hole, a more reliable survey result can be obtained than ground surveying. By expanding the small diameter hole to the final diameter required for the building pillar, It is possible to obtain the subject of Ken pillar holes.

従って、従来の地上探査による掘削法に比べ格段に信頼
性のおける探査結果が得られ、また安全性の面でもすこ
ぶる優れた掘削が可能となり、特に危険埋設物の多い市
街地等において安全且つ省労力による建柱孔の掘削を可
能とした建柱工法を得ることができる。
Therefore, much more reliable exploration results can be obtained compared to the conventional excavation method by ground exploration, and it becomes possible to excavate extremely excellent in terms of safety as well, and it is safe and labor-saving especially in urban areas with many dangerous buried objects. It is possible to obtain a building pillar construction method that enables excavation of a building pillar hole.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)乃至(e)は、本発明の建柱工法による探
査及び掘削の工程を示す図である。 2……レーダー計測システム、2a……深さ方向への電磁
波、4……埋設物、5……ジェット噴水機、6……1次
掘削による掘削孔、7……コアカッター、8……ボアホ
ール用レーダーアンテナ、8a……掘削孔周方向への電磁
波、10……アースオーガドリル、11……2次掘削による
掘削孔(建柱孔)
FIGS. 1 (a) to (e) are diagrams showing the steps of exploration and excavation by the building pillar method of the present invention. 2 ... Radar measurement system, 2a ... Electromagnetic waves in the depth direction, 4 ... Buried objects, 5 ... Jet fountain, 6 ... Drilling hole by primary excavation, 7 ... Core cutter, 8 ... Borehole Radar antenna, 8a ... electromagnetic waves in the circumferential direction of the drilling hole, 10 ... Earth auger drill, 11 ... Drilling hole by secondary drilling (building pillar hole)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】土中の埋設物の有無を探査して所定の建柱
孔を掘削する建柱工法であって、 地上レーダー探査により深さ方向の埋設物の有無を探査
する一次探査、 前記探査した土中を水圧堀りによって最終深さまでの小
径掘削孔を得る1次掘削、 前記掘削孔にボアホール用レーダーアンテナを挿入して
該掘削孔の周方向の埋設物の有無をレーダー探査する2
次探査、 前記掘削孔を最終径に拡削する2次掘削、 を順次経ることを特徴とする建柱工法。
1. A building pillar construction method for exploring a predetermined building pillar hole by investigating the presence or absence of an embedded object in the soil, the primary exploration for exploring the presence or absence of an embedded object in the depth direction by ground radar surveying, Primary excavation to obtain a small diameter drilled hole to the final depth by hydraulically drilling in the searched soil, and insert a borehole radar antenna into the drilled hole to perform radar search for the presence or absence of a buried object in the circumferential direction of the drilled hole 2
A construction pillar method characterized by sequentially undergoing secondary exploration and secondary excavation for expanding the excavation hole to the final diameter.
JP10214190A 1990-04-18 1990-04-18 Construction pillar method Expired - Lifetime JPH0762428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10214190A JPH0762428B2 (en) 1990-04-18 1990-04-18 Construction pillar method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10214190A JPH0762428B2 (en) 1990-04-18 1990-04-18 Construction pillar method

Publications (2)

Publication Number Publication Date
JPH041392A JPH041392A (en) 1992-01-06
JPH0762428B2 true JPH0762428B2 (en) 1995-07-05

Family

ID=14319487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10214190A Expired - Lifetime JPH0762428B2 (en) 1990-04-18 1990-04-18 Construction pillar method

Country Status (1)

Country Link
JP (1) JPH0762428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091408A1 (en) 2008-01-18 2009-07-23 Halliburton Energy Services, Inc. Em-guided drilling relative to an existing borehole

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148101A (en) * 1977-05-31 1978-12-23 Nissho Kogyo Kk Detecting device for berried metals in case of utilizing boring machine and antena for detection
FR2395516A1 (en) * 1977-06-24 1979-01-19 Schlumberger Prospection PROCEDURE AND DEVICE FOR EXPLORING BORES
JPS57155491A (en) * 1981-03-17 1982-09-25 Aaru Emu Shii Densetsu Kikou K Method of digging hole to base rock by three-function pillar erecting car

Also Published As

Publication number Publication date
JPH041392A (en) 1992-01-06

Similar Documents

Publication Publication Date Title
Fang Foundation engineering handbook
JP4066196B2 (en) Construction method of foundation using calcareous ground as support layer
CN114035239A (en) Comprehensive survey method for deep-buried long tunnel
JP2009174178A (en) Method of constructing underground structure
US4422800A (en) Method of installing an underground conduit
US6732816B2 (en) Method of forming a trenchless flowline
JPH0762428B2 (en) Construction pillar method
Davis et al. Groundwater control and stability in an excavation in Magnesian Limestone near Sunderland, NE England
Sterling No-dig techniques and challenges
Bjørn Main challenges for deep subsea tunnels based on norwegian experience
KR102546808B1 (en) Horizontal directional drilling system and drilling method with real-time collision avoidance function
Saracin et al. Georadar technique and microtunnelling
Ezeokonkwo et al. Review of Trenchless Technologies’ Successes and their Dependence on Precise Geotechnical Investigation
Suleiman et al. Identification of practices, design, construction, and repair using trenchless technology
Taylor Search for Hidden Construction Shafts within the Welsh Railway Tunnels
Conway An investigation of trenchless technologies and their interaction with native Iowa soils
EP1395729B1 (en) Method of forming a trenchless flowline
CN115538417A (en) TRD channel type cement cutting continuous wall construction method
JPS6213480B2 (en)
Barlow et al. The Role of Geotechnical Investigation for Directionally Drilled River Crossings
JP2004100272A (en) Geological survey method of micro tunnel excavation scheduled part
CN115185014A (en) Method for accurately detecting existing underground pipeline
Richter Resistivity Imaging At Mn/Dot:‘Building Bridges’ In Duluth
Benson et al. Invasive Methods
CN114923031A (en) Trenchless detection method for ultra-buried depth complex pipeline in pipe jacking construction