JPH05267047A - Magnetic field generator for mri - Google Patents

Magnetic field generator for mri

Info

Publication number
JPH05267047A
JPH05267047A JP4093687A JP9368792A JPH05267047A JP H05267047 A JPH05267047 A JP H05267047A JP 4093687 A JP4093687 A JP 4093687A JP 9368792 A JP9368792 A JP 9368792A JP H05267047 A JPH05267047 A JP H05267047A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
yoke
mri
field generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4093687A
Other languages
Japanese (ja)
Inventor
Kimiharu Ota
公春 太田
Masaaki Aoki
雅昭 青木
Hiroyuki Takeuchi
博幸 竹内
Hirotaka Takeshima
弘隆 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Proterial Ltd
Original Assignee
Hitachi Medical Corp
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp, Sumitomo Special Metals Co Ltd filed Critical Hitachi Medical Corp
Priority to JP4093687A priority Critical patent/JPH05267047A/en
Priority to DE69332601T priority patent/DE69332601D1/en
Priority to US08/146,191 priority patent/US5621324A/en
Priority to EP93906787A priority patent/EP0591542B1/en
Priority to PCT/JP1993/000320 priority patent/WO1993018707A1/en
Publication of JPH05267047A publication Critical patent/JPH05267047A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the generation of overcurrent of a permanent magnet and a yoke by specifying specific resistances of permanent magnet blocks and electrically and integrally insulating each permanent magnet block. CONSTITUTION:Permanent magnet components 2a and 2b which are trapezoid- shaped in the cross section and provide a magnetization orientation in a vertical direction (top and bottom) are laid out in the upper and lower opposed planes in a hexagonal cylinder-shaped yoke. Permanent magnet components 2c, 2d, 2e and 2f having a triangle-shaped cross section and a magnetization orientation in a lateral direction, are laid out in the shape of a ring which allows the permanent magnet blocks 2b, 2c, 2e and 2f to be laid out on the circumferential plane in the yoke 1. Each permanent component insulates each of R-Fe-B rare earth magnet blocks electrically and integrate them in one piece. The specific resistance of the permanent magnet blocks is specified to be 10<-3>OMEGA m and below. The yoke consists of a laminated body of silicon steel plate. This construction makes it possible to inhibit the generation of overcurrent which generates permanent magnets and yokes without dropping the magnetic field strength even if the frequency is raised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、医療用磁気共鳴断層
撮影装置(以下MRIという)等に用いられる磁界発生
装置の改良に係り、磁極片を使用することなくかつ永久
磁石構成体の磁石ブロックを小さくその磁化方向に直交
方向に電気的に絶縁して一体化することにより、永久磁
石並びに継鉄に発生する渦電流を低減したMRI用磁界
発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a magnetic field generator used in a magnetic resonance tomography apparatus for medical use (hereinafter referred to as MRI) and the like, and does not use a magnetic pole piece and has a permanent magnet block magnet block. To a magnetic field generator for MRI in which eddy currents generated in a permanent magnet and a yoke are reduced by electrically insulating and integrating the magnets in a direction orthogonal to the magnetization direction.

【0002】[0002]

【従来の技術】MRIは、強力な磁界を形成する磁界発
生装置の空隙内に、被検者の一部または全部を挿入し
て、対象物の断層イメージを得てその組織の性質まで描
き出すことができる装置である。この磁界発生装置の空
隙は被検者の一部または全部が挿入できるだけの広さが
必要であり、かつ鮮明な断層イメージを得るために、通
常、空隙内の撮像視野内には、0.02〜2.0Tでか
つ1×10-4以下の精度を有する安定した強力な均一磁
界を形成することが要求される。MRI用磁界発生装置
の磁界発生源となる永久磁石構成体は、製造上の問題や
組立作業性等の理由から、通常多数の永久磁石ブロック
を組み立てて構成される。
2. Description of the Related Art In MRI, a part or all of a subject is inserted into the space of a magnetic field generator that forms a strong magnetic field, and a tomographic image of the subject is obtained to delineate the nature of the tissue. It is a device that can The air gap of this magnetic field generator needs to be wide enough to allow a part or all of the subject to be inserted, and in order to obtain a clear tomographic image, normally, 0.02 It is required to form a stable and strong uniform magnetic field having an accuracy of ˜2.0 T and an accuracy of 1 × 10 −4 or less. The permanent magnet structure, which serves as a magnetic field generation source of the magnetic field generator for MRI, is usually constructed by assembling a large number of permanent magnet blocks for reasons such as manufacturing problems and assembling workability.

【0003】また、従来から使用される永久磁石構成体
を磁界発生源とするMRI用磁界発生装置では、空隙内
に所定の磁界均一度を得るために、磁極片の配置を必須
としていた。空隙内の位置情報を得るために、通常X、
Y、Zの3方向に対応する3組のコイル群からなる傾斜
磁界コイルが各磁極片の近傍に配置され、この傾斜磁界
コイルに、パルス電流を印加することによって台形波状
に時間変化する所望方向の傾斜磁界を発生することがで
きる。
Further, in a magnetic field generator for MRI using a conventionally used permanent magnet structure as a magnetic field source, it is necessary to dispose magnetic pole pieces in order to obtain a predetermined magnetic field homogeneity in the air gap. To obtain the position information in the void, usually X,
A gradient magnetic field coil composed of three sets of coil groups corresponding to the three directions of Y and Z is arranged in the vicinity of each magnetic pole piece, and a desired direction that changes in time like a trapezoidal wave by applying a pulse current to this gradient magnetic field coil. Can generate a gradient magnetic field.

【0004】しかし、磁極片の配置は傾斜磁界コイルと
の関係において、渦電流や残留磁気の問題を有してい
る。つまり、MRI用磁界発生装置は、通常均一な磁界
に傾斜磁界を与えることによって核磁気共鳴の信号に位
置情報を伝えている。一つの画像を得るためには多数の
パルス磁界を変化させることが必要である。この傾斜磁
界は傾斜磁界コイルにパルス電流を与えて発生させる
が、その近傍に鉄のような導体があると渦電流が発生
し、傾斜磁界が急峻には立ち上がりにくくなる。また、
磁性体の残留磁気が大きいと磁界の均一度が変化して画
像に歪みが生じ、画像の鮮明度が劣化する。
However, the arrangement of the magnetic pole pieces has problems of eddy current and residual magnetism in relation to the gradient magnetic field coil. That is, the MRI magnetic field generator normally transmits the position information to the nuclear magnetic resonance signal by applying a gradient magnetic field to a uniform magnetic field. It is necessary to change many pulsed magnetic fields in order to obtain one image. This gradient magnetic field is generated by applying a pulse current to the gradient magnetic field coil, but if a conductor such as iron is present in the vicinity of the gradient magnetic field coil, an eddy current is generated and the gradient magnetic field is hard to rise sharply. Also,
If the residual magnetism of the magnetic material is large, the homogeneity of the magnetic field changes and the image is distorted and the sharpness of the image deteriorates.

【0005】そこで磁極片を配置しない構成として、多
角筒状の鉄等のバルク体内周部に、複数の永久磁石構成
体を環状に組み合せ配置した磁気回路が知られている。
Therefore, as a structure in which the magnetic pole pieces are not arranged, there is known a magnetic circuit in which a plurality of permanent magnet constituents are annularly combined and arranged on the inner circumference of a bulk body such as polygonal iron.

【0006】[0006]

【発明が解決しようとする課題】かかる筒状継鉄内に永
久磁石構成体を環状配置した構成において、通常永久磁
石構成体は小型化の要求から磁気特性にすぐれたFe−
B−R系磁石等を所定方向に磁化した複数の永久磁石バ
ーで構成される。しかし、直接傾斜磁界に晒されるFe
−B−R系磁石等の永久磁石バーは、その電気抵抗率
(比抵抗)が10-6Ω・m程度と小さいため、かかる構
成では永久磁石中に渦電流が発生する。
In the structure in which the permanent magnet structure is annularly arranged in such a cylindrical yoke, the permanent magnet structure is usually made of Fe- which has excellent magnetic characteristics because of the demand for downsizing.
It is composed of a plurality of permanent magnet bars obtained by magnetizing a B-R system magnet or the like in a predetermined direction. However, Fe directly exposed to the gradient magnetic field
Since the electric resistance (specific resistance) of a permanent magnet bar such as a -BR magnet is as small as about 10 -6 Ω · m, an eddy current is generated in the permanent magnet with such a configuration.

【0007】さらに、Fe−B−R系磁石の比透磁率は
1に近いために、コイルから発生した磁束は磁石構成体
を透過して継鉄まで到達し、継鉄内でも渦電流が発生す
る。そのため傾斜磁界が所定の強度に達するまでに、多
くの時間を必要とする。
Further, since the relative permeability of the Fe-BR magnet is close to 1, the magnetic flux generated from the coil passes through the magnet structure and reaches the yoke, and eddy current is also generated in the yoke. To do. Therefore, it takes a lot of time until the gradient magnetic field reaches a predetermined strength.

【0008】また、Fe−B−R系磁石以外に希土類コ
バルト磁石、アルニコ等の磁石を用いた場合も同様な問
題点を有する。
The same problem occurs when a magnet such as a rare earth cobalt magnet or Alnico is used in addition to the Fe-BR magnet.

【0009】この発明は、磁極片を使用しない永久磁石
式のMRI用磁界発生装置において、永久磁石並びに継
鉄に発生する渦電流を低減できる構成の磁界発生装置の
提供を目的としている。
It is an object of the present invention to provide a magnetic field generator for MRI of the permanent magnet type which does not use magnetic pole pieces, and which can reduce the eddy current generated in the permanent magnet and the yoke.

【0010】[0010]

【課題を解決するための手段】この発明は、空隙を形成
して対向配置する少なくとも一対の永久磁石構成体を複
数の永久磁石ブロックから構成するとともに、該磁石構
成体を継鉄にて磁気的に結合配置してなるMRI用磁界
発生装置において、前記永久磁石ブロックの比抵抗が1
-3Ω・m以下であり、かつ各々の永久磁石ブロックが
電気的に絶縁されて一体化されていることを特徴とする
MRI用磁界発生装置である。
SUMMARY OF THE INVENTION According to the present invention, at least a pair of permanent magnet constructions that are opposed to each other with a gap formed therein are composed of a plurality of permanent magnet blocks, and the magnet constructions are magnetically coupled by a yoke. In the magnetic field generator for MRI, which is coupled to and disposed in the above, the specific resistance of the permanent magnet block is 1
The magnetic field generator for MRI is characterized in that it is 0 −3 Ω · m or less and that each permanent magnet block is electrically insulated and integrated.

【0011】また、この発明は上記の構成において、継
鉄の少なくとも一対の永久磁石構成体との当接部が、け
い素鋼板の積層体から構成されていることを特徴とする
MRI用磁界発生装置である。
Further, the present invention is characterized in that, in the above-mentioned structure, the contact portion of the yoke with at least one pair of permanent magnet constituents is made of a laminated body of silicon steel sheets, and the magnetic field generation for MRI is performed. It is a device.

【0012】この発明において、磁気回路は少なくとも
一対の永久磁石構成体を対向させ、継鉄で磁気的に結合
されるものであれば、いかなる形状、配置のものでもよ
い。特に、断面三角形、台形または方形の棒状永久磁石
構成体を、多角筒状に組み合わせ配置した構成であれ
ば、磁極片を必要とせず均一磁界を形成することがで
き、また磁気漏洩も少なく、磁石を効率よく使用するこ
とができる。
In the present invention, the magnetic circuit may have any shape and arrangement as long as at least a pair of permanent magnet components are opposed to each other and magnetically coupled by a yoke. In particular, if a rod-shaped permanent magnet structure having a triangular, trapezoidal or rectangular cross section is combined and arranged in a polygonal cylindrical shape, a uniform magnetic field can be formed without the need for magnetic pole pieces, and the magnetic leakage is small, and the magnet is small. Can be used efficiently.

【0013】上記一対の永久磁石構成体は空隙内の磁界
形成に寄与する主たる磁界発生源であり、通常空隙内の
磁界方向に対して直交する方向に空隙対向面を形成して
いる。これら一対の永久磁石構成体の内周面に沿って配
置される傾斜磁界コイルの影響によって、該永久磁石構
成体の内部にその空隙対向面と平行方向に渦電流が発生
する。この渦電流の発生を低減させるためには、該永久
磁石構成体の空隙対向面に対して平行方向の比抵抗を大
きくすることが必要となる。従って永久磁石構成体の組
み立てに際しては、各々の永久磁石ブロックを完全に電
気的に絶縁することが望ましいが、少なくとも組み立て
完了後の永久磁石構成体内におけるその空隙対向面に対
して平行方向の比抵抗を大きくするように、永久磁石ブ
ロックの形状に応じて所要方向の電気的絶縁を考慮する
必要がある。例えば、後述の実施例においては、永久磁
石構成体は各々の永久磁石ブロックの磁化方向(図中矢
印Mにて示す)に直交方向に電気的に絶縁されることが
重要であり、かかる構成により見かけ上の比抵抗が大き
くなり、渦電流が抑制できる。永久磁石構成体の磁化方
向は、磁気回路の構成や継鉄上の配置箇所などに応じて
種々選定されるが、所要空隙に均一な静磁界が得られる
ように配置されれば、いかなる方向でもよい。
The pair of permanent magnet components are the main magnetic field generating sources that contribute to the formation of the magnetic field in the air gap, and usually form the air gap facing surfaces in the direction orthogonal to the magnetic field direction in the air gap. Due to the influence of the gradient magnetic field coils arranged along the inner peripheral surfaces of the pair of permanent magnet constituents, an eddy current is generated inside the permanent magnet constituents in the direction parallel to the air gap facing surface. In order to reduce the generation of this eddy current, it is necessary to increase the specific resistance in the direction parallel to the air gap facing surface of the permanent magnet structure. Therefore, when assembling the permanent magnet structure, it is desirable to completely electrically insulate each permanent magnet block, but at least the specific resistance in the direction parallel to the air gap facing surface in the permanent magnet structure after the assembly is completed. Therefore, it is necessary to consider the electrical insulation in the required direction according to the shape of the permanent magnet block so that For example, in the embodiments described below, it is important that the permanent magnet structure is electrically insulated in a direction orthogonal to the magnetization direction of each permanent magnet block (indicated by the arrow M in the figure). The apparent resistivity is increased and eddy current can be suppressed. The magnetizing direction of the permanent magnet structure is variously selected according to the structure of the magnetic circuit and the location on the yoke, but any direction can be used as long as it is arranged so that a uniform static magnetic field can be obtained in the required air gap. Good.

【0014】永久磁石ブロックの絶縁手段は、少なくと
も各永久磁石ブロックの磁化方向に直交方向に隣接する
他永久磁石ブロックとの接触面が電気的に絶縁されるよ
うに、各永久磁石ブロックの当該面に予めエポキシ樹脂
等の樹脂コーティング、電着塗装等の絶縁被膜を設けて
おくほか、永久磁石構成体への組立て時に当該面に絶縁
性接着剤を塗布することもでき、絶縁材料は非導電性の
材料であれば上記例に限定されない。かかる永久磁石ブ
ロック間の電気絶縁度は、少なくとも比抵抗が10-3Ω
・m以上であることが必要であり、さらに、絶縁被膜厚
みは10μm程度以上が望ましい。
The insulating means of the permanent magnet block is such that at least the contact surface of each permanent magnet block is electrically insulated so that the contact surface with another permanent magnet block adjacent in the direction perpendicular to the magnetization direction of each permanent magnet block is electrically insulated. A resin coating such as an epoxy resin, an insulating coating such as electrodeposition coating, etc. can be provided in advance, and an insulating adhesive can be applied to the surface when assembling into a permanent magnet structure, and the insulating material is non-conductive. The material is not limited to the above example. The electrical insulation between the permanent magnet blocks has a specific resistance of at least 10 -3 Ω.
-It is necessary that the thickness is at least m, and it is desirable that the thickness of the insulating coating is approximately 10 μm or more.

【0015】永久磁石ブロックの比抵抗を10-3Ω・m
以下とした理由は、実質的にフェライト磁石を排除する
ためであり、永久磁石ブロックには希土類コバルト磁
石、アルニコ等の永久磁石を用いることができるが、特
に最大エネルギー積30MGOe以上の特性を有するR
−Fe−B系希土類磁石で構成することにより、安定な
均一磁界が得られ、装置の小型化を可能とする。また、
永久磁石ブロックの形状、寸法は、磁界発生装置の形
態、大きさに合わせて種々選択できるが、特に渦電流の
低減効果をたかめるには、永久磁石ブロックの最長辺長
さが100mm以下の小ブロックであることが好まし
い。
The specific resistance of the permanent magnet block is 10 −3 Ω · m
The reason given below is to substantially eliminate the ferrite magnet, and a permanent magnet such as a rare earth cobalt magnet or an alnico can be used for the permanent magnet block, but in particular, R having a characteristic of a maximum energy product of 30 MGOe or more is used.
By using a —Fe—B-based rare earth magnet, a stable uniform magnetic field can be obtained, and the device can be downsized. Also,
The shape and size of the permanent magnet block can be variously selected according to the form and size of the magnetic field generator, but in order to enhance the effect of reducing the eddy current, a small block whose longest side length of the permanent magnet block is 100 mm or less. Is preferred.

【0016】この発明において、永久磁石構成体を内周
面に配置する多角筒状や種々形状の継鉄には、鉄等のバ
ルク体のほかけい素鋼板、鉄等の積層体を用いることが
でき、特に、けい素鋼板を用いることにより、製作が容
易で渦電流の低減効果が大きくなる。積層されるけい素
鋼板は、厚み0.35mmや0.5mm等の通常使用さ
れるものでよい。また、継鉄の全体がけい素鋼板でなく
てもよく、永久磁石構成体や装置を考慮して、けい素鋼
板の積層部を所要位置に配置するなど種々の構成が選定
できる。さらに、磁気回路の構成は上記の構成に限定さ
れるものではなく、空隙を介して対向する一対の永久磁
石構成体を継鉄で磁気的に結合した磁気回路において、
一対の永久磁石構成体に当接する継鉄をけい素鋼板等の
積層体とし、それ以外の継鉄を鉄等のバルク材とした構
成も採用できる。
In the present invention, for a polygonal tubular or variously shaped yoke for arranging the permanent magnet structure on the inner peripheral surface, not only a bulk body of iron or the like but also a laminated body of silicon steel plate or iron is used. In particular, by using a silicon steel plate, it is easy to manufacture and the effect of reducing eddy current becomes large. The silicon steel sheets to be laminated may be those normally used having a thickness of 0.35 mm or 0.5 mm. Further, the entire yoke does not have to be a silicon steel plate, and various configurations such as arranging a laminated portion of silicon steel plates at a required position can be selected in consideration of a permanent magnet structure and a device. Furthermore, the configuration of the magnetic circuit is not limited to the above configuration, and in a magnetic circuit in which a pair of permanent magnet constituents facing each other through a gap are magnetically coupled with a yoke,
It is also possible to adopt a configuration in which the yokes that are in contact with the pair of permanent magnet constructions are laminated bodies such as silicon steel plates, and the other yokes are bulk materials such as iron.

【0017】さらにこの発明において、開口部からの漏
洩磁束によって永久磁石構成体中心部から遠ざかる方に
(Z軸方向に)小さくなる磁束密度の変化を防ぐため、
例えば多角筒状の継鉄を奥行き方向に分割することによ
り、均一な磁界分布を得ることができる。また、傾斜磁
界コイルは、例えば多角筒状の継鉄を用いた場合、多角
筒状に組合せ配置した永久磁石構成体内周面に沿って設
置される。
Further, in the present invention, in order to prevent the change of the magnetic flux density which becomes smaller (in the Z-axis direction) away from the central portion of the permanent magnet structure due to the leakage magnetic flux from the opening,
For example, a uniform magnetic field distribution can be obtained by dividing a polygonal tubular yoke in the depth direction. Further, the gradient magnetic field coil, for example, when using a polygonal tubular yoke, is installed along the inner peripheral surface of the permanent magnet component in the polygonal tubular combination.

【0018】[0018]

【作用】この発明によるMRI用磁界発生装置は、磁極
片を使用することなくかつ永久磁石構成体の磁石ブロッ
クを小さくその磁化方向に直交方向に電気的に絶縁して
一体化し、さらには継鉄にけい素鋼板の積層体を使用す
ることにより、磁極片を用いずに永久磁石ブロックに比
透磁率が1に近いFe−B−R系磁石を使用した場合で
も、傾斜磁界コイルから発生する磁束に起因した磁石構
成体内および継鉄内の渦電流を低減することができ、傾
斜磁界の形成が速くできる。
In the magnetic field generator for MRI according to the present invention, the magnetic block of the permanent magnet structure is made small and electrically insulated and integrated in the direction orthogonal to the magnetizing direction without using the pole pieces, and further the yoke is used. By using a laminated body of silicon steel sheets, even when an Fe-BR system magnet having a relative magnetic permeability close to 1 is used for the permanent magnet block without using the pole pieces, the magnetic flux generated from the gradient magnetic field coil is used. It is possible to reduce the eddy current in the magnet structure and in the yoke due to the above, and to accelerate the formation of the gradient magnetic field.

【0019】[0019]

【実施例】【Example】

実施例1 図1に示すMRI用磁界発生装置は、けい素鋼板の積層
体からなる六角筒状継鉄1を用い、継鉄1内周面に6種
の永久磁石構成体2a〜2fを環状に配置して空隙3を
形成し、空隙3内に傾斜磁界コイル4を設置した磁気回
路からなる。詳述すると、図で六角筒状継鉄1内の上下
対向面には、垂直(上下)方向に磁化方向を有する断面
台形状の永久磁石構成体2a,2dを配置し、図で六角
筒状継鉄1内の左右対向面には、横方向に磁化方向を有
する断面三角形の永久磁石構成体2b,2c,2e,2
fを配置することにより、継鉄1内周面に永久磁石構成
体2a〜2fを環状に配置してある。各永久磁石構成体
は、図2に示す如く、36mm×40mm×40mm寸
法の最大エネルギー積35MGOeを有する複数のR−
Fe−B系希土類磁石ブロックを、互いに電気的に絶縁
して一体化してある。
Example 1 The magnetic field generator for MRI shown in FIG. 1 uses a hexagonal tubular yoke 1 made of a laminated body of silicon steel sheets, and six kinds of permanent magnet components 2a to 2f are annularly formed on the inner peripheral surface of the yoke 1. And a gradient magnetic field coil 4 is installed in the void 3. More specifically, in the figure, on the upper and lower facing surfaces in the hexagonal tubular yoke 1, permanent magnet components 2a and 2d having trapezoidal cross-sections having a magnetization direction in the vertical (upper and lower) direction are arranged. On the left and right facing surfaces in the yoke 1, permanent magnet constructions 2b, 2c, 2e, 2 having a triangular cross-section having a lateral magnetization direction.
By arranging f, the permanent magnet constructing bodies 2a to 2f are annularly arranged on the inner peripheral surface of the yoke 1. Each permanent magnet assembly, as shown in FIG. 2, has a plurality of R− with a maximum energy product of 35 MGOe measuring 36 mm × 40 mm × 40 mm.
The Fe-B type rare earth magnet blocks are electrically insulated from each other and integrated.

【0020】上記構成からなる磁気回路に発生する渦電
流特性を、上記傾斜磁界コイルに正弦波電流を流し、そ
の周波数を変化させて空隙中に設置したサーチコイルに
発生する起電力で発生磁界を測定し評価した。この場合
の正弦波電流は450A・Tであった。
With respect to the eddy current characteristic generated in the magnetic circuit having the above structure, a sinusoidal current is caused to flow through the gradient magnetic field coil, the frequency is changed, and the generated magnetic field is generated by the electromotive force generated in the search coil installed in the air gap. It was measured and evaluated. The sinusoidal current in this case was 450 AT.

【0021】実施例2 実施例1と同様の構成で、継鉄をバルク状の軟鉄からな
る多角筒状継鉄とし、同様に傾斜磁界コイルに正弦波電
流を印加したときの発生磁界を測定し評価した。
Example 2 With the same construction as in Example 1, a polygonal tubular yoke made of bulk soft iron was used as the yoke, and the magnetic field generated when a sinusoidal current was applied to the gradient coil was measured in the same manner. evaluated.

【0022】比較例 実施例2と同様に継鉄を鉄等のバルク状の軟鉄からなる
多角筒状継鉄とし、永久磁石構成体の各々の永久磁石ブ
ロックを絶縁せずに、実施例1と同様の測定を行った。
Comparative Example As in Example 2, the yoke was a polygonal tubular yoke made of bulk soft iron such as iron, and the permanent magnet blocks of the permanent magnet structure were not insulated, but the yoke of Example 1 was used. The same measurement was performed.

【0023】上記測定結果を周波数と磁場強度比との関
係として図3に示す。図3から明らかなように、永久磁
石ブロックを絶縁しない比較例(×印でプロット)に対
して、絶縁したこの発明の実施例2(△印でプロット)
の場合は、磁界強度比が周波数が高い領域までフラット
になっていることから渦電流の発生が抑制されているこ
とが分かる。また、継鉄をけい素鋼板の積層体から構成
した実施例1(○印でプロット)の場合は、実施例2と
比較して周波数を上げても磁界強度比が低下せず、渦電
流の発生がさらに抑制されていることが分かる。また、
上記の構成において、空隙中心から半径200mm以内
の計測空間で30ppmの磁界均一度が得られ、残留磁
気についてもほぼ問題ないレベルであることが分かっ
た。
The above measurement results are shown in FIG. 3 as a relationship between frequency and magnetic field strength ratio. As is apparent from FIG. 3, Example 2 of the present invention in which the permanent magnet block is insulated (plotted with a mark) is compared with the comparative example in which the permanent magnet block is not insulated (plotted with a mark).
In the case of, the magnetic field strength ratio is flat up to the region where the frequency is high, which indicates that the generation of eddy current is suppressed. Further, in the case of Example 1 (plotted with a circle) in which the yoke was composed of a laminated body of silicon steel sheets, the magnetic field strength ratio did not decrease even when the frequency was increased as compared with Example 2, and the eddy current It can be seen that the occurrence is further suppressed. Also,
It was found that in the above configuration, a magnetic field homogeneity of 30 ppm was obtained in the measurement space within a radius of 200 mm from the center of the void, and there was almost no problem with residual magnetism.

【0024】[0024]

【発明の効果】この発明によるMRI用磁界発生装置
は、磁極片を使用することなくかつ永久磁石構成体の磁
石ブロックを小さくその磁化方向に直交方向に電気的に
絶縁して一体化することにより、永久磁石並びに継鉄に
発生する渦電流を低減でき、またさらに、継鉄にけい素
鋼板積層体を用いることにより、磁極片を用いない従来
装置に比べ、大幅に渦電流を低減することができる。
In the magnetic field generator for MRI according to the present invention, the magnetic block of the permanent magnet structure is made small and electrically insulated in the direction orthogonal to the magnetization direction and integrated without using the pole pieces. , The eddy current generated in the permanent magnet and the yoke can be reduced, and further, the use of the silicon steel sheet laminated body in the yoke can significantly reduce the eddy current as compared with the conventional device which does not use the pole pieces. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるMRI用磁界発生装置の一構成
例を示す斜視説明図である。
FIG. 1 is a perspective explanatory view showing a configuration example of a magnetic field generator for MRI according to the present invention.

【図2】この発明による永久磁石構成体を示す斜視説明
図である。
FIG. 2 is a perspective view showing a permanent magnet structure according to the present invention.

【図3】周波数と磁場強度比との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between frequency and magnetic field strength ratio.

【符号の説明】[Explanation of symbols]

1 継鉄 2a,2b,2c,2d,2e,2f 永久磁石構成体 3 空隙 4 傾斜磁界コイル 1 Yoke 2a, 2b, 2c, 2d, 2e, 2f Permanent magnet structure 3 Gap 4 Gradient magnetic field coil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8203−2G G01R 33/22 C 8203−2G D 8203−2G E (72)発明者 竹内 博幸 千葉県柏市新十余二2番1号 株式会社日 立メディコ技術研究所内 (72)発明者 竹島 弘隆 千葉県柏市新十余二2番1号 株式会社日 立メディコ技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location 8203-2G G01R 33/22 C 8203-2G D 8203-2GE (72) Inventor Hiroyuki Takeuchi Chiba Prefecture 2-11 Shinjuyo, Kashiwa-shi, Ltd. Inside the Ritsudoko Medical Research Laboratory (72) Inventor Hirotaka Takeshima 2-2-1, Shinjyu-Medicine Research Institute, Kashiwa, Chiba Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空隙を形成して対向配置する少なくとも
一対の永久磁石構成体を複数の永久磁石ブロックから構
成するとともに、該磁石構成体を継鉄にて磁気的に結合
配置してなるMRI用磁界発生装置において、前記永久
磁石ブロックの比抵抗が10-3Ω・m以下であり、かつ
各々の永久磁石ブロックが電気的に絶縁され一体化され
ていることを特徴とするMRI用磁界発生装置。
1. An MRI system in which at least a pair of permanent magnet constructs facing each other with a gap therebetween is composed of a plurality of permanent magnet blocks, and the magnet constructs are magnetically coupled and arranged by yokes. In the magnetic field generator, the specific resistance of the permanent magnet block is 10 −3 Ω · m or less, and each permanent magnet block is electrically insulated and integrated, and the magnetic field generator for MRI. ..
【請求項2】継鉄の少なくとも一対の永久磁石構成体と
の当接部が、けい素鋼板の積層体から構成されているこ
とを特徴とする請求項1記載のMRI用磁界発生装置。
2. The magnetic field generator for MRI according to claim 1, wherein the portion of the yoke that contacts the at least one pair of permanent magnet components is made of a laminated body of silicon steel sheets.
JP4093687A 1992-03-18 1992-03-18 Magnetic field generator for mri Pending JPH05267047A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4093687A JPH05267047A (en) 1992-03-18 1992-03-18 Magnetic field generator for mri
DE69332601T DE69332601D1 (en) 1992-03-18 1993-03-17 MAGNETIC FIELD GENERATOR FOR IMAGE DISPLAY BY MEANS OF A CORE RESONANCE
US08/146,191 US5621324A (en) 1992-03-18 1993-03-17 Magnetic field generator for MRI
EP93906787A EP0591542B1 (en) 1992-03-18 1993-03-17 Magnetic field generator for mri
PCT/JP1993/000320 WO1993018707A1 (en) 1992-03-18 1993-03-17 Magnetic field generator for mri

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4093687A JPH05267047A (en) 1992-03-18 1992-03-18 Magnetic field generator for mri

Publications (1)

Publication Number Publication Date
JPH05267047A true JPH05267047A (en) 1993-10-15

Family

ID=14089318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4093687A Pending JPH05267047A (en) 1992-03-18 1992-03-18 Magnetic field generator for mri

Country Status (1)

Country Link
JP (1) JPH05267047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512911A (en) * 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for influencing and / or detecting magnetic particles in a working region

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512911A (en) * 2006-12-20 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for influencing and / or detecting magnetic particles in a working region

Similar Documents

Publication Publication Date Title
KR100199216B1 (en) Magnetic field generating device for use in mri
US5124651A (en) Nuclear magnetic resonance scanners with composite pole facings
US5680086A (en) MRI magnets
EP0479514A1 (en) Magnetic field generating device used for MRI
EP0192331B1 (en) Electromagnet
EP0161782A1 (en) Magnetic field generating device for NMR-CT
EP0504329A4 (en) Eddy current control in magnetic resonance imaging
WO1999052427A1 (en) Magnetic field generating device for mri
EP0984461A2 (en) Low eddy current and low hysteresis magnet pole faces in MR imaging
EP0801314B1 (en) MRI magnet assembly with opposite permanent magnets
JPH07201557A (en) Magnetic field generating device for mri
JP3016544B2 (en) Permanent magnet magnetic circuit
JP2561591B2 (en) Magnetic field generator for MRI
JPH05267047A (en) Magnetic field generator for mri
EP0541872A1 (en) Magnetic field generating apparatus for MRI
JP2649436B2 (en) Magnetic field generator for MRI
JP2649437B2 (en) Magnetic field generator for MRI
JP3510544B2 (en) Apparatus for forming a magnetic field in an air gap
WO2004104612A1 (en) Magnetic field generating system applicable to nuclear magnetic resonance device
USRE35565E (en) Magnetic field generating apparatus for MRI
JP2557905B2 (en) Magnetic field generator
JP3073933B2 (en) Magnetic field generator for MRI
JP3056883B2 (en) Magnetic field generator for MRI
JP3445303B2 (en) Magnetic field generator for MRI
JP3113438B2 (en) Magnetic field generator for MRI