JPH04138368A - Reaction container - Google Patents

Reaction container

Info

Publication number
JPH04138368A
JPH04138368A JP2260079A JP26007990A JPH04138368A JP H04138368 A JPH04138368 A JP H04138368A JP 2260079 A JP2260079 A JP 2260079A JP 26007990 A JP26007990 A JP 26007990A JP H04138368 A JPH04138368 A JP H04138368A
Authority
JP
Japan
Prior art keywords
reaction container
probe
container
reaction
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260079A
Other languages
Japanese (ja)
Other versions
JP3052267B2 (en
Inventor
Toshio Sakagami
俊夫 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2260079A priority Critical patent/JP3052267B2/en
Publication of JPH04138368A publication Critical patent/JPH04138368A/en
Application granted granted Critical
Publication of JP3052267B2 publication Critical patent/JP3052267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To simplify a stirring means and to miniaturize a container by integrally forming a reaction container part and a probe part and flattening the reaction container part to constitute the flat surface thereof as a photometric cell surface. CONSTITUTION:A container 1 is constituted by integrally forming a reaction container part 2 and a probe part 3 and the container part 2 is flattened to set two opposed flat surfaces thereof to photometric cell surfaces 2b. The tip of the probe part 3 is inserted in the reaction container part and sucked by a distributor 4 to inject the reagent of a reagent container 5 in the container part 2 from the probe part 3. When the tip of the probe part 3 is transferred to the open air to be sucked by the distributor 4, air is sucked to be moved to the solution to be examined in the container part 2 as air bubbles to sufficiently stirr said solution. In photometry, the flat cell surfaces 2b are irradiated with light to perform measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料及び試薬等の検液を反応容器内に収容し
て、測光により検液の分析を行なうための、反応容器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a reaction container for storing a test solution such as a sample and a reagent in the reaction container and analyzing the test solution by photometry.

〔従来の技術〕[Conventional technology]

従来、このような分析を行なう場合、例えば透光性を有
する反応容器を移送機構によって所定の反応ラインに沿
ってステップ移送させ、各ステップで試料及び試薬の分
注、攪拌、測光1反応容器の洗浄又は廃棄等の処理が行
なわれるようになっている。
Conventionally, when performing such an analysis, for example, a translucent reaction vessel is moved step by step along a predetermined reaction line by a transfer mechanism, and at each step, samples and reagents are dispensed, stirred, and one photometric reaction vessel is moved. Processing such as cleaning or disposal is now performed.

ところで、試料を分注する場合には試料分注プローブを
用いて分注器によって、試料をサンプラから吸引して反
応容器へ分注し、又試薬を分注する場合には試薬分注プ
ローブを用いて、同様に反応容器に分注して反応させる
ことが一般的に行なわれている。そして、各プローブは
試料や試薬が変わるたび毎に、多量の洗浄液を使用して
洗浄することを必要としていた。又、検液の攪拌方法に
ついても、反応容器内の検液中に撹拌棒を挿入して攪拌
を行なうようにしていた。
By the way, when dispensing a sample, a sample dispensing probe is used to aspirate the sample from the sampler and dispensing it into a reaction container, and when dispensing a reagent, a reagent dispensing probe is used. It is common practice to use the same method and dispense it into a reaction vessel for reaction. Further, each probe needs to be washed using a large amount of washing liquid every time the sample or reagent is changed. Also, regarding the method of stirring the test liquid, stirring was performed by inserting a stirring rod into the test liquid in the reaction container.

又、別の分析方法として特公昭64−12345号公報
に記載された自動分析方法があり、この方法では、攪拌
手段として反応容器の下部を可撓性にすると共にこの部
分を押圧する押し上げ用押圧機構を用いて、検液の攪拌
を行なうようにしている。又、分析に用いる検液量を少
なくするために、測光時に反応容器の下部を押し上げ用
押圧機構で押しつぶして、検液を反応容器内の測光位置
まで押し上げるようにしている。
Another analysis method is an automatic analysis method described in Japanese Patent Publication No. 64-12345. In this method, the lower part of the reaction vessel is made flexible as a stirring means, and a pushing force is used to press this part. A mechanism is used to stir the test solution. Furthermore, in order to reduce the amount of test liquid used for analysis, the lower part of the reaction container is pressed down by a push-up mechanism during photometry to push the test liquid up to the photometry position within the reaction container.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、これらの場合、試料用と試薬用のプローブが夫
々必要であり、移送機構においてこれらの移送手段が夫
々必要となるから、機構が複雑になってしまう。
However, in these cases, probes for the sample and probes for the reagent are required, and the transport mechanism requires separate means for transporting these, resulting in a complicated mechanism.

又、分注の際、反応容器上部の開口部からプローブを介
して分注を行なうため、プローブ移送時の位置精度との
関係で開口部をある程度大きくする必要があり、反応容
器を小型化することができない。このため、反応ライン
のスペースが大きくなるという問題がある。しかも、反
応容器を小型化できないため、検液量の微量化かできず
、患者からの採血量を減少できない上に試薬も減量でき
ないために検査コストを下げることができない。
In addition, since dispensing is performed through the probe from the opening at the top of the reaction vessel, the opening needs to be made somewhat large due to the positional accuracy during probe transfer, which makes it necessary to downsize the reaction vessel. I can't. Therefore, there is a problem that the space for the reaction line becomes large. Moreover, since the reaction container cannot be miniaturized, the amount of test liquid cannot be reduced, and the amount of blood collected from the patient cannot be reduced, and the amount of reagents cannot be reduced, so testing costs cannot be reduced.

尚、上述した後者の従来技術では検液量を比較的少なく
することができるが、測光時において押し上げ用押圧機
構や駆動モータが必要であるから機構が複雑化して検査
コストが上昇するという問題が生じる。
Although the latter conventional technique described above allows the amount of test liquid to be relatively small, it requires a push-up mechanism and a drive motor during photometry, which complicates the mechanism and increases inspection costs. arise.

更に各プローブを洗浄するために多量の洗浄液や水が必
要になり、又廃液量も多くなるという問題もある。
Furthermore, a large amount of cleaning liquid and water are required to clean each probe, and there is also the problem that the amount of waste liquid increases.

又、上述の従来例では攪拌するための機構か別に必要で
あり、前者の場合には検液が撹拌棒に付着するため、撹
拌棒の洗浄か必要であり、洗浄後になお付着している検
液によって別の分析の際の分析精度に悪影響を及はすと
いう問題かある。後者の場合には攪拌用押圧機構及び駆
動モータか必要であり、機構の複雑化及びコストの上昇
を招くことになる。
In addition, in the conventional example described above, a separate mechanism for stirring is required, and in the former case, the test liquid adheres to the stirring rod, so it is necessary to clean the stirring rod, and the test liquid still attached after cleaning must be cleaned. There is a problem that depending on the liquid, the accuracy of analysis during other analyzes may be adversely affected. In the latter case, a pressing mechanism for agitation and a drive motor are required, resulting in a complicated mechanism and an increase in cost.

尚、試料用のプローブと反応容器が夫々ディスポーザブ
ル(使い捨て可能)のものもあるが、これらは別個に構
成されているから分析コストを上昇させることになる。
Incidentally, there are some cases in which the sample probe and the reaction container are each disposable, but since these are constructed separately, this increases the analysis cost.

本発明はこのような問題点に鑑みて、プローブの移送手
段を省略できて、攪拌の手段を簡単化できると共に容積
を小型化できるようにした反応容器を提供することを目
的とするものである。
In view of these problems, it is an object of the present invention to provide a reaction container that can omit the means for transporting the probe, simplify the means for stirring, and reduce the volume. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明による反応容器は、反応容器部とプローブ部とか
一体に形成されていると共に、この反応容器が偏平形状
であり且つ対向する二つの偏平面が測光用セル面として
構成されている。
In the reaction container according to the present invention, the reaction container portion and the probe portion are integrally formed, and the reaction container has a flat shape, and two opposing flat surfaces are configured as photometric cell surfaces.

〔作 用〕[For production]

試料や試薬を分注するには、試□料又は試薬内にプロー
ブ部の先端を挿入して分注器で吸引すれば、試料又は試
薬はプローブ部から反応容器部に注入され、そして夫々
分注後にプローブ部外側を希釈液又は水等によって洗浄
すればよいから、洗浄液を殆ど必要とせず、又攪拌に際
しては、プローブ部の先端を空気中に移送させて分注器
で吸引すれば、エアがプローブ部から吸引されて気泡と
して反応容器部内の検液等の中を移動することによって
十分な攪拌が行なえ、又測光に際しては偏平な測光用セ
ル面に光が照射されて測定が行なわれることになる。
To dispense a sample or reagent, insert the tip of the probe into the sample or reagent and aspirate it with the dispenser, the sample or reagent will be injected from the probe into the reaction container, and then dispensed into each sample or reagent. After dispensing, the outside of the probe section can be washed with diluent or water, so there is almost no need for cleaning solution, and when stirring, the tip of the probe section can be moved into the air and suctioned with a dispenser, allowing air to flow easily. is sucked from the probe section and moves in the form of bubbles through the test liquid in the reaction container section, allowing for sufficient stirring.Also, during photometry, light is irradiated onto the flat photometry cell surface to perform measurements. become.

〔実施例〕〔Example〕

以下、本発明の好適な一実施例を第1図乃至第8図に基
づいて説明する。
A preferred embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図(A)は反応容器Iの縦断面図、(B)は(A)
における反応容器1のI−I線断面図を示すものである
。図中、2は分注器の配管が気密的に接続され得る吸引
口2aが上端に設けられていて試料及び試薬か貯溜され
る反応容器部であって、この反応容器部2は偏平な形状
を有していて、対向する一対の幅広な偏平面2b、2b
は透光性の測光用セル面として形成され、又後述のプロ
ーブ部と接続される下端面はテーパ面2Cに形成されて
いる。3はテーパ面2Cで反応容器部2に連結されてい
てその内径は反応容器部2内の検液か表面張力で落下し
ない程度に小さ(形成されているプローブ部である。
Figure 1 (A) is a longitudinal cross-sectional view of reaction vessel I, (B) is (A)
2 is a sectional view taken along the line II of the reaction vessel 1 in FIG. In the figure, reference numeral 2 denotes a reaction container section which is provided with a suction port 2a at the upper end to which pipes of a dispenser can be airtightly connected, and in which samples and reagents are stored.This reaction container section 2 has a flat shape. A pair of wide oblique surfaces 2b, 2b facing each other.
is formed as a translucent photometric cell surface, and the lower end surface connected to a probe section, which will be described later, is formed into a tapered surface 2C. 3 is connected to the reaction container part 2 by a tapered surface 2C, and its inner diameter is small enough to prevent the test liquid in the reaction container part 2 from falling due to surface tension (this is a probe part formed).

尚、吸引口2aは第1図(A)では反応容器部2の横断
面より径か狭くなっているが、反応容器部2の横断面が
そのまま延長された形状であってもよい。又、プローブ
部3の先端部分は他端と同一内径のストレート形状にな
っているが、テーパ状であってもよい。
Although the suction port 2a has a diameter narrower than the cross section of the reaction container section 2 in FIG. 1(A), it may have a shape in which the cross section of the reaction container section 2 is extended as it is. Further, although the tip portion of the probe portion 3 has a straight shape with the same inner diameter as the other end, it may have a tapered shape.

又、反応容器部2の容積は、検液が貯溜された状態でプ
ローブ部3よりエアを吸引混入させた時に、吸引口2a
まで検液か上昇しない程度の太きさを有するものとする
In addition, the volume of the reaction container section 2 is determined by the volume of the suction port 2a when air is sucked in from the probe section 3 with the test liquid stored therein.
The thickness shall be such that the test solution does not rise up to the level of the test liquid.

次に本発明による反応容器1を用いた分析手順について
、図示しない移送機構による各ステップ毎の反応容器1
を示す第2図乃至第8図に基ついて説明する。尚、本実
施例では高濃度試薬を使用する場合について説明する。
Next, regarding the analysis procedure using the reaction vessel 1 according to the present invention, the reaction vessel 1 is transferred for each step by a transfer mechanism (not shown).
This will be explained based on FIGS. 2 to 8 showing the following. In this example, a case will be explained in which a highly concentrated reagent is used.

先ず、反応ラインの最初の位置において、第2図に示す
ように反応容器lの吸引口2aに分注器4からの配管を
気密的に接続し、試薬容器5内の試薬中にプローブ部3
の先端が浸入した状態で、分注器4で吸引して試薬を反
応容器部2に分注する。そして試薬吸引後、分注器4の
配管は外され、反応容器lは次の工程へ移される。
First, at the initial position of the reaction line, the pipe from the dispenser 4 is airtightly connected to the suction port 2a of the reaction container 1, as shown in FIG.
With the tip of the tube infiltrated, the reagent is dispensed into the reaction container section 2 by suction using the dispenser 4. After suctioning the reagent, the pipe of the dispenser 4 is removed, and the reaction container 1 is moved to the next step.

次に第3図において、吸引口2aに別の分注器6の配管
が気密的に接続され、この分注器6によって希釈液容器
7内の希釈液をプローブ部3から反応容器部2内へ吸引
させ、試薬と混合する。
Next, in FIG. 3, the pipe of another dispenser 6 is airtightly connected to the suction port 2a, and this dispenser 6 allows the diluent in the diluent container 7 to be transferred from the probe section 3 into the reaction container section 2. and mix with reagent.

尚、希釈液容器7は夫々の分析毎に容器内の希釈液を入
れ替えるようにし、又プローブ部3の外側部分の洗浄も
この希釈液によって行なうようにする。
Note that the diluent in the diluent container 7 is replaced after each analysis, and the outside portion of the probe section 3 is also cleaned with this diluent.

次に、分注器6の配管は吸入口2aに接続状態にして、
希釈液容器7からプローブ部3が離れた位置に反応容器
1が移動せしめられる。そして、分注器6を断続的に作
動させると、第4図に示すようにプローブ部3からエア
か吸引され、気泡となって反応容器部2内を上昇して内
部の試薬及び希釈液を攪拌する。この時、気泡はプロー
ブ部3の上端からテーパ面2cに沿って反応容器部2内
を上昇するから、試薬の攪拌かすみずみまで良く行なわ
れる。又、分注器6の断続的作動については、吸引され
たエアがテーパ面2cで大きな気泡が形成されるように
スピード及び作動量を制御するものとする。
Next, the pipe of the dispenser 6 is connected to the suction port 2a,
The reaction container 1 is moved to a position where the probe section 3 is separated from the diluent container 7. When the dispenser 6 is operated intermittently, air is sucked from the probe section 3 as shown in FIG. Stir. At this time, since the bubbles rise within the reaction vessel section 2 from the upper end of the probe section 3 along the tapered surface 2c, the reagent is well stirred and stirred to every corner. Regarding the intermittent operation of the dispenser 6, the speed and amount of operation shall be controlled so that the sucked air forms large bubbles on the tapered surface 2c.

次に分注器6の配管が取り外された第5図の反応容器l
に対して、公知の方法で測光が行なわれる。即ち、図示
しない測光装置は、紙面に対して直交する方向に例えば
単色化された光が照射されるようになっており、測光用
セル面2bが光と直交するように反応容器部2が紙面と
平行に移送せしめられ、測光か行なわれる。
Next, the reaction vessel l in Fig. 5 from which the piping of the dispenser 6 has been removed.
For this purpose, photometry is performed using a known method. That is, the photometric device (not shown) is configured to irradiate, for example, monochromatic light in a direction perpendicular to the plane of the paper, and the reaction container section 2 is aligned with the plane of the paper so that the photometric cell surface 2b is orthogonal to the light. The photometer is then moved parallel to the photometer, and photometry is performed.

更に分注器7を吸入口2aに気密的に接続し、第6図に
示すようにサンプルカップ8内の試料をプローブ部3か
ら吸引する。第7図に示す次の工程では、別の分注器9
を吸入口2aに接続して、希釈液容器IO内の希釈液を
プローブ部3から吸引する。
Furthermore, the dispenser 7 is airtightly connected to the suction port 2a, and the sample in the sample cup 8 is aspirated from the probe section 3 as shown in FIG. In the next step shown in FIG.
is connected to the suction port 2a to aspirate the diluent in the diluent container IO from the probe section 3.

尚、希釈液容器10は各分析毎に液を入れ替えるように
し、又、プローブ部3の外側部分の洗浄がこの希釈液に
よって行なわれるようにする。
The liquid in the diluent container 10 is replaced after each analysis, and the outer portion of the probe section 3 is cleaned with the diluent.

第8図は希釈液吸引後の攪拌状態を表わすものであり、
分注器9からの配管は吸引口2aに接続した状態でプロ
ーブ部3を希釈液容器10か、ら移動させて、第4図の
場合と同様に分注器9を断続的に作動させ、エアをプロ
ーブ部3から吸引せしめる。すると、反応容器部2内の
検液中を気泡が上昇することによって、検液の十分な攪
拌が行なわれる。
Figure 8 shows the stirring state after suction of the diluted liquid.
With the pipe from the dispenser 9 connected to the suction port 2a, move the probe part 3 from the diluent container 10, operate the dispenser 9 intermittently as in the case of FIG. 4, Air is sucked from the probe section 3. Then, bubbles rise in the test liquid in the reaction container section 2, and the test liquid is sufficiently stirred.

尚、第二試薬等の反応容器部2への分注が更に必要な場
合には、第2図乃至第4図に示す試薬吸引、希釈及び攪
拌の各工程が付加されることになる。
If it is necessary to further dispense the second reagent etc. into the reaction container section 2, the steps of reagent suction, dilution and stirring shown in FIGS. 2 to 4 will be added.

そして第5図に示す工程と同様に測光を行なうことによ
って、吸光度等、検液の光学的特性を測定することかで
きる。
Then, by performing photometry in the same manner as in the process shown in FIG. 5, it is possible to measure the optical characteristics of the test liquid, such as absorbance.

このようにして測光が終了した反応容器1について、こ
れをディスポーザブルとすれば洗浄工程を省くことかで
きる。尚、ディスポーザブルでない場合には、次の工程
で反応容器l内の検液をプローブ部3から排出し、そし
てプローブ部3から洗浄液を吸引して洗浄を行なう。
If the reaction vessel 1 in which photometry has been completed in this manner is made disposable, the cleaning step can be omitted. If it is not disposable, in the next step, the test liquid in the reaction container 1 is discharged from the probe part 3, and the cleaning liquid is sucked from the probe part 3 to perform cleaning.

上述のように本実施例によれば、反応容器1によって全
ての工程をまかなうことができるから、移送機構は複雑
な作動が行なわれず、又構成部品も少なくて済む。その
ため機構を簡単にできて小型化することができる。又、
プローブ部3が反応容器部2と一体に形成されているか
ら、洗浄液を殆ど必要とせず、従って廃液も少なく、そ
の処理が容易である。
As described above, according to this embodiment, all the steps can be carried out by the reaction vessel 1, so the transfer mechanism does not have complicated operations and the number of components can be reduced. Therefore, the mechanism can be made simple and downsized. or,
Since the probe part 3 is formed integrally with the reaction container part 2, almost no cleaning liquid is required, and therefore there is little waste liquid, which is easy to dispose of.

又、試薬等の分注をプローブ部3から行ない、連結され
ている反応容器部2にそのまま導入するようにしたから
、従来の反応容器のように上部開口を、プローブの移送
位置精度に応じて径を大きくする必要かない。しかも反
応容器部2は対向する一対の偏平な測光セル面2b、2
bによる偏平形状に形成されているから、反応容器部2
を小型且つ小容量にすることができる。そのため、検査
に必要な試料及び試薬を微量にすることができる。
In addition, since reagents and the like are dispensed from the probe section 3 and directly introduced into the connected reaction container section 2, the upper opening can be adjusted according to the accuracy of the transfer position of the probe, unlike conventional reaction containers. There is no need to increase the diameter. Moreover, the reaction container part 2 has a pair of flat photometric cell surfaces 2b, 2 facing each other.
Since it is formed into a flat shape according to b, the reaction container part 2
can be made small and small in capacity. Therefore, the amount of samples and reagents required for testing can be reduced to a very small amount.

又、検液等の攪拌も分注器でエアをプローブ部3から吸
引することによってできるから、撹拌棒や攪拌用押圧機
構及び駆動モータ等を必要としない。
Furthermore, since the sample liquid and the like can be stirred by sucking air from the probe section 3 with a dispenser, there is no need for a stirring rod, a stirring pressing mechanism, a drive motor, or the like.

更に、プローブ部3と反応容器部2か一体であるから、
反応容器1をディスポーザブルとした場合、コストを低
廉にすることができる。
Furthermore, since the probe section 3 and the reaction container section 2 are integrated,
When the reaction container 1 is made disposable, the cost can be reduced.

又、反応容器1はlテスト毎に廃棄可能であり、試料、
試薬、希釈液、エアが何れも一方向にのみ吸引されるか
ら共洗いができて、キャリオーバーがないという利点も
ある。
In addition, the reaction container 1 can be discarded after each test, and the sample,
Since the reagent, diluent, and air are all sucked in only one direction, they can be washed together and have the advantage of no carryover.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明に係る反応容器は、反応容器部とプ
ローブ部を一体に形成すると共に反応容器部を偏平にし
て偏平面を測光用セル面に構成したから、反応容器によ
って分析時の全ての工程を賄うことができて、移送機構
の作動及び構造を簡単にでき、攪拌の際にも撹拌棒や押
圧機構等か不要になる。しかも、各工程の途中において
、洗浄のための洗浄液が殆ど不要であり、廃液も少なく
、反応容器が使い捨て可能である場合にはそのコストを
低廉にすることができる。更に反応容器部を従来のもの
より小型で小容量化できるから、検査に必要な試料及び
試薬等を微量にすることができる。又、試料、試薬、希
釈液、エア等をプローブ部の一方向にのみ吸引するから
共洗いができて、キャリオーバーがないという利点もあ
る。
As described above, in the reaction container according to the present invention, the reaction container part and the probe part are integrally formed, and the reaction container part is flattened so that the flat surface is formed on the photometric cell surface. The operation and structure of the transfer mechanism can be simplified, and stirring rods and pressing mechanisms are no longer required during stirring. Moreover, during each step, almost no cleaning liquid is required for cleaning, there is little waste liquid, and if the reaction vessel is disposable, the cost can be reduced. Furthermore, since the reaction container can be made smaller and have a smaller capacity than conventional ones, the amount of samples, reagents, etc. required for testing can be reduced to a very small amount. Further, since the sample, reagent, diluent, air, etc. are sucked in only one direction of the probe part, there is an advantage that co-washing is possible and there is no carryover.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明による反応容器の一実施例の縦断
面図、(B’i)は図(A )のI−I線断面図、第2
図乃至第8図は自動分析方法の各工程における反応容器
を夫々示す部分断面図であり、第2図は試薬分注工程、
第3図は希釈液分注工程、第4図は攪拌工程、第5図は
測光工程、第6図は試料分注工程、第7図は希釈液分注
工程、第8図は攪拌工程である。 ■・・・・反応容器、2・・・・反応容器部、2b・・
・・測光セル面、3・・・・プローブ部。
FIG. 1(A) is a longitudinal cross-sectional view of one embodiment of the reaction container according to the present invention, FIG. 1(B'i) is a cross-sectional view taken along line II in FIG.
Figures 8 through 8 are partial cross-sectional views showing the reaction vessels in each step of the automatic analysis method, and Figure 2 shows the reagent dispensing step,
Figure 3 shows the diluted liquid dispensing process, Figure 4 shows the stirring process, Figure 5 shows the photometry process, Figure 6 shows the sample dispensing process, Figure 7 shows the diluted liquid dispensing process, and Figure 8 shows the stirring process. be. ■...Reaction container, 2...Reaction container part, 2b...
...Photometry cell surface, 3...Probe part.

Claims (1)

【特許請求の範囲】[Claims] 反応容器部とプローブ部とが一体に形成されていると共
に、該反応容器部が偏平形状であり且つ反応容器部の対
向する二つの偏平面を測光用セル面とした反応容器。
A reaction container in which a reaction container portion and a probe portion are integrally formed, the reaction container portion has a flat shape, and two opposing flat surfaces of the reaction container portion are used as photometric cell surfaces.
JP2260079A 1990-09-28 1990-09-28 Analysis container and method of using the same Expired - Fee Related JP3052267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260079A JP3052267B2 (en) 1990-09-28 1990-09-28 Analysis container and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260079A JP3052267B2 (en) 1990-09-28 1990-09-28 Analysis container and method of using the same

Publications (2)

Publication Number Publication Date
JPH04138368A true JPH04138368A (en) 1992-05-12
JP3052267B2 JP3052267B2 (en) 2000-06-12

Family

ID=17343012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260079A Expired - Fee Related JP3052267B2 (en) 1990-09-28 1990-09-28 Analysis container and method of using the same

Country Status (1)

Country Link
JP (1) JP3052267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009740A (en) * 1998-06-19 2000-01-14 Aloka Co Ltd Blood text device and dispensation device
JP2008500522A (en) * 2004-05-27 2008-01-10 サーモ エレクトロン オイ container
WO2015177823A1 (en) * 2014-05-19 2015-11-26 システム・インスツルメンツ株式会社 Analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009740A (en) * 1998-06-19 2000-01-14 Aloka Co Ltd Blood text device and dispensation device
JP2008500522A (en) * 2004-05-27 2008-01-10 サーモ エレクトロン オイ container
WO2015177823A1 (en) * 2014-05-19 2015-11-26 システム・インスツルメンツ株式会社 Analysis device
JPWO2015177823A1 (en) * 2014-05-19 2017-04-20 システム・インスツルメンツ株式会社 Analysis equipment
US10302638B2 (en) 2014-05-19 2019-05-28 System Instruments Co., Ltd. Analyzing apparatus

Also Published As

Publication number Publication date
JP3052267B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US5213761A (en) Automatic chemical analyzer having an improved delivery mechanism
JP5300447B2 (en) Automatic analyzer and sample dispensing method in automatic analyzer
JPH03181853A (en) Cartridge for enzyme immunoassay and measuring method and apparatus using the same
US20050279387A1 (en) Probe washing cups and methods
JPS5985959A (en) Automatic analyzing apparatus
JPH0718785B2 (en) Flow cell device
US8449687B2 (en) Wash ring assembly and method of use
JP2010217057A (en) Automatic analytical device
US5264182A (en) Sample and reagent delivery device with a probe and probe supporting member for preventing contamination
JP2010210596A (en) Autoanalyzer and probe cleaning method
JPS62228952A (en) Suction discharge method for automatic chemical analyzer
JP2011163909A (en) Automatic analyzer and washing method for dispensing means
JP2000105248A (en) Method for handling organism sample and analyzer
JPH04138368A (en) Reaction container
JP2001272409A (en) Analysis device of organism sample
JPH0484770A (en) Method for controlling line of instrument for analysis
JP2001264344A (en) Analyzing device
JPH0690216B2 (en) Liquid dispensing method
JP2001208762A (en) Analysis method of bio-sample
JP3952182B2 (en) Liquid level detection method in dispenser
JPH08105901A (en) Automatic analyzing device
JPH0477670A (en) Quantitative analysis using antigen/antibody reaction
EP1077770B1 (en) Sample introduction device
WO2009061748A1 (en) Waterspout aspiration system
JP2002062303A (en) Biochemical autoanalyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees