JPH04137702A - Manufacture of sm-co rare earth permanent magnet - Google Patents

Manufacture of sm-co rare earth permanent magnet

Info

Publication number
JPH04137702A
JPH04137702A JP2261647A JP26164790A JPH04137702A JP H04137702 A JPH04137702 A JP H04137702A JP 2261647 A JP2261647 A JP 2261647A JP 26164790 A JP26164790 A JP 26164790A JP H04137702 A JPH04137702 A JP H04137702A
Authority
JP
Japan
Prior art keywords
rare earth
earth permanent
permanent magnet
acid
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2261647A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsumoto
裕之 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2261647A priority Critical patent/JPH04137702A/en
Publication of JPH04137702A publication Critical patent/JPH04137702A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make it possible to obtain a low-cost 2-17 type Sm-Co rare earth permanent magnet by a method wherein an oxide, such as Sm2O2, existing on the surfaces of grinding chips from an Sm-Co rare earth permanent magnet is subjected to acid washing treatment in an acid solution having a specified pH and is regenerated. CONSTITUTION:An acid treatment using an acid solution having a pH of 3.5 to 5.5 is performed on grinding scraps from an Sm-Co rare earth permanent magnet as the scraps are in the state of the grinding scraps. 2 volume percent of an acetic acid is used for acid-treating the grinding scraps setting the ratio of the weight [Kg] of the scraps to the amount [1] of the acid solution having the pH of 3.5 to 5.5 at a ratio of 1:6. After that, the acid remained in the grinding chips is cleaned with pure water and these chips are turned into the state of dried powder by pressing of N2 and vacuum drying. The raw material for a 2-17 type Sm-Co rare earth permanent magnet for composition adjustment use, whose composition is adjusted into a targeted composition to make it possible to obtain a performance to be fulfilled as the performance of the 2-17 type Sm-Co rare earth permanent magnet and which is manufactured by a dissolving method, is mixed with these grinding chips at a ratio of 5:5 after being subjected to acid washing treatment and the mixture is used as the raw power for the 2-17 type Sm-Co rare earth permanent magnet.

Description

【発明の詳細な説明】 イ1発明の目的 〔産業上の利用分野〕 本発明は5s−Co希土類永久磁石の研削屑を永久磁石
の原料としての再活用することによるSm−Co希土類
永久磁石の製造方法に関するものである。
Detailed Description of the Invention A1 Object of the Invention [Field of Industrial Application] The present invention is directed to the production of Sm-Co rare-earth permanent magnets by reusing grinding waste of 5s-Co rare-earth permanent magnets as a raw material for permanent magnets. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

従来、5ad−Co系希土類磁石の研削屑を原料として
使用することはマグネットメーカーにとっては長い間の
懸案事項であった。Sm−Co系希土類永久磁石の研削
屑は主に51203等の酸化物が形成されて、5120
3等の酸化物が多くなって、主成分のS!12cO1T
中に入ってしまうと比重もさがり、なにより磁気特性を
さげてしまうので、5Il−Co系希土類永久磁石の研
削屑は原料として使用することは51203等の酸化物
を除去しないかぎり困難であった。またSmの微粉が研
磨中の加熱で着火して燃えてしまうので、Ssの微粉の
含んだ研削屑は扱い注意であり、研削屑を原料として使
用するには51203の除去が重要であった。このSm
、03の除去する方法や処理に難点があって、以前より
カルシウム還元法や酸処理方法等が行われていたが、手
軽な方法として用いることは出来ず、不充分であった。
Conventionally, the use of grinding waste from 5ad-Co rare earth magnets as a raw material has been a long-standing concern for magnet manufacturers. Grinding waste of Sm-Co rare earth permanent magnets mainly consists of oxides such as 51203, and 5120
The number of 3rd grade oxides increases, and the main component is S! 12cO1T
If it gets inside, the specific gravity decreases, and above all, the magnetic properties decrease, so it was difficult to use the grinding debris of 5Il-Co rare earth permanent magnets as a raw material unless oxides such as 51203 were removed. . Furthermore, since the Sm fine powder ignites and burns due to heating during polishing, grinding waste containing Ss fine powder must be handled with care, and in order to use the grinding waste as a raw material, it was important to remove 51203. This Sm
, 03 has some drawbacks in its removal methods and treatments, and although calcium reduction methods and acid treatment methods have been used for some time, they have not been able to be used as easy methods and have been insufficient.

カルシウム還元法は51203にCo3O4やCaFを
加えて反応させてSmやCoを還元して抽出する法で、
すでに特許になっている。
The calcium reduction method is a method in which Co3O4 and CaF are added to 51203 and reacted to reduce and extract Sm and Co.
It's already patented.

また酸洗による酸処理方法は強酸となると法律上の取扱
いが厳しくコストがかかり、 Sm、 Co、 Fe。
In addition, the acid treatment method by pickling is difficult to handle legally and is expensive when it comes to strong acids.

Cu、 Zr等をとかしてしまう難点があり、実用化の
段階として、酸処理がもっとも手軽であり、酸処理によ
って5l−Co系希土類永久磁石の原料として研削屑を
使用出来れば、これにこしたことはない。
It has the disadvantage of combing out Cu, Zr, etc., and acid treatment is the easiest at the stage of practical application. Never.

しかしながらどのような条件で酸処理するのか、その手
軽な最適条件はつかまれてはいない。またSm−Co希
土類永久磁石の研削屑は、切断加工や研磨加工である加
工工程において発生し、この研削屑から溶媒抽出法など
の化学的元素分離方法により高価な元素である、St 
Coの2種類の元素の分離抽出が行われている。しかし
ながら、抽出された高価な2種類のSm、COの両元素
のみでは、2−17型Sm−Co希土類永久磁石の原料
にすることは出来ず、再度2−17型Sm−Co系希土
類永久磁石原料とする為にSsとCo以外のCu、 F
e及びZr等を加え、通常の2−17型Sm−Co系希
土類永久磁石の原料の製造方法である溶解の段階から再
生を行わねばならず、工程及びコストが増大してしまう
という重大な欠点があった。
However, the optimum conditions for acid treatment have not yet been determined. In addition, grinding waste from Sm-Co rare earth permanent magnets is generated during processing steps such as cutting and polishing.
Two types of elements, Co, are being separated and extracted. However, the extracted two expensive elements Sm and CO alone cannot be used as raw materials for the 2-17 type Sm-Co rare earth permanent magnet, and the 2-17 type Sm-Co rare earth permanent magnet cannot be used again. Cu and F other than Ss and Co are used as raw materials.
A serious disadvantage is that it is necessary to add e, Zr, etc. and regenerate from the melting stage, which is the manufacturing method of the raw material of the normal 2-17 type Sm-Co rare earth permanent magnet, which increases the process and cost. was there.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は以上の様な欠点を改善するために、この研削屑
へPHが3.5〜5.5の弱い酸による処理を施すこと
により、研削屑を2−17型S層−〇〇系希土類永久磁
石原料としてそのまま新規原料と配合し使用して工程及
びコストの増大無く、2−17型5s−Co系希土類永
久磁石の原料として使用して、2−17型Sm−Co系
希土類永久磁石を製造することを目的とする。
In order to improve the above-mentioned drawbacks, the present invention treats the grinding waste with a weak acid with a pH of 3.5 to 5.5, thereby removing the grinding waste from the 2-17 type S layer-〇〇 system. A 2-17 type Sm-Co rare earth permanent magnet can be used as a raw material for a 2-17 type 5s-Co rare earth permanent magnet without increasing the process or cost by blending it with a new raw material as it is as a raw material for a rare earth permanent magnet. The purpose is to manufacture.

口1発明の構成 〔課題を解決するための手段〕 本発明は、S■−Co希土類永久磁石の研削屑の表面に
存在する5I203等の酸化物を除去するために、PH
が3.5〜5.5の酸溶液中で、該研削屑を酸洗処理し
、再生することを特徴とする。
1. Structure of the Invention [Means for Solving the Problems] The present invention uses PH
It is characterized in that the grinding waste is pickled and regenerated in an acid solution having a pH of 3.5 to 5.5.

即ち本発明は、S■−Co系希土類永久磁石の研削屑を
PHが3−5−5.5の弱い酸で酸処理し、該研削屑の
表面の酸化物を除去し、S■−Co系希土類永久磁石用
の原料と配合して、前記研削屑をS鳳−Co系希土類永
久磁石として性能が得られるように組成調整して、前記
研削屑をSm−Co系希土類永久磁石の原料とすること
を特徴とする5ad−Co系希土類永久磁石の製造方法
である。
That is, in the present invention, grinding waste of an S■-Co rare earth permanent magnet is acid-treated with a weak acid having a pH of 3-5-5.5, oxides on the surface of the grinding waste are removed, and S■-Co The grinding waste is blended with a raw material for a Sm-Co rare earth permanent magnet, and the composition is adjusted so that the performance of the grinding waste is obtained as an Sm-Co rare earth permanent magnet. This is a method for manufacturing a 5ad-Co rare earth permanent magnet.

〔作用〕[Effect]

Sm−Co系希土類永久磁石の研削屑はSm−Co系希
土類永久磁石の研磨した塊に51120+、Ce2O3
,CO2O3等の酸化物の微粉が付着して、研削屑のま
わりをこの酸化物の微粉でまぶしてくるんでν)る状態
にある。このような51203、Ce2O3、CO2O
3等の酸化物は原料に入ると、比重をさげてしまうこと
より致命的欠陥である磁気特性をさげてしまうので、長
ν)間研削屑の原料としての再利用は重要な課題であっ
たことは前述した通りである。そこで研削屑の中の5I
203、Ce2O,+等の酸化物の除去は手軽にやれる
と、その利用価値は太きQN。研削屑を強酸である塩酸
や硫酸で処理すると、研削屑は表面積力で大きいので、
Fe、 Cu以外の主成分まで解けてしまう。
The grinding waste of the Sm-Co rare earth permanent magnet is 51120+, Ce2O3, in the polished lump of the Sm-Co rare earth permanent magnet.
, CO2O3, and other oxide particles are attached to the ground, and the grinding debris is covered with the oxide particles. 51203 like this, Ce2O3, CO2O
When grade 3 oxides enter the raw material, they reduce the specific gravity, which is a fatal defect, and reduce the magnetic properties, so reusing long-term grinding waste as a raw material was an important issue. This is as stated above. There, 5I in the grinding waste
If oxides such as 203 and Ce2O,+ can be easily removed, their utility value is high QN. When grinding debris is treated with strong acids such as hydrochloric acid or sulfuric acid, the grinding debris is large due to surface area force, so
Main components other than Fe and Cu can be solved.

さらに強酸は法律的に使用する際は厳しし)管理下にお
かれ扱いにくく、さらにカセイソーダなど番こよって中
和しなければならず、強酸の酸処理は手数がかかりコス
ト的に不利である。このため、強酸の処理はさけ、PH
が7〜5.5までの酸では弱く、ここではPHが3.5
〜5.5になるようにうすめて酢酸を使用した。PHが
3.5〜5.5の範囲であれば例えば酢酸でも、他の強
酸でもよいが、酢酸が扱いやすいから酢酸を選択して、
酢酸を使用したものである。
Furthermore, strong acids are difficult to handle as they are subject to strict controls when used legally, and must be neutralized using caustic soda, making acid treatment of strong acids time-consuming and disadvantageous in terms of cost. For this reason, avoid treatment with strong acids, and avoid
It is weak in acids with a pH of 7 to 5.5, and here the pH is 3.5.
Acetic acid was diluted to ~5.5 and used. For example, acetic acid or other strong acids may be used as long as the pH is in the range of 3.5 to 5.5, but acetic acid is selected because it is easy to handle.
It uses acetic acid.

2−17型Sm−Co系希土類永久磁石の原料として配
合の目標値は、Sm=26冑t%、Fe= 15wt%
The target values for the raw materials for the 2-17 type Sm-Co rare earth permanent magnet are Sm = 26t%, Fe = 15wt%
.

Cu = 4.5wt%、Zr= 3 wt%、Co=
Ba1wt%である。
Cu = 4.5 wt%, Zr = 3 wt%, Co =
Ba1wt%.

S塵が一般に高値で、8膳の原料を購入するとCeが入
ってくる。そこで512CO17型よりCeの含んだ(
Slo、 5ceo、 5)2CO1□の希土類永久磁
石を選択することが多い。この(S■o、 5Ceo、
 5)2CO17の希土類永久磁石の配合の目標値とし
てはSm= 11.8wt%、Ce= 11.8wt%
、 Fe= 15wt%、 Cu=4.5wt%、Zr
= 3.0wt%、Co= Ba1wt%がSm+Ce
= 23.6%であるから有利である。しかしここでは
Sm=26wt%、Fe=15wt%、Cu= 4.5
wt%、zr= 3 wt%、Co=Ba1wt%、で
配合した例である。研削屑の中のSm2O3、Ce2O
3とCO2O3では圧倒的にSl2O3、Ce20rが
多く生成され、研削屑を酸処理するために研削屑の重量
[kg]とPHが3.5〜5.5の2体積%酢酸溶液量
[1]の比率が1=6の比率で、酸溶液中に研削屑を投
入し、酸溶液中で、20〜30分間攪拌し酸洗処理し、
酸洗処理の回数は1〜5回である。この際酢酸と5I2
03、Ce2O3の微粉は次の反応する。
S dust is generally expensive, and if you purchase 8 batches of raw materials, Ce will be included. Therefore, the 512CO17 type contains more Ce (
Slo, 5ceo, 5) Rare earth permanent magnets of 2CO1□ are often selected. This (S■o, 5Ceo,
5) Target values for the composition of 2CO17 rare earth permanent magnet are Sm = 11.8wt%, Ce = 11.8wt%
, Fe=15wt%, Cu=4.5wt%, Zr
= 3.0wt%, Co=Ba1wt% is Sm+Ce
= 23.6%, which is advantageous. However, here Sm=26wt%, Fe=15wt%, Cu=4.5
This is an example in which Co is mixed in wt%, zr=3 wt%, and Co=Ba1 wt%. Sm2O3, Ce2O in grinding waste
3 and CO2O3, an overwhelmingly large amount of Sl2O3 and Ce20r are generated, and in order to acid-treat the grinding waste, the weight of the grinding waste [kg] and the amount of 2 volume % acetic acid solution with a pH of 3.5 to 5.5 [1] The grinding chips are put into an acid solution with a ratio of 1=6, and the grinding chips are stirred and pickled in the acid solution for 20 to 30 minutes,
The number of times of pickling treatment is 1 to 5 times. At this time, acetic acid and 5I2
03, Ce2O3 fine powder undergoes the following reaction.

S■203+C■3C00H=S■2 (CLCOO)
 3 + CO2+H20CezO3+CH3CO0H
= Cez (CH3COO) 3 + CO2+H2
0酢酸サマリウム塩5112 (CH3COO) 3と
酢酸セリウム塩Ce2(CH3COO) 3は酸洗で、
洗われて流れて、残るのは求める512−Co系希土類
永久磁石の粉末である。
S■203+C■3C00H=S■2 (CLCOO)
3 + CO2+H20CezO3+CH3CO0H
= Cez (CH3COO) 3 + CO2+H2
0 samarium acetate 5112 (CH3COO) 3 and cerium acetate Ce2 (CH3COO) 3 are acid-washed,
After being washed away, what remains is the desired 512-Co rare earth permanent magnet powder.

今まで31203やCe2O:+の微粉があって、これ
が磁石の組成としては不要で、しかも磁気特性を悪くす
るので、研削屑が原料として使用出来なかった理由であ
る。このSl2O3とCe2O3を酢酸で酸洗すること
で酢酸サマリウム塩S12 (CH3COO) 3、酢
酸セリウム塩Ce2(CH3COO) 3として処理し
て、除去することによって研削屑が原料として使用出来
ることがわかった。
Up until now, there have been fine powders of 31203 and Ce2O:+, which are unnecessary in the composition of magnets and deteriorate magnetic properties, which is why grinding waste could not be used as a raw material. It was found that the grinding waste could be used as a raw material by treating and removing the Sl2O3 and Ce2O3 as samarium acetate salt S12 (CH3COO) 3 and cerium acetate salt Ce2 (CH3COO) 3 by pickling with acetic acid.

〔実施例〕〔Example〕

本発明を以下の実施例に基づき、詳細に説明する。 The present invention will be explained in detail based on the following examples.

5s−Co希土類永久磁石の研削屑を研削屑の状態のま
ま再利用する為に以下の様な、PHが3.5〜5.5の
酸処理を該研削屑に施した。該研削屑を酸処理するため
に研削屑重量[kg]とPHが3.5〜5.5の酸溶液
量[1]の比率が1:6の比率で2体積パーセント酢酸
を使用し、PH= 3.5〜5,5の酸溶液中に投入し
、酸溶液中に於て、20〜30分間攪拌し酸洗処理を行
った。酸洗処理の回数は1〜5回行った。その後肢研削
屑中に残留した酸を取り除くために、純水による洗浄を
1〜3回行った。該洗浄の攪拌時間は5〜15分間とし
た。その後、該純水中に研削屑を放置すると、酸処理に
より酸化物がはがされ、活性化した研削屑が再度、純水
中の酸素と反応し、8膳の酸化物を形成するため、アル
コールで1〜4回洗浄を行った。該攪拌時間は20〜3
0分間とした。
In order to reuse the grinding waste of the 5s-Co rare earth permanent magnet in the state of grinding waste, the grinding waste was subjected to the following acid treatment with a pH of 3.5 to 5.5. In order to acid-treat the grinding waste, 2 volume percent acetic acid was used at a ratio of 1:6 between the weight of the grinding waste [kg] and the amount of acid solution [1] with a pH of 3.5 to 5.5. = 3.5 to 5.5, and stirred in the acid solution for 20 to 30 minutes to perform pickling treatment. The pickling treatment was performed 1 to 5 times. Washing with pure water was performed 1 to 3 times to remove residual acid in the hindlimb grinding debris. The stirring time for this washing was 5 to 15 minutes. After that, when the grinding waste is left in the pure water, the oxide is removed by acid treatment, and the activated grinding waste reacts with oxygen in the pure water again to form eight oxides. Washing with alcohol was performed 1 to 4 times. The stirring time is 20-3
The duration was 0 minutes.

その後N2加圧及び真空乾燥によりこの研削屑を乾燥粉
末状態にした。
Thereafter, this grinding waste was made into a dry powder state by applying N2 pressure and vacuum drying.

この段階に於ては分析した結果、この研削屑の組成がS
m=25〜38wt%、Fe= O〜16wt%、Cu
=0〜4.5wt%、 Zr= O〜3.Owt%、 
Co= 50〜65wt%である。2−17型5rs−
Co系希土類永久磁石の目標の組成の配合はSm= 2
6wt%、Fe=15wt%、Cu= 4.5wt%、
Zr= 3 wt%、Co= Ba1wt%であるので
研削屑を分析して、研削屑の成分を鑑み、2−17型S
鳳−Co系希土類永久磁石としての性能が得られる上記
の目標の組成に、組成調成する。溶解法により製造され
た組成調整用の2−17型S■−Co系希土類永久磁石
の原料を、酸洗処理後この研削屑と5:5の比率で混合
し、2−17型Sm−Co系希土類永久磁石の原料粉末
として2−17型5s−Co系希土類永久磁石の原料と
して使用する。
At this stage, analysis revealed that the composition of the grinding debris was S.
m=25~38wt%, Fe=O~16wt%, Cu
=0~4.5wt%, Zr=O~3. Owt%,
Co=50 to 65 wt%. 2-17 type 5rs-
The target composition of the Co-based rare earth permanent magnet is Sm=2
6wt%, Fe=15wt%, Cu=4.5wt%,
Since Zr = 3 wt% and Co = Ba 1 wt%, the grinding waste was analyzed and, considering the components of the grinding waste, type 2-17 S was selected.
The composition is adjusted to the above-mentioned target composition that provides the performance as an Otori-Co rare earth permanent magnet. The raw material for a 2-17 type S■-Co rare earth permanent magnet for composition adjustment manufactured by the melting method is mixed with this grinding waste at a ratio of 5:5 after pickling treatment to form a 2-17 type Sm-Co rare earth magnet. The powder is used as a raw material powder for a 2-17 type 5s-Co rare earth permanent magnet.

その後、以上により作製した2−17型S鳳−Co系希
土類永久磁石の原料の粉末を、磁界中で圧縮成形し、焼
結溶体処理を行った。焼結は不活性ガス雰囲気あるいは
真空雰囲気中で1180〜b 間で保持し、1100〜1210℃X0.5〜3時間時
間化処理を施した後急冷する。その後時効処理とじて8
00℃×1〜40時間保持し、50〜150(℃/待時
間で徐冷後、300℃以下で急冷する。
Thereafter, the raw material powder of the 2-17 type S-Co rare earth permanent magnet produced as described above was compression molded in a magnetic field and subjected to sintering solution treatment. The sintering is performed by maintaining the temperature between 1180°C and 1210°C in an inert gas atmosphere or vacuum atmosphere, and subjecting the material to temperature treatment at 1100°C to 1210°C for 0.5 to 3 hours, followed by rapid cooling. After that, the aging process is completed 8
Hold at 00°C for 1 to 40 hours, slowly cool at 50 to 150°C/waiting time, and then rapidly cool to 300°C or less.

以上により得られた比重の関係と磁気特性の関係を第1
図に示す。
The relationship between the specific gravity and the magnetic properties obtained above is the first
As shown in the figure.

第1図に示すように、第1図は研削屑と2−17型S鵬
−Co希土類永久磁石の原料5:5の配合したときの諸
特性の関係を求めたグラフである。第1図(a)は比重
との関係を求めたグラフで酸処理により酸化物が完全に
取り除かれないためか、焼結密度ρが8.05〜8.0
9g/cm3(通常p = 8.2〜8.4g/cm3
)と多少低かった。
As shown in FIG. 1, FIG. 1 is a graph showing the relationship between various properties when grinding waste and raw materials for a 2-17 type S-Co rare earth permanent magnet are mixed in a ratio of 5:5. Figure 1 (a) is a graph showing the relationship with specific gravity. Perhaps because oxides are not completely removed by acid treatment, the sintered density ρ is 8.05 to 8.0.
9g/cm3 (usually p = 8.2-8.4g/cm3
) was somewhat low.

即ち、512CO17中研削層になる過程でもっとも変
動するのはSlであるから8膳の重量%を横軸にとって
、その変動を調べ、そのときに第1図(a)は比重、第
1図(b)磁気特性である残留磁束密度Br、角形比と
して第1図(c)はHx/+Hc、第1図(d)はエネ
ルギー積として(BH)膳aX、抗磁力Heとして第1
図(e)はBHC1第1図(f)は1トの諸特性をみた
グラフである。
In other words, since it is Sl that fluctuates the most in the process of forming the 512CO17 medium grinding layer, we examine its fluctuations by taking the weight percent of 8 pieces on the horizontal axis. b) Residual magnetic flux density Br, which is a magnetic property, Hx/+Hc in Figure 1(c) as a squareness ratio, Hx/+Hc in Figure 1(d) as an energy product, and 1 as a coercive force He.
Figure (e) is a graph showing various characteristics of BHC1. Figure 1 (f) is a graph showing various characteristics of BHC1.

グラフ中、Aは本実施例のグラフであり、Bは比較例と
して、成分が研削屑を使用しない新規原料を使用した目
標通りに入ったSm=26wt%、Fe=15wt%、
 Cu= 4.5wt%、 Zr=  3 wt%、C
o=残wt%のときのAと対応する諸特性である。
In the graph, A is a graph of the present example, and B is a comparative example, in which the components were as expected using a new raw material that does not use grinding waste, Sm = 26 wt%, Fe = 15 wt%,
Cu = 4.5 wt%, Zr = 3 wt%, C
These are various characteristics corresponding to A when o=remaining wt%.

しかしながらAの印はこのように酸処理をした研削屑を
使用したときの分析値でねらいをS鵬で26%にしたに
もかかわらず25.5〜25.9wt%とばらつき、比
較例としたBの黒い丸印は殆どばらつきがなく、25.
9wt%に分析値が入っているので、全て生の原料を使
用した方が目標の成分値にばらつきが少なく配合出来る
ことを示しているといえる。
However, the mark A indicates the analysis value when using acid-treated grinding waste, and although the aim was 26% with Sho, it varied from 25.5 to 25.9 wt%, and was used as a comparative example. There is almost no variation in the black circles in B, and 25.
Since the analytical value is at 9wt%, it can be said that it is possible to blend the target component values with less variation if all raw materials are used.

第1図をみるかぎりでは磁気特性に於ては、2−17型
S■−Co系希土類永久磁石合金としては、十分2−1
7型S層−Co系希土類永久磁石の性能を持っているの
で、研削屑は原料として使用出来る。
As far as we can see from Figure 1, in terms of magnetic properties, 2-1 is sufficient as a 2-17 type S■-Co rare earth permanent magnet alloy.
Since it has the performance of a 7 type S layer-Co rare earth permanent magnet, the grinding waste can be used as a raw material.

従って、実質的な工程及びコストの増大無しに、該研削
屑を2−17型5l−Co希土類永久磁石合金として再
利用できる永久磁石が製造可能となった。
Therefore, it has become possible to manufacture a permanent magnet in which the grinding waste can be reused as a 2-17 type 5l-Co rare earth permanent magnet alloy without substantial increase in process and cost.

以下余白 ハ1発明の効果 〔発明の効果〕 以上述べたごとく本発明によれば、5厘−Co希土類永
久磁石合金研削屑を工程及びコストの増大が無く再生可
能であるという利点を持つため、最終的な原料コストの
低減が計れ、通常に比べ安価な2−17型5in−Co
希土類永久磁石合金の提供が可能となった。
1. Effects of the Invention [Effects of the Invention] As described above, the present invention has the advantage that 5-Co rare earth permanent magnet alloy grinding waste can be recycled without increasing the process or cost. 2-17 type 5in-Co which can reduce the final raw material cost and is cheaper than usual
It is now possible to provide rare earth permanent magnet alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸洗処理した研削屑を原料として使用
したときの2−17型S層−Co系希土類永久磁石の比
重、残留磁束密度、Hx/+Hc、エネルギー積、BH
C% IHCの諸特性をみたグラフである。 第1図(a)はS■重量%と比重との関係のグラフ。 第1図(b)はSm重量%と残留磁束密度との関係のグ
ラフ。 第1図(c)はSm重量%とHK/IHC角型比との関
係のグラフ。 第1図(d)はS厘重量%とエネルギー積との関係のグ
ラフ。 第1図(e)はSm重量%とJCとの関係のグラフ。 第1図(f)は81重量%とrHcとの関係のグラ乙A
は本発明の研削屑使用の2−17型S−−Co系希土類
永久磁石の特性のグラフ。 Bは新しい原料のみによって配合した2−17型S履−
Co系希土類永久磁石の特性のグラ乙
Figure 1 shows the specific gravity, residual magnetic flux density, Hx/+Hc, energy product, and BH of a 2-17 type S-layer Co-based rare earth permanent magnet using the pickled grinding waste of the present invention as a raw material.
C% This is a graph showing various characteristics of IHC. FIG. 1(a) is a graph of the relationship between S■ weight % and specific gravity. FIG. 1(b) is a graph of the relationship between Sm weight % and residual magnetic flux density. FIG. 1(c) is a graph of the relationship between Sm weight % and HK/IHC squareness ratio. FIG. 1(d) is a graph of the relationship between S weight % and energy product. FIG. 1(e) is a graph of the relationship between Sm weight % and JC. Figure 1(f) shows the relationship between 81% by weight and rHc.
is a graph of the characteristics of a 2-17 type S--Co rare earth permanent magnet using grinding waste according to the present invention. B is a 2-17 type S shoe made with only new raw materials.
Characteristics of Co-based rare earth permanent magnets

Claims (1)

【特許請求の範囲】[Claims] 1.Sm−Co系希土類永久磁石の研削屑をPHが3.
5〜5.5の弱い酸で酸処理し、該研削屑の表面の酸化
物を除去し、Sm−Co系希土類永久磁石用の原料と配
合して、前記研削屑をSm−Co系希土類永久磁石とし
て性能が得られるように組成調整して、前記研削屑をS
m−Co系希土類永久磁石の原料とすることを特徴とす
るSm−Co系希土類永久磁石の製造方法。
1. Grinding waste of Sm-Co rare earth permanent magnet has a pH of 3.
The grinding waste is treated with a weak acid of 5 to 5.5 to remove oxides on the surface of the grinding waste, and mixed with raw materials for Sm-Co rare earth permanent magnets. The composition is adjusted so that the performance as a magnet can be obtained, and the grinding waste is
A method for producing an Sm-Co rare earth permanent magnet, characterized in that the method is used as a raw material for an m-Co rare earth permanent magnet.
JP2261647A 1990-09-28 1990-09-28 Manufacture of sm-co rare earth permanent magnet Pending JPH04137702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2261647A JPH04137702A (en) 1990-09-28 1990-09-28 Manufacture of sm-co rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2261647A JPH04137702A (en) 1990-09-28 1990-09-28 Manufacture of sm-co rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH04137702A true JPH04137702A (en) 1992-05-12

Family

ID=17364810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2261647A Pending JPH04137702A (en) 1990-09-28 1990-09-28 Manufacture of sm-co rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH04137702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343616A (en) * 2001-05-15 2002-11-29 Tdk Corp Method for manufacturing oxide containing rare earth element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343616A (en) * 2001-05-15 2002-11-29 Tdk Corp Method for manufacturing oxide containing rare earth element

Similar Documents

Publication Publication Date Title
JP6506361B2 (en) Method of manufacturing R-Fe-B sintered magnet
JP2007284738A (en) Method for producing rare earth permanent magnet material
JP2007287875A (en) Process for producing rare earth permanent magnet material
CN111362687A (en) Permanent magnetic ferrite and preparation method thereof
KR100374706B1 (en) Production method of Fine powder of Nd-Fe-B Alloy
CN113121217A (en) Soft magnetic ferrite material and preparation method thereof
JPH04328805A (en) Anisotropic configuration soft magnet alloy powder and manufacture thereof
JPH04137702A (en) Manufacture of sm-co rare earth permanent magnet
JPS61114505A (en) Manufacture of permanent magnet
CN113956030A (en) MnZn power ferrite pot-shaped magnetic core with high mechanical strength and preparation method thereof
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
CN100508082C (en) Rare-earth iron-boron binding electromagnetic material and its production
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JP2765964B2 (en) Manufacturing method of high permeability ferrite core
JPH10321451A (en) Rare earth sintered magnet manufacturing method
CN115881420A (en) Dry pressing manufacturing method of ferrite I-shaped magnetic core
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JPS60125338A (en) Production of permanent magnet alloy
JP2870996B2 (en) Regeneration method of ferrite polishing powder
JPS58161710A (en) Production of ferromagnetic powder
JPS63138707A (en) Manufacture of rco5-type rare earth alloy powder for production of rare earth bond magnet
JP2938260B2 (en) Microcrystalline ferrite
JPS62192568A (en) Production of magnet consisting of rare earth cobalt
JPS6119084B2 (en)