JP3052267B2 - Analysis container and method of using the same - Google Patents

Analysis container and method of using the same

Info

Publication number
JP3052267B2
JP3052267B2 JP2260079A JP26007990A JP3052267B2 JP 3052267 B2 JP3052267 B2 JP 3052267B2 JP 2260079 A JP2260079 A JP 2260079A JP 26007990 A JP26007990 A JP 26007990A JP 3052267 B2 JP3052267 B2 JP 3052267B2
Authority
JP
Japan
Prior art keywords
reagent
analysis
sample
container
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2260079A
Other languages
Japanese (ja)
Other versions
JPH04138368A (en
Inventor
俊夫 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP2260079A priority Critical patent/JP3052267B2/en
Publication of JPH04138368A publication Critical patent/JPH04138368A/en
Application granted granted Critical
Publication of JP3052267B2 publication Critical patent/JP3052267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料及び試薬等の検液を反応容器内に収容
して、測光により検液の分析を行なうための、反応容器
に関する。
Description: TECHNICAL FIELD The present invention relates to a reaction container for containing a test solution such as a sample and a reagent in a reaction container and analyzing the test solution by photometry.

〔従来の技術〕[Conventional technology]

従来、このような分析を行なう場合、例えば透光性を
有する反応容器を移送機構によって所定の反応ラインに
沿ってステップ移送させ、各ステップで試料及び試薬の
分注,攪拌,測光,反応容器の洗浄又は廃棄等の処理が
行なわれるようになっている。
Conventionally, when such analysis is performed, for example, a light-transmissive reaction vessel is step-transferred along a predetermined reaction line by a transfer mechanism, and at each step, dispensing of a sample and a reagent, stirring, photometry, and reaction of a reaction vessel are performed. Processing such as washing or disposal is performed.

ところで、試料を分注する場合には試料分注プローブ
を用いて分注器によって、試料をサンプラから吸引して
反応容器へ分注し、又試薬を分注する場合には試薬分注
プローブを用いて、同様に反応容器に分注して反応させ
ることが一般的に行なわれている。そして、各プローブ
は試料や試薬が変わるたび毎に、多量の洗浄液を使用し
て洗浄することを必要としていた。又、検液の攪拌方法
についても、反応容器内の検液中に攪拌棒を挿入して攪
拌を行なうようにしていた。
By the way, when dispensing a sample, a sample dispensing probe is used to aspirate the sample from the sampler and dispense it into the reaction vessel using a dispenser, and when dispensing a reagent, the reagent dispensing probe is used. In general, it is generally used to dispense into a reaction vessel for reaction. Each probe needs to be washed using a large amount of washing solution every time the sample or the reagent changes. As for the method of stirring the test solution, a stirring rod is inserted into the test solution in the reaction vessel to perform stirring.

又、別の分析方法として特公昭64−12345号公報に記
載された自動分析方法があり、この方法では、攪拌手段
として反応容器の下部を可撓性にすると共にこの部分を
押圧する押し上げ用押圧機構を用いて、検液の攪拌を行
なうようにしている。又、分析に用いる検液量を少なく
するために、測光時に反応容器の下部を押し上げ用押圧
機構で押しつぶして、検液を反応容器内の測光位置まで
押し上げるようにしている。
As another analysis method, there is an automatic analysis method described in Japanese Patent Publication No. 64-12345. In this method, a lower part of a reaction vessel is made flexible as a stirring means and a push-up press for pressing this part. The test solution is stirred using a mechanism. In addition, in order to reduce the amount of test solution used for analysis, the lower part of the reaction vessel is crushed by a push-up pressing mechanism at the time of photometry so that the test solution is pushed up to the photometric position in the reaction vessel.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、これらの場合、試料用と試薬用のプローブが
夫々必要であり、移送機構においてこれらの移送手段が
夫々必要となるから、機構が複雑になってしまう。
However, in these cases, a probe for the sample and a probe for the reagent are required, respectively, and these transfer means are required in the transfer mechanism, respectively, so that the mechanism becomes complicated.

又、分注の際、反応容器上部の開口部からプローブを
介して分注を行なうため、プローブ移送時の位置精度と
の関係で開口部をある程度大きくする必要があり、反応
容器を小型化することができない。このため、反応ライ
ンのスペースが大きくなるという問題がある。しかも、
反応容器を小型化できないため、検液量の微量化ができ
ず、患者からの採血量を減少できない上に試薬も減量で
きないために検査コストを下げることができない。尚、
上述した後者の従来技術では検液量を比較的少なくする
ことができるが、側光時において押し上げ用押圧機構や
駆動モータが必要であるから機構が複雑化して検査コス
トが上昇するという問題が生じる。
Also, when dispensing, since the dispensing is performed via the probe from the opening at the top of the reaction vessel, it is necessary to increase the opening to some extent in relation to the positional accuracy when transferring the probe, and the reaction vessel is downsized. Can not do. For this reason, there is a problem that the space of the reaction line becomes large. Moreover,
Since the size of the reaction container cannot be reduced, the amount of the test solution cannot be reduced, and the amount of blood collected from the patient cannot be reduced. In addition, the amount of reagent cannot be reduced, so that the test cost cannot be reduced. still,
In the latter conventional technique described above, the amount of the test solution can be made relatively small, but a problem arises in that the mechanism is complicated and the inspection cost is increased because a push-up pressing mechanism and a drive motor are required at the time of side light. .

更に各プローブを洗浄するために多量の洗浄液や水が
必要になり、又廃液量も多くなるという問題もある。
Further, there is a problem that a large amount of cleaning liquid or water is required for cleaning each probe, and the amount of waste liquid is increased.

又、上述の従来例では攪拌するための機構が別に必要
であり、前者の場合には検液が攪拌棒に付着するため、
攪拌棒の洗浄が必要であり、洗浄後になお付着している
検液によって別の分析の際の分析精度に悪影響を及ぼす
という問題がある。後者の場合には攪拌用押圧機構及び
駆動モータが必要であり、機構の複雑化及びコストの上
昇を招くことになる。
Further, in the above-described conventional example, a mechanism for stirring is separately required, and in the former case, the test solution adheres to the stirring rod,
It is necessary to wash the stirring rod, and there is a problem that the test solution still attached after the washing adversely affects the analysis accuracy in another analysis. In the latter case, a pressing mechanism for stirring and a drive motor are required, which leads to complication of the mechanism and an increase in cost.

尚、試料用のプローブと反応容器が夫々ディスポーザ
ブル(使い捨て可能)のものもあるが、これらは別個に
構成されているから分析コストを上昇させることにな
る。
In addition, there is a disposable (disposable) probe for the sample and a reaction container, respectively, but since these are configured separately, the analysis cost is increased.

本発明はこのような問題に鑑みて、検体の微量化を達
成し、分析操作が簡単な分析容器の使用方法を提供する
ことを目的とする。
In view of such a problem, an object of the present invention is to provide a method of using an analysis container which achieves a trace amount of a sample and has a simple analysis operation.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による分析用容器の使用方法は、少なくとも2
面の対向する脚光用壁面を有する収容部と、前記収容部
の一部に連通して設けられ適宜の分注器と連結して圧力
導入可能な圧力供給用開口部と、前記収容部の一部で且
つ前記圧力供給用開口部とは異なる位置に連通して設け
られ試料および試薬を前記収容部に導くための小径の導
入用管部とを具備し、前記導入用管部において前記圧力
供給用開口部が分注器と接続していないときにも前記収
容部の内部に導入した分析用の液体が表面張力で落下し
ない程度の内径の前記導入用管部先端の開口部分を有
し、この開口部分を含んで試料および試薬に浸漬可能な
プローブ部を形成してなる分析用容器を試料用分注器お
よび試薬用分注器と、両分注器を交換しながら気密に接
続し、 前記導入用管部を試料及び試薬に浸漬させながら吸引圧
力を供給して前記収容部に分析対象物を導入し、 前記収容部の測定用壁面を通じて分析対象物に関する光
学的測定を行うことを特徴とする。ここで、分析用容器
の使用方法としては、分析用容器を1テスト毎に廃棄す
るようにし、試料と試薬による反応と測定までの一連の
処理を分析用容器毎に交換しながら行うのが好ましい。
The method of using the analytical container according to the invention is at least 2
A housing having a wall surface for foot light facing the surface, a pressure supply opening provided in communication with a part of the housing and connected to an appropriate dispenser and capable of introducing pressure, And a small-diameter introduction pipe section provided in communication with a position different from the pressure supply opening section for guiding a sample and a reagent to the storage section, and the pressure supply section is provided at the introduction pipe section. An opening portion at the tip of the introduction tube portion having an inner diameter such that the analysis liquid introduced into the storage portion does not drop due to surface tension even when the opening portion is not connected to the dispenser. An analysis container formed with a probe portion that can be immersed in the sample and the reagent including the opening portion is connected to the sample dispenser and the reagent dispenser in an airtight manner while exchanging both dispensers, Supplying suction pressure while immersing the introduction tube in the sample and the reagent An analysis target is introduced into the storage unit, and an optical measurement of the analysis target is performed through a measurement wall surface of the storage unit. Here, as a method of using the analysis container, it is preferable that the analysis container is discarded for each test, and a series of processes from the reaction with the sample and the reagent to the measurement are performed while changing each analysis container. .

[実施例] 以下、本発明の好適な一実施例を第1図乃至第8図に
基づいて説明する。
Embodiment A preferred embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図(A)は反応容器1の縦断面図、(B)は
(A)における反応容器1のI−I線断面図を示すもの
である。図中、2は分注器の配管が気密的に接続され得
る吸引口2aが上端に設けられていて試料及び試薬が貯溜
される反応容器部であって、この反応容器部2は偏平な
形状を有していて、対向する一対の幅広な偏平面2b,2b
は透光性の測光用セル面として形成され、又後述のプロ
ーブ部と接続される下端部はテーパ面2cに形成されてい
る。3はテーパ面2cで反応容器部2に連結されていてそ
の内径は反応容器部2内の検液が表面張力で落下しない
程度に小さく形成されているプローブ部である。
1 (A) is a longitudinal sectional view of the reaction vessel 1, and FIG. 1 (B) is a sectional view of the reaction vessel 1 taken along the line II in FIG. 1 (A). In the drawing, reference numeral 2 denotes a reaction vessel section provided with a suction port 2a at the upper end to which a pipe of a pipetting device can be connected in an airtight manner and for storing a sample and a reagent, and the reaction vessel section 2 has a flat shape. , And a pair of opposing wide deflected planes 2b, 2b
Is formed as a light-transmitting photometric cell surface, and a lower end portion connected to a probe portion described later is formed on a tapered surface 2c. Reference numeral 3 denotes a probe section which is connected to the reaction vessel section 2 by a tapered surface 2c and whose inner diameter is formed so small that the test solution in the reaction vessel section 2 does not drop due to surface tension.

尚、吸引口2aは第1図(A)では反応容器部2の横断
面より径が狭くなっているが、反応容器部2の横断面が
そのまま延長された形状であってもよい。又、プローブ
部3の先端部分は他端と同一内径のストレート形状にな
っているが、テーパ状であってもよい。
Although the diameter of the suction port 2a is smaller than the cross section of the reaction vessel section 2 in FIG. 1 (A), the cross section of the reaction vessel section 2 may be extended as it is. Further, the tip portion of the probe section 3 has a straight shape having the same inner diameter as the other end, but may have a tapered shape.

又、反応容器部2の容積は、検液が貯溜された状態で
プローブ部3よりエアを吸引混入させた時に、吸引口2a
まで検液が上昇しない程度の大きさを有するものとす
る。
Further, the volume of the reaction container section 2 is changed to the suction port 2a when air is sucked and mixed in from the probe section 3 in a state where the test solution is stored.
It should have a size such that the test solution does not rise up to that point.

次に本発明による反応容器1を用いた分析手順につい
て、図示しない移送機構による各ステップ毎の反応容器
1を示す第2図乃至第8図に基づいて説明する。尚、本
実施例では高濃度試薬を使用する場合について説明す
る。
Next, an analysis procedure using the reaction vessel 1 according to the present invention will be described with reference to FIGS. 2 to 8 showing the reaction vessel 1 for each step by a transfer mechanism (not shown). In this embodiment, a case where a high-concentration reagent is used will be described.

先ず、反応ラインの最初の位置において、第2図に示
すように反応容器1の吸引口2aに分注器4からの配管を
気密的に接続し、試薬容器5内の試薬中にプローブ部3
の先端が浸入した状態で、分注器4で吸引して試薬を反
応容器部2に分注する。そして試薬吸引後、分注器4の
配管は外され、反応容器1は次の工程へ移される。
First, at the first position of the reaction line, the pipe from the pipettor 4 is connected to the suction port 2a of the reaction vessel 1 in an airtight manner as shown in FIG.
The reagent is dispensed into the reaction container part 2 by suctioning with the dispenser 4 in a state where the tip of the reagent has entered. After the suction of the reagent, the pipe of the pipetting device 4 is disconnected, and the reaction vessel 1 is moved to the next step.

次に第3図において、吸引口2aに別の分注器6の配管
が気密的に接続され、この分注器6によって希釈液容器
7内の希釈液をプローブ部3から反応容器部2内へ吸引
させ、試薬と混合する。
Next, in FIG. 3, a pipe of another dispenser 6 is airtightly connected to the suction port 2a, and the diluent in the diluent container 7 is dispensed from the probe unit 3 into the reaction container unit 2 by the dispenser 6. And mix with reagent.

尚、希釈液容器7は夫々の分析毎に容器内の希釈液を
入れ替えるようにし、又プローブ部3の外側部分の洗浄
もこの希釈液によって行なうようにする。
The diluent container 7 is designed so that the diluent in the container is replaced for each analysis, and the outer portion of the probe section 3 is also washed with this diluent.

次に、分注器6の配管は吸入口2aに接続状態にして、
希釈液容器7からプローブ部3が離れた位置に反応容器
1が移動せしめられる。そして、分注器6を断続的に作
動させると、第4図に示すようにプローブ部3からエア
が吸引され、気泡となって反応容器部2内を上昇して内
部の試薬及び希釈液を攪拌する。この時、気泡はプロー
ブ部3の上端からテーパ面2cに沿って反応容器部2内を
上昇するから、試薬の攪拌がすみずみまで良く行なわれ
る。又、分注器6の断続的作動については、吸引された
エアがテーパ面2cで大きな気泡が形成されるようにスピ
ード及び作動量を制御するものとする。
Next, the pipe of the dispenser 6 is connected to the suction port 2a,
The reaction container 1 is moved to a position where the probe unit 3 is separated from the diluent container 7. When the dispenser 6 is operated intermittently, air is sucked from the probe unit 3 as shown in FIG. Stir. At this time, the bubbles rise from the upper end of the probe section 3 along the tapered surface 2c in the reaction vessel section 2, so that the reagent is well stirred everywhere. Also, with regard to the intermittent operation of the dispenser 6, the speed and the operation amount are controlled so that the sucked air forms large bubbles on the tapered surface 2c.

次に分注器6の配管が取り外された第5図の反応容器
1に対して、公知の方法で測光が行なわれる。即ち、図
示しない測光装置は、紙面に対して直交する方向に例え
ば単色化された光が照射されるようになっており、測光
用セル面2bが光と直交するように反応容器部2が紙面と
平行に移送せしめられ、測光が行われる。この測光は透
光性を利用する測定であれば公知技術のように蛍光や発
光の測定でもよく、反応容器部2のテーパー面2C側が測
光用セル面としても利用し得ることは自明である。
Next, photometry is performed on the reaction vessel 1 of FIG. 5 from which the pipe of the dispenser 6 has been removed by a known method. That is, the photometric device (not shown) is configured to irradiate, for example, monochromatic light in a direction perpendicular to the paper surface, and to set the reaction container unit 2 on the paper surface so that the photometric cell surface 2b is orthogonal to the light. And the light is metered. This photometry may be a measurement of fluorescence or luminescence as in a known technique as long as it is a measurement utilizing translucency, and it is obvious that the tapered surface 2C side of the reaction vessel 2 can also be used as a photometric cell surface.

更に分注器7を吸入口2aに気密的に接続し、第6図に
示すようにサンプルカップ8内の試料をプローブ部3か
ら吸引する。第7図に示す次の工程では、別の分注器9
を吸入口2aに接続して、希釈液容器10内の希釈液をプロ
ーブ部3から吸引する。
Further, the dispenser 7 is airtightly connected to the suction port 2a, and the sample in the sample cup 8 is sucked from the probe unit 3 as shown in FIG. In the next step shown in FIG.
Is connected to the suction port 2a, and the diluent in the diluent container 10 is sucked from the probe unit 3.

尚、希釈液容器10は各分析毎に液を入れ替えるように
し、又、プローブ部3の外側部分の洗浄がこの希釈液に
よって行なわれるようにする。
Note that the diluent container 10 is configured such that the liquid is replaced for each analysis, and that the outer portion of the probe unit 3 is washed with the diluent.

第8図は希釈液吸引後の攪拌状態を表わすものであ
り、分注器9からの配管は吸引口2aに接続した状態でプ
ローブ部3を希釈液容器10から移動させて、第4図の場
合と同様に分注器9を断続的に作動させ、エアをプロー
ブ部3から吸引せしめる。すると、反応容器部2内の検
液中を気泡が上昇することによって、検液の十分な攪拌
が行なわれる。
FIG. 8 shows a stirring state after suction of the diluent, and the probe section 3 is moved from the diluent container 10 while the pipe from the dispenser 9 is connected to the suction port 2a. As in the case, the dispenser 9 is operated intermittently, and air is sucked from the probe unit 3. Then, bubbles rise in the test solution in the reaction container section 2, whereby the test solution is sufficiently stirred.

尚、第二試薬等の反応容器部2への分注が更に必要な
場合には、第2図乃至第4図に示す試薬吸引,希釈及び
攪拌の各工程が付加されることになる。
When it is necessary to further dispense the second reagent or the like into the reaction vessel section 2, the steps of suction, dilution and stirring of the reagent shown in FIGS. 2 to 4 are added.

そして第5図に示す工程と同様に測光を行なうことに
よって、吸光度等、検液の光学的特性を測定することが
できる。
By performing photometry in the same manner as in the step shown in FIG. 5, the optical characteristics of the test solution such as the absorbance can be measured.

このようにして測光が終了した反応容器1について、
これをディスポーザブルとすれば洗浄工程を省くことが
できる。尚、ディスポーザブルでない場合には、次の工
程で反応容器1内の検液をプローブ部3から排出し、そ
してプローブ部3から洗浄液を吸引して洗浄を行なう。
With respect to the reaction container 1 for which photometry has been completed in this manner,
If this is made disposable, the cleaning step can be omitted. If it is not disposable, the test solution in the reaction vessel 1 is discharged from the probe unit 3 in the next step, and the washing solution is sucked from the probe unit 3 to perform washing.

上述のように本実施例によれば、反応容器1によって
全ての工程をまかなうことができるから、移送機構の作
動が複雑である必要が無くなり、又構成部品も少なくて
済む。そのため機構を簡単にできて小型化することがで
きる。又、プローブ部3が反応容器部2と一体に形成さ
れているから、各工程の途中において洗浄液を殆ど必要
とせず、従って廃液も少なく、その処理が容易である。
As described above, according to the present embodiment, since all the steps can be covered by the reaction vessel 1, the operation of the transfer mechanism does not need to be complicated, and the number of components can be reduced. Therefore, the mechanism can be simplified and the size can be reduced. Further, since the probe section 3 is formed integrally with the reaction vessel section 2, almost no cleaning liquid is required in the middle of each step, so that the amount of waste liquid is small and the processing is easy.

又、試薬等の分注をプローブ部3から行ない、連結さ
れている反応容器部2にそのまま導入するようにしたか
ら、従来の反応容器のように上部開口を、プローブの移
送位置精度に応じて径を大きくする必要がない。しかも
反応容器部2は対向する一対の偏平な測光セル面2b,2b
による偏平形状に形成されているから、反応容器部2が
小型となって従来よりも反応容器の配置スペースを小さ
くし、しかも、幅広な反応容器部2が収容部として十分
な反応スペースと面2bの全面(または面2cの細長い光
路)からの十分な測光容積とを確保しているので、結果
として反応容器部2を従来の反応容器よりも小容量にす
ることができる。そのため、検査に必要な試料及び試薬
を微量にすることができる。
In addition, since reagents and the like are dispensed from the probe unit 3 and directly introduced into the connected reaction container unit 2, the upper opening is formed according to the accuracy of the transfer position of the probe as in a conventional reaction container. There is no need to increase the diameter. Moreover, the reaction vessel part 2 has a pair of opposed flat photometric cell surfaces 2b, 2b.
, The reaction vessel section 2 is small, and the space for disposing the reaction vessel is smaller than before, and the wide reaction vessel section 2 has a sufficient reaction space and surface 2b as an accommodating section. As a result, a sufficient photometric volume from the entire surface (or the elongated optical path of the surface 2c) is secured, and as a result, the reaction vessel section 2 can be made smaller in volume than a conventional reaction vessel. Therefore, the amount of samples and reagents required for the test can be reduced.

又、検液等の攪拌も分注器でエアをプローブ部3から
吸引することによってエアが気泡として反応容器部内の
検体等の中を移動して十分に攪拌できるから、攪拌棒や
攪拌用押圧機構及び駆動モータ等を必要としない。
In addition, the agitating of the test solution and the like can be sufficiently agitated by sucking air from the probe unit 3 with the pipetting device so that the air moves as bubbles in the sample and the like in the reaction container unit and can be sufficiently stirred. No mechanism or drive motor is required.

更に、プローブ部3と反応容器部2が一体であるか
ら、反応容器1をディスポーザブルとした場合、従来の
ように1テスト毎に試料および試薬の分注用プローブや
攪拌棒等を洗浄しなくてよいので、コストを低廉にする
ことができる。
Furthermore, since the probe section 3 and the reaction vessel section 2 are integrated, when the reaction vessel 1 is made disposable, the probe for dispensing the sample and the reagent, the stirring rod, etc. for each test need not be washed as in the conventional case. Since it is good, the cost can be reduced.

又、反応容器1は1テスト毎に廃棄可能であり、試
料,試薬,希釈液,エア等が何れもプローブの一方向に
のみ吸引されるから共洗いができて、キャリオーバーが
ないという利点もある。
In addition, the reaction container 1 can be discarded for each test, and all of the sample, reagent, diluent, air, etc. are sucked only in one direction of the probe. is there.

〔発明の効果〕〔The invention's effect〕

上述のように本発明に係る分析容器の使用方法によれ
ば、分析用容器を適宣の圧力供給手段に連結して分析対
象物を収容部内に導くだけで測光容易な状態となるの
で、検液量の微量化を達成するとともに分析操作が簡単
となる利点もある。さらに、1テスト毎に分析用容器を
交換しながら反応から測定までを行って廃棄する場合に
は、キャリーオーバーが無いので操作性を高めることが
できる。
As described above, according to the method for using the analysis container according to the present invention, it is possible to easily perform photometry simply by connecting the analysis container to an appropriate pressure supply unit and guiding the analysis target into the storage unit. There is also an advantage that the amount of liquid can be reduced and the analysis operation can be simplified. Further, in the case where the analysis and the measurement are performed and replaced from the reaction to the measurement for each test and discarded, the operability can be improved since there is no carryover.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)は本発明による反応容器の一実施例の縦断
面図、(B)は図(A)のI−I線断面図、第2図乃至
第8図は自動分析方法の各工程における反応容器を夫々
示す部分断面図であり、第2図は試薬分注工程、第3図
は希釈液分注工程、第4図は攪拌工程、第5図は測光工
程、第6図は試料分注工程、第7図は希釈液分注工程、
第8図は攪拌工程である。 1……反応容器、2……反応容器部、2b……測光セル
面、3……プローブ部。
1 (A) is a longitudinal sectional view of one embodiment of a reaction vessel according to the present invention, (B) is a sectional view taken along line II of FIG. (A), and FIGS. FIG. 2 is a partial cross-sectional view showing a reaction vessel in each step, FIG. 2 is a reagent dispensing step, FIG. 3 is a diluent dispensing step, FIG. 4 is a stirring step, FIG. 5 is a photometric step, and FIG. Sample dispensing process, FIG. 7 shows diluent dispensing process,
FIG. 8 shows a stirring step. 1 ... Reaction vessel, 2 ... Reaction vessel part, 2b ... Photometry cell surface, 3 ... Probe part.

フロントページの続き (56)参考文献 特開 昭61−164143(JP,A) 特開 昭55−26454(JP,A) 特開 昭48−48173(JP,A) 特開 昭63−229371(JP,A) 特開 昭57−111452(JP,A) 特開 昭51−108887(JP,A) 特開 昭52−43487(JP,A) 特開 昭62−213849(JP,A) 特開 平1−167668(JP,A) 実開 平1−87239(JP,U) 実開 昭61−155034(JP,U) 実開 昭62−49752(JP,U)Continuation of front page (56) References JP-A-61-164143 (JP, A) JP-A-55-26454 (JP, A) JP-A-48-48173 (JP, A) JP-A-63-229371 (JP) JP-A-57-111452 (JP, A) JP-A-51-108887 (JP, A) JP-A-52-43487 (JP, A) JP-A-62-213849 (JP, A) 1-167668 (JP, A) Japanese Utility Model 1-87239 (JP, U) Japanese Utility Model 61-155034 (JP, U) Japanese Utility Model 62-49752 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも2面の対向する測光用壁面を有
する収容部と、前記収容部の一部に連通して設けられ適
宜の分注器と連結して圧力導入可能な圧力供給用開口部
と、前記収容部の一部で且つ前記圧力供給用開口部とは
異なる位置に連通して設けられ試料および試薬を前記収
容部に導くための小径の導入用管部とを具備し、前記導
入用管部において前記圧力供給用開口部が分注器と接続
していないときにも前記収容部の内部に導入した分析用
の液体が表面張力で落下しない程度の内径の前記導入用
管部先端の開口部分を有し、この開口部分を含んで試料
および試薬に浸漬可能なプローブ部を形成してなる分析
用容器を試料用分注器および試薬用分注器と、両分注器
を交換しながら気密に接続し、 前記導入用管部を試料及び試薬に浸漬させながら吸引圧
力を供給して前記収容部に分析対象物を導入し、 前記収容部の測光用壁面を通じて分析対象物に関する光
学的測定を行うことを特徴とする分析用容器の使用方
法。
An accommodating portion having at least two opposing photometric walls and a pressure supply opening provided in communication with a part of the accommodating portion and connected to an appropriate dispenser to be able to introduce pressure. And a small-diameter introduction tube portion provided in a part of the accommodation portion and communicated with a position different from the pressure supply opening portion to guide a sample and a reagent to the accommodation portion. The introduction tube tip has an inner diameter such that the analysis liquid introduced into the storage unit does not drop due to surface tension even when the pressure supply opening is not connected to the pipetting device in the tube. An analysis container having an opening portion and forming a probe portion that can be immersed in a sample and a reagent including this opening portion is exchanged between a sample dispenser and a reagent dispenser. Air-tightly connected while immersing the introduction tube in a sample and a reagent. A method of using an analysis container, wherein suction pressure is supplied while introducing an analyte into the storage section, and optical measurement of the analysis object is performed through a photometric wall surface of the storage section.
【請求項2】前記分析用容器を1テスト毎に廃棄するよ
うにし、試料と試薬による反応と測定までの一連の処理
を分析用容器毎に行うことを特徴とする請求項1に記載
の分析用容器の使用方法。
2. The analysis according to claim 1, wherein the analysis container is discarded for each test, and a series of processes from the reaction with the sample and the reagent to the measurement are performed for each analysis container. How to use the container.
JP2260079A 1990-09-28 1990-09-28 Analysis container and method of using the same Expired - Fee Related JP3052267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260079A JP3052267B2 (en) 1990-09-28 1990-09-28 Analysis container and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260079A JP3052267B2 (en) 1990-09-28 1990-09-28 Analysis container and method of using the same

Publications (2)

Publication Number Publication Date
JPH04138368A JPH04138368A (en) 1992-05-12
JP3052267B2 true JP3052267B2 (en) 2000-06-12

Family

ID=17343012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260079A Expired - Fee Related JP3052267B2 (en) 1990-09-28 1990-09-28 Analysis container and method of using the same

Country Status (1)

Country Link
JP (1) JP3052267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009740A (en) * 1998-06-19 2000-01-14 Aloka Co Ltd Blood text device and dispensation device
FI20040725A0 (en) * 2004-05-27 2004-05-27 Thermo Electron Oy Tank
WO2015177823A1 (en) * 2014-05-19 2015-11-26 システム・インスツルメンツ株式会社 Analysis device

Also Published As

Publication number Publication date
JPH04138368A (en) 1992-05-12

Similar Documents

Publication Publication Date Title
CN103728461B (en) Liquid relief pipe unit and the method for aspirating test liquid
US9086395B2 (en) Automatic analysis apparatus
CA2643663C (en) Body fluid analysis system with priming structures integrated in test elements
US8721966B2 (en) Chemical analyzer, method for dispensing and dilution cup
JPS5985959A (en) Automatic analyzing apparatus
JP2004301843A (en) Analyzer having stationary multifunction probe
EP3992636A1 (en) Automated analyzer
JP2006349638A (en) Method and apparatus for homogenizing trace quantity of liquid
JP5255265B2 (en) Cleaning device and automatic analyzer
JP2005172828A (en) Sampling device and system for inspecting sample liquid
JPS62228952A (en) Suction discharge method for automatic chemical analyzer
EP2976151B1 (en) Pipette tip containing reagent pad
US4444598A (en) Method for washing reaction tube
JP3052267B2 (en) Analysis container and method of using the same
KR20040086767A (en) Test element holder with a probe guide for an analyzer
US20060078471A1 (en) Apparatus and method for a precision flow assay
JP3460543B2 (en) Automatic analyzer
JP2000227428A (en) Method and device for titration
US20060079003A1 (en) Apparatus and method for a precision flow assay
JPH0484770A (en) Method for controlling line of instrument for analysis
JP4674296B2 (en) Sample measurement method using reagent
JPWO2019176296A1 (en) Automatic analyzer
CN217505887U (en) Sample analyzer
JPH0318150B2 (en)
JP3952182B2 (en) Liquid level detection method in dispenser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees