JPH04138131A - Magnetic field generation device for mri - Google Patents

Magnetic field generation device for mri

Info

Publication number
JPH04138131A
JPH04138131A JP2261417A JP26141790A JPH04138131A JP H04138131 A JPH04138131 A JP H04138131A JP 2261417 A JP2261417 A JP 2261417A JP 26141790 A JP26141790 A JP 26141790A JP H04138131 A JPH04138131 A JP H04138131A
Authority
JP
Japan
Prior art keywords
pole piece
magnetic
magnetic pole
magnetic field
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2261417A
Other languages
Japanese (ja)
Other versions
JP2649436B2 (en
Inventor
Hideya Sakurai
桜井 秀也
Masaaki Aoki
雅昭 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2261417A priority Critical patent/JP2649436B2/en
Priority to EP91308901A priority patent/EP0479514B1/en
Priority to SG1996005853A priority patent/SG43224A1/en
Priority to DE69129687T priority patent/DE69129687T2/en
Priority to US07/766,520 priority patent/US5283544A/en
Publication of JPH04138131A publication Critical patent/JPH04138131A/en
Application granted granted Critical
Publication of JP2649436B2 publication Critical patent/JP2649436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the occurrence of eddy current and remanence phenomena due to an inclined magnetic field coil by forming a pair of pole pieces opposite to each other via a gap with a plurality of block type pole piece materials of a plurality of silicon steel sheets intergrally laminated in the opposing direction of the pole pieces. CONSTITUTION:A pole piece 10 comprises a magnetic material base 11 made of disc-shaped soft iron, a soft iron magnetic material ring 12 of rectangular section laid around the magnetic material base 11, a plurality of block type pole piece materials 13 laid on the upper surface of the magnetic material base 11. The block type pole piece material 13 is fixed to the magnetic material base 11 with a synthetic resin adhesive. The soft fixing type magnetic ring 12 of rectangular section laid around the magnetic material base 11 is so formed as to have larger height at the side of the periphery of the pole piece 10 for the concentration of magnetic flux in the predetermined gap, and an annular projection for improving the uniformity of the magnetic flux. The ring 12 is bolted to the magnetic material base 11 via an insulation material. Furthermore, the magnetic material ring 12 is divided in a circumferential direction, thereby forming radial slits to reduce an eddy current effect.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、医療用磁気共鳴断層撮影装置(以下MHI
という)等に用いられる磁界発生装置の改良に係り、空
隙を形成して対向する一対の磁極片を、複数枚のけい素
鋼板を磁極片の対向方向に積層して一体化した複数個の
ブロック状磁極片用部材で構成し、空隙内の磁界均一度
を損なうこぐなく、傾斜磁界コイルによる磁極片内の渦
電流、残磁現象の低減を図ったMRI用磁界発生装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a medical magnetic resonance tomography apparatus (hereinafter referred to as MHI).
In order to improve the magnetic field generation device used in applications such as 2017, a pair of magnetic pole pieces facing each other with a gap formed is integrated into multiple blocks made by laminating multiple silicon steel plates in the direction in which the magnetic pole pieces face each other. The present invention relates to a magnetic field generating device for MRI, which is composed of a shaped magnetic pole piece member and which aims to reduce eddy currents and residual magnetic phenomena in the magnetic pole piece due to gradient magnetic field coils without impairing magnetic field uniformity within the air gap.

従来の技術 MHIは、強力な磁界を形成する磁界発生装置の空隙内
に、被検者の一部または全部を挿入して、対象物の断層
イメージを得てその組織の性質まで描き出すことができ
る装置である。
Conventional MHI technology involves inserting part or all of the subject into the gap of a magnetic field generator that generates a strong magnetic field, and is able to obtain a tomographic image of the object and depict the nature of its tissue. It is a device.

上記MRI用の磁界発生装置において、空隙は被検者の
一部または全部が挿入できるだけの広さが必要であり、
かつ鮮明な断層イメージを得るために、通常、空隙内の
撮像視野内には、0.02〜2.0Tでかつ1×104
以下の精度を有する安定した強力な均一磁界を形成する
ことが要求される。
In the above magnetic field generation device for MRI, the gap must be wide enough to allow part or all of the subject to be inserted;
In addition, in order to obtain a clear tomographic image, the imaging field of view within the void is usually 0.02 to 2.0T and 1×104
It is required to create a stable, strong, and uniform magnetic field with the following accuracy:

MRIに用いる磁界発生装置として、第4図に示す如く
、磁界発生源としてR−Fe−B系磁石を用ν)だ一対
の永久磁石構成体(IXI)の各々の一方端に磁極片(
2X2)を固着して対向させ、他方端を継鉄(3)にて
連結し、磁極片(2X2)間の空隙(4)内に、静磁界
を発生させる構成が知られている。
As shown in Fig. 4, the magnetic field generating device used in MRI uses an R-Fe-B magnet as a magnetic field generating source, and a magnetic pole piece (ν) is attached to one end of each of a pair of permanent magnet structures (IXI).
A known configuration is known in which magnetic pole pieces (2X2) are fixed and faced to each other, and the other ends are connected by a yoke (3) to generate a static magnetic field in the gap (4) between the magnetic pole pieces (2X2).

磁極片(2X2)には、空隙(4)内における磁界分布
の均一度を向上させるために、周辺部に環状突起(5)
を設けてあり、通常、電磁軟鉄、純鉄等の磁性材料を削
り出した板状のバルク(一体物)から構成される(特開
昭60−88407号公報)。
The magnetic pole piece (2X2) has an annular protrusion (5) on the periphery in order to improve the uniformity of the magnetic field distribution within the air gap (4).
It is usually constructed from a plate-shaped bulk (integral object) cut out of a magnetic material such as electromagnetic soft iron or pure iron (Japanese Patent Application Laid-open No. 88407/1983).

各磁極片(2X2)の近傍に配置される傾斜磁界コイル
(6)は、空隙(4)内の位置情報を得るために、通常
x、 y、 zの3方向に対応する3組のコイル群から
なるが、図示においては簡略して記載してしする。
The gradient magnetic field coils (6) placed near each magnetic pole piece (2X2) are usually divided into three groups of coils corresponding to the three directions of x, y, and z in order to obtain positional information within the air gap (4). However, in the illustration, the description is simplified.

この傾斜磁界コイル(6)に、パルス電流を印加するこ
とによって台形波状に時間変化する所望方向の傾斜磁界
を発生することができる。
By applying a pulse current to this gradient magnetic field coil (6), it is possible to generate a gradient magnetic field in a desired direction that changes over time in a trapezoidal waveform.

発明が解決しようとする課題 傾斜磁界コイル(6)にパルス電流を流すと、磁極片(
2)は前述した如く板状のバルクから構成されるため、
その電流の立上り、立下がり時に磁界が急激に変化し磁
極片(2X2)に渦電流が発生する。
Problem to be Solved by the Invention When a pulse current is passed through the gradient magnetic field coil (6), the magnetic pole piece (
2) is composed of a plate-shaped bulk as mentioned above, so
When the current rises and falls, the magnetic field changes rapidly and an eddy current is generated in the magnetic pole pieces (2×2).

この渦電流は傾斜磁界コイル(6)にて形成される磁界
と反対方向の磁界を形成するため、傾斜磁界が所定の強
度に達するのに多くの時間を要する。
Since this eddy current forms a magnetic field in the opposite direction to the magnetic field formed by the gradient magnetic field coil (6), it takes a long time for the gradient magnetic field to reach a predetermined strength.

上述の問題を解決する手段として、磁極片として軟質磁
性薄板を積層面が磁極面に対して垂直に成るように積層
した平板状の積層体を、その積層方向が互いに略90度
異なるよう二層に配置−磁化した構成のものを用いた磁
界発生装置(特開昭61−203605号)、比抵抗の
高い磁性粉を用いた磁界発生装置(特開昭63−259
07)が提案されている。
As a means to solve the above-mentioned problem, a planar laminate in which soft magnetic thin plates are laminated as magnetic pole pieces so that the laminated plane is perpendicular to the magnetic pole face is used, and two layers are used so that the laminated directions differ by about 90 degrees from each other. - A magnetic field generator using a magnetized structure (Japanese Patent Laid-Open No. 61-203605), a magnetic field generator using magnetic powder with high resistivity (Japanese Patent Laid-Open No. 63-259)
07) has been proposed.

しかしながら、上述の渦電流低減を図った構成において
も、傾斜磁場コイル(GC)により形成される磁界によ
り磁極片が磁化され、磁気ヒステリシス現象(電磁現象
)によりGCパルスを停止後も電磁により、空隙内の均
一度が乱れる問題がある。
However, even in the configuration that aims to reduce eddy currents as described above, the magnetic pole pieces are magnetized by the magnetic field formed by the gradient magnetic field coil (GC), and even after the GC pulse is stopped due to the magnetic hysteresis phenomenon (electromagnetic phenomenon), the air gap is There is a problem that the uniformity within is disturbed.

この発明は、MRI用磁界発生装置の磁極片における上
記現状に鑑み提案するもので、空隙内の磁界均一度を低
下させることなく、渦電流の発生を低減して短時間で傾
斜磁界が所定の強度に上昇し得る構成からなる磁極片の
提供を目的とし、また電磁現象を低減して高感度で鮮明
な画像を得ることができる構成からなる磁極片の提供を
目的とし、さらに加工、製造が容易で、機械的強度が高
く組立て作業性にすぐれた構成からなる磁極片の提供を
目的としている。
This invention is proposed in view of the above-mentioned current state of the magnetic pole pieces of magnetic field generators for MRI, and it reduces the generation of eddy current without reducing the magnetic field uniformity in the air gap, so that the gradient magnetic field can be generated in a short time to a predetermined value. The purpose is to provide a magnetic pole piece with a structure that can increase the strength, and also to provide a magnetic pole piece with a structure that can reduce electromagnetic phenomena and obtain clear images with high sensitivity. The object of the present invention is to provide a magnetic pole piece having a structure that is easy to use, has high mechanical strength, and has excellent assembly workability.

課題を解決するための手段 この発明は、MRI用磁界発生装置において、上記目的
を達成するために種々検討した結果、空隙を形成して対
向する一対の磁極片を、複数枚のけい素鋼板を磁極片の
対向方向に積層して一体化した複数個のブロック状磁極
片用部材にて所要形状に構成することによって、加工、
製造が容易で、磁界強度および磁界均一度を低下させる
ことなく、傾斜磁場コイルによる渦電流、並びに電磁現
象を低減できることを知見した。
Means for Solving the Problems As a result of various studies in order to achieve the above object in a magnetic field generator for MRI, the present invention has developed a method in which a pair of magnetic pole pieces facing each other with a gap formed therein are made of a plurality of silicon steel plates. By forming the required shape with a plurality of block-shaped magnetic pole piece members that are stacked and integrated in the opposite direction of the magnetic pole pieces, processing,
It has been found that it is easy to manufacture and can reduce eddy currents and electromagnetic phenomena caused by gradient magnetic field coils without reducing magnetic field strength and magnetic field uniformity.

すなわち、この発明は、 空隙を形成して対向する一対の磁極片を有し該空隙に磁
界を発生させるMRI用磁界発生装置において、 複数枚のけい素鋼板を該磁極片の対向方向に積層して一
体化したブロック状磁極片用部材を複数個用いて磁極片
を形成したことを特徴とするMRI用磁界発生装置であ
る。
That is, the present invention provides an MRI magnetic field generation device that has a pair of opposing magnetic pole pieces forming an air gap and generates a magnetic field in the air gap, in which a plurality of silicon steel plates are laminated in the direction in which the magnetic pole pieces face each other. This is a magnetic field generating device for MRI, characterized in that a magnetic pole piece is formed using a plurality of block-shaped magnetic pole piece members that are integrated with each other.

また、この発明は、上記構成において、複数個のブロッ
ク状磁極片用部材を板状の磁性材ベース上に配置して磁
極片を形成することにより、磁極片全体の機械的強度を
向上させ、磁極片の取扱いを容易にすることができ、ま
た磁極片の空隙対向面側に直径方向のスリットを一箇所
以上設けた磁性材リングからなる環状突起を配置するこ
とにより、さらに磁界均一度が向上することを知見した
Further, in the above configuration, the present invention improves the mechanical strength of the entire magnetic pole piece by arranging a plurality of block-shaped magnetic pole piece members on a plate-shaped magnetic material base to form the magnetic pole piece, The magnetic pole piece can be easily handled, and the uniformity of the magnetic field is further improved by arranging an annular protrusion made of a magnetic material ring with one or more diametrical slits on the side facing the air gap of the magnetic pole piece. I found out that.

さらに、上記各構成において、 ブロック状磁極片用部材を無方向性けい素鋼板にて構成
した場合、電磁現象低減に顕著な効果を示すことを知見
し、この発明を完成したものである。
Furthermore, in each of the above configurations, the present invention was completed based on the finding that when the block-shaped magnetic pole piece member is made of a non-oriented silicon steel plate, a remarkable effect is exhibited in reducing electromagnetic phenomena.

この発明の対象とするMRI用磁界発生装置は、空隙を
形成して対向する一対の磁極片を有して該空隙に磁界を
発生させる構成であれば、後述する実施例に限定される
ことなく、いかなる構成にも適用できる。
The magnetic field generating device for MRI to which this invention is applied is not limited to the embodiments described below, as long as it has a pair of opposing magnetic pole pieces forming an air gap and generates a magnetic field in the air gap. , applicable to any configuration.

すなわち、磁界発生源となる磁石構成体も永久磁石に限
定されることなく電磁石等の採用も可能であり、また磁
石構成体に直接磁極片が配置される構成でなくともよい
。さらに、これらの磁石構成体と一対の磁極片とを磁気
的に接続して空隙に磁界を発生する磁路形成用の継鉄の
形状寸法等も要求される空隙の大きさ、磁界強度、磁界
均−度等種々の諸特性に応じて適宜選定すれば良い。
That is, the magnet structure that serves as a magnetic field generation source is not limited to permanent magnets, but may also be an electromagnet, and the magnetic pole piece does not have to be directly arranged on the magnet structure. Furthermore, the shape and dimensions of the yoke for forming a magnetic path that magnetically connects these magnet components and a pair of magnetic pole pieces to generate a magnetic field in the air gap, as well as the required size of the air gap, magnetic field strength, and magnetic field. It may be selected appropriately depending on various characteristics such as uniformity.

作  用 以下、磁界発生源として一対の永久磁石を用いた構成例
について説明する。
Function An example of a configuration using a pair of permanent magnets as a magnetic field generation source will be described below.

永久磁石 磁気回路に用いる磁石構成体の永久磁石は、フェライト
磁石、アルニコ系磁石、希土類コバルト系磁石が使用で
きるが、特に、RとしてNdやPrを中心とする資源的
に豊富な軽希土類を用い、B、 Feを主成分として3
0MGOe以上の極めて高いエネルギー積を示すR−F
e−B系永久磁石を使用することにより、著しく小型化
することができる。
As the permanent magnet of the magnet component used in the permanent magnet magnetic circuit, ferrite magnets, alnico magnets, and rare earth cobalt magnets can be used, but in particular, resource-rich light rare earths such as Nd and Pr can be used as R. , B, 3 with Fe as the main component
R-F exhibiting an extremely high energy product of 0 MGOe or more
By using e-B permanent magnets, the size can be significantly reduced.

磁極片 この発明は、磁極片を構成する複数個のブロック状磁極
片用部材を、複数枚のけい素鋼板を一対の磁極片の対向
方向に積層して一体化して形成したことを特徴としてい
る。使用されるけい素鋼板は、磁化容易軸方向が圧延方
向にあるいわゆる方向性けい素鋼板(JIS C255
3等)や、該方向性のない無方向性けい素鋼板(JIS
 02552等)が使用できるが、特に電磁現象を低減
するためには無方向性けい素鋼板が望ましい。
Magnetic pole piece This invention is characterized in that a plurality of block-shaped magnetic pole piece members constituting a magnetic pole piece are formed by laminating and integrating a plurality of silicon steel plates in the direction in which a pair of magnetic pole pieces face each other. . The silicon steel sheet used is a so-called grain-oriented silicon steel sheet (JIS C255) in which the axis of easy magnetization is in the rolling direction.
3 etc.) and non-oriented silicon steel sheets (JIS
02552, etc.), but non-oriented silicon steel sheets are preferred, especially in order to reduce electromagnetic phenomena.

ブロック状磁極片用部材は少なくとも2個以上からなる
が、磁極片の形状寸法、要求される諸特性、組立作業性
等を考慮して分割数を決定する。
Although the block-shaped magnetic pole piece member consists of at least two pieces, the number of divisions is determined in consideration of the shape and dimensions of the magnetic pole piece, required characteristics, ease of assembly, etc.

実用に際しては、けい素鋼板を所定方向に積層して一体
化し1辺50mm〜200mm程度の正方形板状に切断
されたブロック状磁極片用部材を40〜200ブロック
程度用いて磁極片を形成するとよい。
In practical use, it is preferable to form a magnetic pole piece using about 40 to 200 blocks of block-shaped magnetic pole piece members made by laminating and integrating silicon steel plates in a predetermined direction and cutting them into square plate shapes of about 50 mm to 200 mm on a side. .

ブロック状磁極片用部材を構成するけい素鋼板の厚みは
任意の厚みでよく、一般に入手し易いけい素鋼板は0.
35mm程度と薄いが、積層方向が一対の磁極片の対向
方向であることから非常に作業性良く積層−磁化できる
The thickness of the silicon steel plate constituting the block-shaped magnetic pole piece member may be any thickness, and the silicon steel plate that is generally easily available is 0.5mm thick.
Although it is thin at about 35 mm, since the lamination direction is in the direction in which the pair of magnetic pole pieces face each other, it can be laminated and magnetized with very good workability.

また、各けい素鋼板の表面には絶縁被膜が形成されてお
り、積層時に互いに電気的に絶縁されることになり、さ
らにこれらをブロック化する際に、絶縁性樹脂を真空含
浸することによって一体化するため、個々のブロック状
磁極片用部材(13)が電気的に絶縁されることになり
、渦電流の発生防止効果が得られる。
In addition, an insulating film is formed on the surface of each silicon steel plate, and they are electrically insulated from each other when laminated, and when they are made into blocks, they are vacuum-impregnated with insulating resin to integrate them. Therefore, the individual block-shaped magnetic pole piece members (13) are electrically insulated, and the effect of preventing the generation of eddy current can be obtained.

また、磁極片を構成している各ブロック状磁極片用部材
の厚さを調整することにより、後述の実施例に示す如く
、磁極片中央部に略円形凸状部や断面台形状の突起部を
設け、磁界均一度をさらに向上させることができる。
In addition, by adjusting the thickness of each block-shaped magnetic pole piece member constituting the magnetic pole piece, it is possible to create a substantially circular convex portion or a trapezoidal cross-sectional protrusion in the center of the magnetic pole piece, as shown in the examples described later. can be provided to further improve magnetic field uniformity.

これらのブロック状磁極片用部材は直接永久磁石構成体
の空隙対向面に配置してもよいが、後述する板状の磁性
材ベース上に配置することにより、磁極片全体の機械的
な強度を向上させ、取扱いやすく磁気回路の組立作業を
容易にすることができる。
These block-shaped magnetic pole piece members may be placed directly on the surface facing the air gap of the permanent magnet structure, but by placing them on a plate-shaped magnetic material base, which will be described later, the mechanical strength of the entire magnetic pole piece can be increased. This makes it easier to handle and assemble the magnetic circuit.

さらに、板状の磁性材ベースを敷設してブロック状磁極
片用部材で磁極片を構成し、空隙対向面の周縁部に軟鉄
材等からなる磁性材リングを配置して環状突起を形成す
ることが磁界均一度の向上に好ましい。
Furthermore, a plate-shaped magnetic material base is laid down, a magnetic pole piece is formed using a block-shaped magnetic pole piece member, and a ring-shaped projection is formed by arranging a magnetic material ring made of soft iron material or the like on the peripheral edge of the surface facing the air gap. is preferable for improving magnetic field uniformity.

磁性材ベース厚みとブロック状磁極片用部材との厚み比
を最適化することにより、磁極片に要求される磁界強度
の均等化と渦電流および電磁現象の防止効果が最大限に
発揮され、さらに、複数個のブロック状磁極片用部材か
らなる磁極片の機械的強度の補強を行うことができ、所
要の強度を得るべく磁性材ベースの厚みを適宜選定する
必要がある。
By optimizing the thickness ratio between the magnetic material base thickness and the block-shaped magnetic pole piece member, the equalization of the magnetic field strength required for the magnetic pole piece and the prevention effect of eddy current and electromagnetic phenomena can be maximized. , the mechanical strength of a magnetic pole piece made of a plurality of block-shaped magnetic pole piece members can be reinforced, and it is necessary to appropriately select the thickness of the magnetic material base in order to obtain the required strength.

上記磁性材ベースには、材質として、純鉄、低炭素鋼な
どが好ましい。
The magnetic material base is preferably made of pure iron, low carbon steel, or the like.

また、磁極片の周縁部に配置する磁性材リングも磁性材
ベースと同様な材質を用いることができ、磁性材ベース
の周縁部に載置する他、直接ブロック状磁極片用部材上
面に載置することができる。
In addition, the magnetic material ring placed on the periphery of the magnetic pole piece can be made of the same material as the magnetic material base, and in addition to being placed on the periphery of the magnetic material base, it can also be placed directly on the top surface of the block-shaped pole piece member. can do.

いずれの構成においても、渦電流の影響を軽減する目的
で、環状突起に1つ以上のスリットを設けて分割するこ
とが望ましく、さらに、磁性材ベースと環状突起間、磁
性材ベースとブロック状磁極片用部材間を電気的に縁縁
することが望ましい。
In either configuration, it is desirable to divide the annular protrusion by providing one or more slits in order to reduce the effects of eddy currents. It is desirable to provide an electrical edge between the half members.

図面に基づく開示 第1図a、bはこの発明による磁界発生装置の磁極片の
一実施例を示す上面図と横断面図である。
Disclosure Based on the Drawings Figures 1a and 1b are a top view and a cross-sectional view of an embodiment of a magnetic pole piece of a magnetic field generating device according to the invention.

第2図及び第3図は、この発明の磁極片を構成するブロ
ック状磁極片用部材の一実施例を示す斜視図である。
FIGS. 2 and 3 are perspective views showing one embodiment of a block-shaped magnetic pole piece member constituting the magnetic pole piece of the present invention.

第1図に示す磁極片(10)は、円板状軟鉄からなる磁
性材ベース(11)と、磁性材ベース(11)の周辺部
に周設された断面矩形の軟鉄製の磁性材リング(12)
と、磁性材ベース(11)上面に敷設した複数個のブロ
ック状磁極片用部材(13)とからなる。ブロック状磁
極片用部材(13)は通常合成樹脂接着材にて磁性材ベ
ース(11)に固着される。
The magnetic pole piece (10) shown in FIG. 12)
and a plurality of block-shaped magnetic pole piece members (13) placed on the upper surface of the magnetic material base (11). The block-shaped magnetic pole piece member (13) is usually fixed to the magnetic material base (11) with a synthetic resin adhesive.

磁性材ベース(11)の周辺部に周設された断面矩形の
軟鉄製の磁性材リング(12)は、磁極片(10)の外
周部側の高さを他より高くして、磁束を所要空隙に集中
させかつ均一度を向上させる環状突起を形成するための
ものであり、磁性材ベース(11)との間に絶縁材を介
在させてボルト止めしてあり、さらに磁性材リング(1
2)を周方向に分割(図では8個に分割)することで直
径方向のスリット(16)を設けて、渦電流の影響を低
減する構成である。
A magnetic material ring (12) made of soft iron and having a rectangular cross section is provided around the periphery of the magnetic material base (11) by making the outer peripheral side of the magnetic pole piece (10) higher than the other parts to provide the required magnetic flux. This is to form an annular protrusion that concentrates in the air gap and improves uniformity, and is bolted to the magnetic material base (11) with an insulating material interposed between it and the magnetic material ring (11).
2) in the circumferential direction (divided into eight pieces in the figure) to provide diametrical slits (16) to reduce the influence of eddy currents.

ブロック状磁極片用部材(13)は第2図及び第3図の
如く構成されている。
The block-shaped magnetic pole piece member (13) is constructed as shown in FIGS. 2 and 3.

すなわち、第2図に示すブロック状磁極片用部材(13
A)は方向性けい素鋼板を用いた場合を示すもので、予
め同一方向に方向性を示す複数枚の方向性けい素鋼板を
、その厚さ方向に積層−磁化した小ブロック(13aX
13bX図中イ、口は磁化容易軸方向を示す)を作成し
、その後磁界均一度を向上させるため各磁化容易軸方向
が互いに90’異なるようにして積層した所定厚さのブ
ロック状磁極片用部材(13A)からなる。
That is, the block-shaped magnetic pole piece member (13
A) shows the case where grain-oriented silicon steel sheets are used. A small block (13aX
13b Consists of member (13A).

異方性の場合、圧延方向の保磁力は極めて小さいが、そ
れと直交方向には保磁力が大きくなるため、むしろ後述
する無方向性けい素鋼板を用いるほうが電磁現象の低減
、組立ての容易さから有利である。
In the case of anisotropy, the coercive force in the rolling direction is extremely small, but the coercive force is large in the direction perpendicular to it, so it is better to use non-oriented silicon steel sheets, which will be described later, because of the reduction in electromagnetic phenomena and ease of assembly. It's advantageous.

第3図に示すブロック状磁極片用部材(13B)は無方
向性けい素鋼板を用いた場合を示すもので、無方向性の
ため複数枚のけい素鋼板を単にその厚さ方向に積層して
一体化するだけで所定厚さからなるブロック状磁極片用
部材(13B)を構成できる。
The block-shaped magnetic pole piece member (13B) shown in Figure 3 shows the case where non-oriented silicon steel plates are used.Since it is non-oriented, multiple silicon steel plates are simply laminated in the thickness direction. A block-shaped magnetic pole piece member (13B) having a predetermined thickness can be constructed by simply integrating the two parts.

これらの複数のブロック状磁極片用部材(13)は図示
の如く略円板状を形成するように配置するが、磁極片(
10)の空隙対向面の中央部には所要直径の円形凸状部
(14)を形成するため、ブロック状磁極片用部材(1
3)の厚みが異なるものを用いており、当該円形凸状部
で磁界均一度を向上させることができる。
These plurality of block-shaped magnetic pole piece members (13) are arranged to form a substantially disk shape as shown in the figure.
In order to form a circular convex portion (14) with a required diameter in the center of the air gap facing surface of (10), a block-shaped magnetic pole piece member (14) is formed.
3) having different thicknesses is used, and the uniformity of the magnetic field can be improved by the circular convex portion.

また、磁性材ベース(11)の中心部に、軟鉄製のコア
部(15)を設けているが、これは傾斜磁界コイルを装
着するための基台を構成している。
Further, a core portion (15) made of soft iron is provided at the center of the magnetic material base (11), and this constitutes a base on which a gradient magnetic field coil is mounted.

作用 以上に示す構成からなる磁極片(10)をMRI用磁界
発生装置に用いると、けい素鋼板は飽和磁束密度(Bs
)が高く、空隙の磁界均一化が達成しやすく、また保磁
力(HcXヒステリシス損)の小さな電気的に絶縁され
ている薄板を複数枚積層した構成であることから、傾斜
磁場コイルにGCパルスが印加されても磁極に発生する
渦電流は低減され、しかも電磁現象を低減させることも
可能となる。
Function When the magnetic pole piece (10) having the configuration shown above is used in a magnetic field generator for MRI, the silicon steel plate has a saturation magnetic flux density (Bs
), it is easy to achieve a uniform magnetic field in the air gap, and the structure is made by stacking multiple electrically insulated thin plates with a small coercive force (HcX hysteresis loss), so the GC pulse is applied to the gradient magnetic field coil. Even when applied, eddy currents generated in the magnetic poles are reduced, and it is also possible to reduce electromagnetic phenomena.

実施例 実施例1 第4図と同様構成の磁界発生装置に、 (BH)max35MGOeを有するR−Fe−B系永
久磁石を用い、下記性状の軟鉄からなる磁性材ベース上
に下記性状の方向性けい素鋼板を用い第2図に示す構成
としたブロック状磁極片用部材を設け、軟鉄からなる環
状突起(スリットは4箇所とした)を設けた一対の磁極
片の対向間距離を500mmに設定した。
Examples Example 1 An R-Fe-B permanent magnet having a (BH)max of 35 MGOe was used in a magnetic field generator having the same configuration as shown in Fig. 4, and a magnetic material base with the following properties was placed on a magnetic material base made of soft iron with the following properties. A block-shaped magnetic pole piece member made of silicon steel plate and configured as shown in Fig. 2 was provided, and the distance between the opposing magnetic pole pieces was set to 500 mm with annular protrusions made of soft iron (with 4 slits). did.

実施例2 実施例1と全く同様構成で、ブロック状磁極片用部材を
下記性状の無方向性けい素鋼板を用い第3図に示す構成
とし、磁界発生装置を組み立てた。
Example 2 A magnetic field generating device was assembled with exactly the same configuration as in Example 1, using a non-oriented silicon steel plate having the following properties as the block-shaped magnetic pole piece member and having the configuration shown in FIG. 3.

比較例 実施例1と全く同様構成であるが、同寸法、形状の磁極
片をベース部と同軟鉄のバルク材で構成し、磁界発生装
置を組み立てた。
COMPARATIVE EXAMPLE A magnetic field generating device was assembled by having exactly the same structure as in Example 1, but comprising a magnetic pole piece having the same size and shape as the base portion and the same bulk material of soft iron.

測定結果 以上3種類の磁界発生装置における磁界均一度と磁界強
度、傾斜磁場コイルによる渦電流の低減効’!=ととも
に、GCパルスにより生じる残留磁気を測定した。
Measurement results: Magnetic field uniformity and magnetic field strength in the above three types of magnetic field generators, and the eddy current reduction effect of gradient magnetic field coils! =, and the residual magnetism caused by the GC pulse was measured.

その結果、実施例1,2、比較例とも空隙中心から半径
200mm内の計測空間での測定値で、磁界均一度;3
0ppm、磁界強度;0.2Tを得た。
As a result, in both Examples 1 and 2 and the comparative example, the magnetic field uniformity was measured in the measurement space within a radius of 200 mm from the center of the gap;
0 ppm and magnetic field strength of 0.2 T were obtained.

傾斜磁場コイルによる渦電流は、この発明による実施例
1と実施例2の場合、比較例に対して、それぞれ1/3
以下に低減された。
In the case of Example 1 and Example 2 according to the present invention, the eddy current due to the gradient magnetic field coil was reduced to 1/3 of that in the comparative example.
Reduced to below.

GOパルスにより生じる残留磁気は、この発明による実
施例1の場合、比較例に対して、1/2以下に低減され
、実施例2の場合、比較例に対して、173以下に低減
された。
In the case of Example 1 according to the present invention, the residual magnetism caused by the GO pulse was reduced to 1/2 or less compared to the comparative example, and in the case of Example 2, it was reduced to 173 or less compared to the comparative example.

磁性材ベースは外径1050mm、厚さ25mmとした
The magnetic material base had an outer diameter of 1050 mm and a thickness of 25 mm.

また、種々の磁極片用部材の磁性材ベース上配置後の厚
さ(最大厚さ)は25mmとした。ただし方向性及び無
方向性けい素鋼板の厚さは0.35mmを採用した。
Further, the thickness (maximum thickness) of the various magnetic pole piece members after being placed on the magnetic material base was 25 mm. However, the thickness of the oriented and non-oriented silicon steel plates was 0.35 mm.

磁性材ベース部    純鉄 He = 8OA/m Bs = 2.0T p=1xlO’Ω・m 方向性けい素鋼板   Hc=4.8A/mBs = 
1.8T p=48xlO’Ω・m 無方向性けい素鋼板 Hc=40A/mBs=1.7T p=45xlO’Ω・m 発明の効果 実施例に明らかな如く、複数枚のけい素鋼板を磁極片の
対向方向に積層して一体化したブロック状磁極片用部材
を複数個用いた構成からなる磁極片を、MRI用磁界発
生装置に用いると、空隙の磁界が均一化され、傾斜磁場
コイルによる渦電流の低減の効果とともに、GCパルス
により生じる電磁を低減させる効果がある6 また、けい素鋼板の積層方向が磁極片対向方向と同方向
であることから積層−磁化作業が極めて容易となる利点
を有している。
Magnetic material base part Pure iron He = 8OA/m Bs = 2.0T p = 1xlO'Ω・m Grain-oriented silicon steel plate Hc = 4.8A/mBs =
1.8T p=48xlO'Ω・m Non-oriented silicon steel plate Hc=40A/mBs=1.7T p=45xlO'Ω・m As is clear from the embodiments of the invention, a plurality of silicon steel plates are used as magnetic poles. When a magnetic pole piece consisting of a plurality of block-shaped pole piece members laminated and integrated in opposing directions is used in an MRI magnetic field generator, the magnetic field in the air gap is made uniform, and the magnetic field produced by the gradient magnetic field coil is In addition to the effect of reducing eddy currents, it also has the effect of reducing electromagnetic waves generated by GC pulses.6 Also, since the lamination direction of the silicon steel sheets is the same as the direction in which the magnetic pole pieces face each other, the lamination and magnetization work is extremely easy. have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはこの発明による磁界発生装置の磁極片の
一実施例を示す上面図と横断面図である。 第2図、第3図はブロック状磁極片用部材の斜視説明図
である。 第4図a、bは従来の磁界発生装置の縦断面図と横断面
図である。 1・・・永久磁石構成体、2,10・・・磁極片、3・
・・継鉄、4・・・空隙、5・・・環状突起、6・・・
傾斜磁界コイル、11・・・磁性材ベース、12・・・
磁性材リング、13.13A、13B・・・ブロック状
磁極片用部材、14・・・円形凸状部、15・・・コア
部。
FIGS. 1a and 1b are a top view and a cross-sectional view showing one embodiment of a magnetic pole piece of a magnetic field generating device according to the present invention. FIG. 2 and FIG. 3 are perspective explanatory views of a block-shaped magnetic pole piece member. FIGS. 4a and 4b are a longitudinal cross-sectional view and a cross-sectional view of a conventional magnetic field generating device. DESCRIPTION OF SYMBOLS 1... Permanent magnet structure, 2, 10... Magnetic pole piece, 3.
...Yoke, 4...Gap, 5...Annular protrusion, 6...
Gradient magnetic field coil, 11...Magnetic material base, 12...
Magnetic material ring, 13. 13A, 13B... Block-shaped magnetic pole piece member, 14... Circular convex portion, 15... Core portion.

Claims (1)

【特許請求の範囲】 1 空隙を形成して対向する一対の磁極片を有し該空隙
に磁界を発生させるMRI用磁界発生装置において、 複数枚のけい素鋼板を磁極片の対向方向に積層して一体
化したブロック状磁極片用部材を複数個用いて磁極片を
形成したことを特徴とするMRI用磁界発生装置。 2 複数個のブロック状磁極片用部材を板状の磁性材ベ
ース上に配置して磁極片を形成し、磁極片の空隙対向面
側に直径方向のスリットを一箇所以上設けた磁性材リン
グからなる環状突起を配置したことを特徴とする請求項
1記載のMRI用磁界発生装置。 3 ブロック状磁極片用部材が無方向性けい素鋼板から
なることを特徴とする請求項1または請求項2記載のM
RI用磁界発生装置。
[Claims] 1. In an MRI magnetic field generator that has a pair of opposing magnetic pole pieces forming an air gap and generates a magnetic field in the air gap, a plurality of silicon steel plates are laminated in the direction in which the magnetic pole pieces face each other. 1. A magnetic field generating device for MRI, characterized in that a magnetic pole piece is formed using a plurality of block-shaped magnetic pole piece members integrated together. 2. From a magnetic material ring in which a plurality of block-shaped magnetic pole piece members are arranged on a plate-shaped magnetic material base to form a magnetic pole piece, and one or more diametrical slits are provided on the side facing the air gap of the magnetic pole piece. 2. The magnetic field generating device for MRI according to claim 1, further comprising an annular protrusion. 3. M according to claim 1 or claim 2, wherein the block-shaped magnetic pole piece member is made of a non-oriented silicon steel plate.
Magnetic field generator for RI.
JP2261417A 1990-09-29 1990-09-29 Magnetic field generator for MRI Expired - Lifetime JP2649436B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2261417A JP2649436B2 (en) 1990-09-29 1990-09-29 Magnetic field generator for MRI
EP91308901A EP0479514B1 (en) 1990-09-29 1991-09-27 Magnetic field generating device used for MRI
SG1996005853A SG43224A1 (en) 1990-09-29 1991-09-27 Magnetic field generating device used for MRI
DE69129687T DE69129687T2 (en) 1990-09-29 1991-09-27 Device for generating a magnetic field for imaging by means of magnetic resonance
US07/766,520 US5283544A (en) 1990-09-29 1991-09-27 Magnetic field generating device used for MRI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2261417A JP2649436B2 (en) 1990-09-29 1990-09-29 Magnetic field generator for MRI

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP08223058A Division JP3073933B2 (en) 1996-08-05 1996-08-05 Magnetic field generator for MRI

Publications (2)

Publication Number Publication Date
JPH04138131A true JPH04138131A (en) 1992-05-12
JP2649436B2 JP2649436B2 (en) 1997-09-03

Family

ID=17361585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2261417A Expired - Lifetime JP2649436B2 (en) 1990-09-29 1990-09-29 Magnetic field generator for MRI

Country Status (1)

Country Link
JP (1) JP2649436B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267736A (en) * 1993-03-12 1994-09-22 Shin Etsu Chem Co Ltd Magnetic field generator
EP0691548A1 (en) 1994-07-08 1996-01-10 Sumitomo Special Metals Company Limited Magnetic field generating device for use in MRI
JPH1097917A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Superconductor magnet device
WO1999033398A1 (en) * 1996-11-19 1999-07-08 Sumitomo Special Metals Co., Ltd. Mri magnetic field generator
WO1999052427A1 (en) * 1998-04-14 1999-10-21 Sumitomo Special Metals Co., Ltd. Magnetic field generating device for mri
JP2015089461A (en) * 2013-11-07 2015-05-11 株式会社日立メディコ Magnetic resonance imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139959A (en) * 1974-04-30 1975-11-10
JPS5594024U (en) * 1978-12-21 1980-06-30
JPS63105745A (en) * 1986-10-22 1988-05-11 株式会社東芝 Magnetic resonance imaging apparatus
JPS63143045A (en) * 1986-12-04 1988-06-15 三洋電機株式会社 Nuclear magnetic resonance apparatus
JPH01206605A (en) * 1988-02-15 1989-08-18 Toshiba Corp Magnetic field generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139959A (en) * 1974-04-30 1975-11-10
JPS5594024U (en) * 1978-12-21 1980-06-30
JPS63105745A (en) * 1986-10-22 1988-05-11 株式会社東芝 Magnetic resonance imaging apparatus
JPS63143045A (en) * 1986-12-04 1988-06-15 三洋電機株式会社 Nuclear magnetic resonance apparatus
JPH01206605A (en) * 1988-02-15 1989-08-18 Toshiba Corp Magnetic field generating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267736A (en) * 1993-03-12 1994-09-22 Shin Etsu Chem Co Ltd Magnetic field generator
EP0691548A1 (en) 1994-07-08 1996-01-10 Sumitomo Special Metals Company Limited Magnetic field generating device for use in MRI
JPH1097917A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Superconductor magnet device
WO1999033398A1 (en) * 1996-11-19 1999-07-08 Sumitomo Special Metals Co., Ltd. Mri magnetic field generator
WO1999052427A1 (en) * 1998-04-14 1999-10-21 Sumitomo Special Metals Co., Ltd. Magnetic field generating device for mri
US6794973B1 (en) 1998-04-14 2004-09-21 Sumitomo Special Metals Co., Ltd. Magnetic field generating device for MRI
JP2015089461A (en) * 2013-11-07 2015-05-11 株式会社日立メディコ Magnetic resonance imaging device

Also Published As

Publication number Publication date
JP2649436B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
KR100199216B1 (en) Magnetic field generating device for use in mri
US5283544A (en) Magnetic field generating device used for MRI
US4818966A (en) Magnetic field generating device
US5252924A (en) Magnetic field generating apparatus for MRI
EP0645641A1 (en) Improvements in or relating to MRI magnets
KR100362042B1 (en) Magnetic field generating device for mri
WO1993018707A1 (en) Magnetic field generator for mri
JP2561591B2 (en) Magnetic field generator for MRI
JP3016544B2 (en) Permanent magnet magnetic circuit
JP2764458B2 (en) Magnetic field generator for MRI
JPH04138131A (en) Magnetic field generation device for mri
EP0541872B1 (en) Magnetic field generating apparatus for MRI
JP2649437B2 (en) Magnetic field generator for MRI
JPH02184002A (en) Magnetic field generator for mri
JP3073933B2 (en) Magnetic field generator for MRI
USRE35565E (en) Magnetic field generating apparatus for MRI
JP3073934B2 (en) Magnetic field generator for MRI
JP3445303B2 (en) Magnetic field generator for MRI
JP4214736B2 (en) Magnetic field generator for MRI
EP1447676B1 (en) Circular pole piece and mri system
US6937018B2 (en) Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
JP3113438B2 (en) Magnetic field generator for MRI
JPH0563085B2 (en)
JPH0394733A (en) Magnetic field generator for mri
JPH05267047A (en) Magnetic field generator for mri

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14