JPH0413609Y2 - - Google Patents

Info

Publication number
JPH0413609Y2
JPH0413609Y2 JP1986130977U JP13097786U JPH0413609Y2 JP H0413609 Y2 JPH0413609 Y2 JP H0413609Y2 JP 1986130977 U JP1986130977 U JP 1986130977U JP 13097786 U JP13097786 U JP 13097786U JP H0413609 Y2 JPH0413609 Y2 JP H0413609Y2
Authority
JP
Japan
Prior art keywords
axis
moving
balls
center
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986130977U
Other languages
Japanese (ja)
Other versions
JPS6335902U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986130977U priority Critical patent/JPH0413609Y2/ja
Publication of JPS6335902U publication Critical patent/JPS6335902U/ja
Application granted granted Critical
Publication of JPH0413609Y2 publication Critical patent/JPH0413609Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length-Measuring Instruments Using Mechanical Means (AREA)

Description

【考案の詳細な説明】 〈利用分野〉 この考案は主として三次元座標測定機、工作機
械等の直交運動の直角度誤差検査用のゲージに関
するものである。
[Detailed Description of the Invention] <Field of Application> This invention mainly relates to a gauge for inspecting squareness errors in orthogonal motion of three-dimensional coordinate measuring machines, machine tools, and the like.

〈従来技術〉 上記のような直交運動を有する高精度機械にお
いて、直交精度を向上あるいは維持させる為の直
角度の検査装置としてオートコリメータ又はレー
ザ光線を使用する高精度検査装置が提供されてい
るが、装置が複雑、高価であるだけでなく、その
取り扱い、操作が面倒で検査に長時間を要し、日
常的な利用には一般的ではなかつた。これに対し
て極めて簡単な方法として利用されている直角ゲ
ージ、円筒スコヤー等はそれ自体の高精度加工に
限界があり、また取り扱い方により誤差が出やす
いだけでなく、ゲージ自身の検定も困難であつ
た。
<Prior Art> In high-precision machines having orthogonal motion as described above, high-precision inspection devices that use autocollimators or laser beams are provided as squareness inspection devices to improve or maintain orthogonality accuracy. However, the equipment was not only complicated and expensive, but also difficult to handle and operate, requiring a long time for testing, and was not commonly used for daily use. On the other hand, right angle gauges, cylindrical scorers, etc., which are used as extremely simple methods, have limitations in their own high-precision machining, and not only are errors likely to occur depending on how they are handled, but it is also difficult to verify the gauge itself. It was hot.

また、実願昭52−154627号に同一原理の出願が
示されているが、これでは中心軸の円筒の支持機
構が複雑で軸の回転により誤差が生ずる欠点があ
り、かつ従動部の測定対象部のバーが直線上の任
意に設定された点であるので、測定点の精密な決
定がしにくく、精度上おもわしくなかつた。
Furthermore, Utility Model Application No. 52-154627 has been filed based on the same principle, but this has the drawback that the support mechanism for the cylinder of the central shaft is complicated and errors occur due to rotation of the shaft, and the object to be measured in the driven part is Since the bar in the section is an arbitrarily set point on a straight line, it is difficult to determine the measurement point precisely, and the accuracy is not good.

〈本案の目的〉 本案は上記の如き点に鑑みて考案されたもの
で、前記簡易ゲージよりも高精度の検査が可能で
あつてしかも実用的で構造、操作等が簡単な直角
度ゲージを提供しようとするものである。
<Purpose of the present invention> The present invention was devised in view of the above-mentioned points, and provides a squareness gauge that is capable of higher precision inspection than the above-mentioned simple gauges, is practical, and is simple in structure and operation. This is what I am trying to do.

〈実施例〉 以下に本案の好適な実施例を図面により説明す
る。
<Example> A preferred example of the present invention will be described below with reference to the drawings.

第1図、第2図に示すように、長方形のベース
1の一端に上向きの円錐形の受座2を形成し、他
端側にはベース1の長手方向と同方向に溝を設け
たV溝受座3を形成している。4,5はそれぞれ
真球度のよい支持球であり、連結軸6で連結され
て、それぞれ前記両受座2,3上に載置されるよ
うにしている。しかして前記ベース1の底面及び
受座2,3は前記支持球4,5の着座時に該底面
と支持球の中心部を結ぶY−Yとが平行になるよ
うに形成している。7は前記連結軸6の中間部か
ら該軸に略直角に立設した移動軸であり、その先
端部には基準部として真球度のよい移動球8が取
り付けられている。9は移動球8の回動セツト時
に、作業性がよいように移動球8を支持球4,5
と略同一高さに安定させるべく移動軸7の先端寄
りに取り付けたストツパであり、該移動軸7の反
対面にも取り付けており、又は1本のストツパ9
を着脱式にして安定支持側に交換できるようにし
ている。10はマグネツトであり、一方の支持球
4が着座する受座2の底部に埋設しているもの
で、支持球4を安定的に着座させる。
As shown in FIGS. 1 and 2, a conical catch seat 2 facing upward is formed at one end of a rectangular base 1, and a groove is provided at the other end in the same direction as the longitudinal direction of the base 1. A groove catch seat 3 is formed. Support balls 4 and 5 each have good sphericity, and are connected by a connecting shaft 6 so as to be placed on the respective seats 2 and 3. The bottom surface of the base 1 and the seats 2, 3 are formed so that when the support balls 4, 5 are seated, Y--Y, which connects the bottom surface and the center of the support balls, becomes parallel. Reference numeral 7 denotes a moving shaft extending from the intermediate portion of the connecting shaft 6 at a substantially right angle to the shaft, and a moving ball 8 having good sphericity is attached to the tip end thereof as a reference portion. Reference numeral 9 indicates that the movable ball 8 is attached to the support balls 4 and 5 in order to improve workability when rotating and setting the movable ball 8.
This is a stopper attached near the tip of the moving shaft 7 in order to stabilize it at approximately the same height as
It is made removable so that it can be replaced with the stable support side. A magnet 10 is embedded in the bottom of the seat 2 on which one of the supporting balls 4 is seated, and allows the supporting balls 4 to be seated stably.

上記の如き構成において次に本案ゲージで三次
元座標測定機(図示せず)の移動コラム(X,Y
移動)、Z軸等の直角精度を検査する場合を第3
図により説明する。
In the configuration as described above, the moving column (X, Y) of the three-dimensional coordinate measuring machine (not shown) is then
The third test is when inspecting the perpendicular accuracy of the Z-axis, etc.
This will be explained using figures.

まず、前記測定機のテーブル上に、該測定機の
y軸と略平行に本案ゲージの支持球4,5の仮想
中心線を位置させてベース1を載置する。そし
て、測定機のプローブにより支持球4,5の中心
座標を検出し、その中心点を結ぶ線を中心線Y−
Y、即ちY軸方向基準軸とする。次いで、一方側
に倒して安定させた移動球8の中心座標Pを同様
にプローブで検出する(第3図、実線状態)。次
に、中心線Y−Yを中心として移動球8を180°反
転(第2図、第3図の点線状態)させて、その位
置における移動球8の中心座標P1を、同様にプ
ローブで検出する。移動軸7が中心線Y−Yに対
して傾いて立設されていても、移動球8の平面上
における反転軌跡はこれを中心線X−Xとすれば
中心線Y−Yに対し直角となるので、上記により
PおよびP1点のY軸方向の座標値の差が検出さ
れれば、それがX軸に対する測定機のY軸方向の
直角度誤差として求められることになる。
First, the base 1 is placed on the table of the measuring machine with the imaginary center line of the support balls 4 and 5 of the proposed gauge positioned approximately parallel to the y-axis of the measuring machine. Then, the center coordinates of the support balls 4 and 5 are detected by the probe of the measuring machine, and a line connecting the center points is drawn as the center line Y-
Y, that is, the Y-axis direction reference axis. Next, the center coordinates P of the moving ball 8, which has been tilted to one side and stabilized, is similarly detected by the probe (FIG. 3, solid line state). Next, the moving sphere 8 is inverted 180 degrees around the center line Y-Y (dotted line state in Figures 2 and 3), and the center coordinate P1 of the moving sphere 8 at that position is similarly determined using a probe. To detect. Even if the moving axis 7 is tilted to the center line Y-Y, the reversal locus of the moving ball 8 on the plane will be perpendicular to the center line Y-Y if this is the center line X-X. Therefore, if the difference between the coordinate values of one point P and P in the Y-axis direction is detected as described above, it will be determined as the squareness error of the measuring machine in the Y-axis direction with respect to the X-axis.

また、X軸に対する測定機のZ軸方向の直角度
については、理解が容易なように、移動軸7を鉛
直に立て、即ち移動球8の中心点をY−Y線上に
位置させたとする。そうすると、該鉛直位置にお
ける移動球8の中心座標P2のX−Y座標値は判
明しているので、該移動球8にプローブを接触さ
せ、そのときの座標P2のプローブによる読取値
と比較すれば、測定機のZ軸の上下方向移動量、
即ちプローブの第3図におけるO点からP2まで
の移動によるZ方向の鉛直度、換言すればY軸に
対する測定機のZ軸の直角度誤差が求められるこ
とになる。このZ方向については、移動球8のX
方向軌跡は中心線X−Xと同一であり、その高さ
位置(Z方向)が異なるだけであるので、上記の
如く必ずしも鉛直位置にて測定する必要はなく、
傾いてもよいのであるが、精度を上げる為にはZ
軸方向の移動量は大きい方がよく、従つて基準部
が最大高さとなる略鉛直位置が好ましいことはい
うまでもない。
Regarding the perpendicularity of the Z-axis direction of the measuring device to the X-axis, for ease of understanding, it is assumed that the moving axis 7 is set vertically, that is, the center point of the moving ball 8 is located on the YY line. Then, since the X-Y coordinate values of the center coordinate P 2 of the moving sphere 8 at the vertical position are known, the probe is brought into contact with the moving sphere 8 and compared with the value read by the probe at the coordinate P 2 at that time. Then, the amount of vertical movement of the measuring machine on the Z axis,
That is, the verticality in the Z direction due to the movement of the probe from point O to P2 in FIG. 3, in other words, the perpendicularity error of the Z axis of the measuring device with respect to the Y axis is determined. Regarding this Z direction, the X of the moving ball 8
The direction locus is the same as the center line XX, and the only difference is the height position (Z direction), so it is not necessarily necessary to measure at the vertical position as described above.
It may be tilted, but in order to improve accuracy
It goes without saying that the larger the amount of movement in the axial direction, the better, and therefore a substantially vertical position where the reference portion is at its maximum height is preferable.

上記方法の応用によりX軸に対するZ軸の直角
度についてもそのまま求められることは改めて説
明するまでもなく上記から自明である。
It is obvious from the above that the perpendicularity of the Z axis with respect to the X axis can also be determined as is by applying the above method, without needing to explain it again.

尚、以上の説明において所定座標値を検出する
ための基準部としては、球体として移動球8を用
いたものについて述べたが、これは座標測定機に
おいて、そのプローブの接触点に座標値から球の
中心の座標が正確に、かつ簡単に求めることがで
きる。
In the above explanation, the reference part for detecting the predetermined coordinate values was described using the moving sphere 8 as a sphere, but this is a coordinate measuring machine that uses the coordinates of the probe to detect the sphere from the coordinate values. The coordinates of the center of can be found accurately and easily.

更に又、移動軸及び基準部は1個の場合を説明
したが、連結軸6に適宜間隔で複数の基準部等を
設けてもよく、このときには複数の位置に於ける
直角度を同一ゲージ体で求めることができる。
Furthermore, although a case has been described in which there is one moving axis and one reference part, a plurality of reference parts etc. may be provided on the connecting shaft 6 at appropriate intervals. It can be found by

〈効果〉 以上に述べてきた通り、本案構成のゲージによ
れば簡単な構成であり利便性よく高精度の直角度
測定に利用できるものであつて、安価にして耐久
性、信頼性のよい直角度ゲージを提供することが
できる。
<Effects> As stated above, the gauge of the proposed configuration has a simple configuration and can be used for convenient and highly accurate squareness measurement, and it is an inexpensive, durable, and reliable gauge. Angle gauge can be provided.

本考案においては3つの球の関係位置だけか
ら、直角面の座標の検出が可能であつて、球の間
の連結軸6,7の工作精度は関係しないこと、及
び、台と回転部の接触点が少いので、工作が簡単
であり、回転による誤差が非常に少い特徴を有す
る。
In the present invention, it is possible to detect the coordinates of the orthogonal plane only from the relative positions of the three balls, and the machining accuracy of the connecting shafts 6 and 7 between the balls is not relevant, and the contact between the table and the rotating part Since there are few points, it is easy to work with, and has the characteristics of very little error due to rotation.

特に、本案ゲージは、移動軸と基準部を支持す
る部材を一対の球体として、それぞれ円錐受座及
びV溝受座に着座させるようにしたので、使用時
の温度変化による膨張伸縮にも対応しえて常に安
定した精度の信頼性のよいゲージを得ることがで
きる。
In particular, the proposed gauge has a pair of spherical members that support the moving shaft and the reference part, which are seated on conical and V-groove seats, respectively, so that it can withstand expansion and contraction due to temperature changes during use. You can always obtain a reliable gauge with stable accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の平面図、第2図は第1図の
−線断面図、第3図は本案ゲージの使用状態説
明図である。 1……ベース、2……円錐受座、3……V溝受
座、4,5……支持球、6……連結軸、7……移
動軸、8……基準部、9……ストツパ、10……
マグネツト。
FIG. 1 is a plan view of the present invention, FIG. 2 is a sectional view taken along the line -- in FIG. 1...Base, 2...Conical catch, 3...V groove catch, 4, 5...Support ball, 6...Connection shaft, 7...Movement axis, 8...Reference part, 9...Stopper , 10...
Magnet.

Claims (1)

【実用新案登録請求の範囲】 底部にマグネツトを埋設した円錐受座とV溝受
座を両端部に形成したベースと、 該受座にそれぞれ回転自在に着座し、連結され
た2つの支持球と、 支持球間の連結部にほぼ直角に取付けられ、先
端に基準球を設けた移動軸とにより構成したこと
を特徴とする直角度ゲージ。
[Scope of Claim for Utility Model Registration] A base having a conical catch with a magnet embedded in the bottom and a V-groove catch at both ends, two supporting balls rotatably seated on the seats and connected to each other. , A squareness gauge characterized in that it is attached almost at right angles to the connecting part between the support balls and is constructed by a moving shaft having a reference ball at the tip.
JP1986130977U 1986-08-26 1986-08-26 Expired JPH0413609Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986130977U JPH0413609Y2 (en) 1986-08-26 1986-08-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986130977U JPH0413609Y2 (en) 1986-08-26 1986-08-26

Publications (2)

Publication Number Publication Date
JPS6335902U JPS6335902U (en) 1988-03-08
JPH0413609Y2 true JPH0413609Y2 (en) 1992-03-30

Family

ID=31028993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986130977U Expired JPH0413609Y2 (en) 1986-08-26 1986-08-26

Country Status (1)

Country Link
JP (1) JPH0413609Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6360448B2 (en) * 2015-02-18 2018-07-18 株式会社浅沼技研 Right angle step gauge

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481756U (en) * 1977-11-17 1979-06-09

Also Published As

Publication number Publication date
JPS6335902U (en) 1988-03-08

Similar Documents

Publication Publication Date Title
EP1225423B1 (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
KR100616483B1 (en) Gauge for three-dimensional coordinate measurer
US6493957B1 (en) Ball step gauge
JP3005681B1 (en) CMM calibration gauge and CMM calibration method
US6418774B1 (en) Device and a method for calibration of an industrial robot
JP4504818B2 (en) Workpiece inspection method
JPH0236881B2 (en)
US5134781A (en) Geometric simulator for coordinate measuring machine
US5649368A (en) Method for calibrating a coordinate measuring apparatus having two pivot axes
CN107255453B (en) A kind of industrial robot joint retarder eccentric shaft diameter measurement device and method
JP3993784B2 (en) Multidimensional coordinate measuring machine performance evaluation method, multidimensional coordinate measuring machine calibration gauge and calibration gauge jig
CN105115407A (en) Portable multifunctional planeness detection device and application method therefor
JP3427376B2 (en) Combination type calibration gauge
JPH0413609Y2 (en)
JP2001212737A (en) Correction of probe chord error
TW519504B (en) 3D errors measurement device and method
JPH08122050A (en) Contour shape-measuring method and tool for measurement
CN107990813A (en) The detection method of shaft end rectangle keyway plane symmetry site error
CN219319276U (en) Detection device for diameter of outer spherical surface
JPS62135711A (en) Measuring instrument for sphere
JPH0544722Y2 (en)
KR19980017628U (en) Tap Hole Measuring Gauge for 3D Measuring Device
JPS63163202A (en) Block for accuracy inspection
JP6761703B2 (en) Measured object measuring device and measured object measuring method
JPS6038161Y2 (en) Reference block for measuring machine