JPH04135602A - Electrolytic desalter - Google Patents

Electrolytic desalter

Info

Publication number
JPH04135602A
JPH04135602A JP25434790A JP25434790A JPH04135602A JP H04135602 A JPH04135602 A JP H04135602A JP 25434790 A JP25434790 A JP 25434790A JP 25434790 A JP25434790 A JP 25434790A JP H04135602 A JPH04135602 A JP H04135602A
Authority
JP
Japan
Prior art keywords
oil
water
electrode
desalination
water droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25434790A
Other languages
Japanese (ja)
Other versions
JP2766720B2 (en
Inventor
Kazuto Kobayashi
一登 小林
Masahito Kaneko
雅人 金子
Michio Haneda
羽田 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25434790A priority Critical patent/JP2766720B2/en
Publication of JPH04135602A publication Critical patent/JPH04135602A/en
Application granted granted Critical
Publication of JP2766720B2 publication Critical patent/JP2766720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To desalt oil with a one-stage desalting bath in an electrode structure by connecting plural sheets at regular intervals by providing plural protrusions on both sides of the electrode sheet. CONSTITUTION:An mineral oil is desalted in the presence of water in this electrolytic desalter. In this case, plural electrode sheets 111(a) and 111(b) are connected at regular intervals to form a structure. Plural protrusions 113 are provided on both sides of the electrode sheet. Namely, fine water droplets in the oil are agglomerated close to the protrusion in the nonuniform electric field generated by charging the electrode sheet, and the water droplet in oil and the salt dissolved in the water droplet are efficiently removed. Consequently, oil is desalted with this one-stage desalting bath.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉱物油、例えば原油、重質油、燃燃油、石油精
製残渣油、石炭液化油、オイルサンド油、シェールオイ
ル等の合成原油の脱水、脱塩装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to mineral oils, such as crude oil, heavy oil, fuel oil, petroleum refinery residue oil, coal liquefied oil, oil sand oil, shale oil, and other synthetic crude oils. Regarding dehydration and desalination equipment.

〔従来の技術〕[Conventional technology]

従来の電気脱塩装置の原理を第5図によって説明し、装
置構成を第6図〜第9図に示す。従来の電気脱塩装置は
原油に対し数%〜10数%の真水もしくは塩分濃度の低
い塩水を希釈水として注入、混合攪拌し、原油中の塩分
を該希釈水中に移行させると共に、水滴径の増大、水滴
数を増加させた油中水滴型エマルジョンに高電圧の電場
をかけることにより、含塩水粒子の凝集を促進させてい
る。凝集した含塩水は原油との比重差によって沈降させ
、原油から分離している。
The principle of a conventional electrical desalination device will be explained with reference to FIG. 5, and the device configuration is shown in FIGS. 6 to 9. Conventional electrical desalination equipment injects fresh water or salt water with a low salinity concentration of several percent to ten-odd percent of crude oil as dilution water, mixes and stirs the crude oil, transfers the salt in the crude oil into the dilution water, and reduces the diameter of water droplets. By applying a high voltage electric field to a water-in-oil emulsion with an increased number of water droplets, the aggregation of saline water particles is promoted. The flocculated salt water is separated from the crude oil by settling due to the difference in specific gravity between it and the crude oil.

第5図に電場内にある含塩水粒子の帯電状態を示す。第
5図において、1はプラス電極、2はマイナス電極、3
は帯電した粒子、4は電界の方向、5は帯電した粒子間
に働く吸引力を示す。
FIG. 5 shows the charged state of salt-containing water particles in an electric field. In Figure 5, 1 is a positive electrode, 2 is a negative electrode, 3
indicates the charged particles, 4 indicates the direction of the electric field, and 5 indicates the attractive force acting between the charged particles.

電場内にて帯電した含塩水粒子間に働く力は次式で示さ
れる。
The force acting between charged saline water particles in an electric field is expressed by the following equation.

〔F:含塩水粒子間の吸引力、E:電位傾度、a:含塩氷粒の半径、d:含塩水粒子間の距離、K:定数〕[F: Attraction force between salt water particles, E: Potential gradient, a: Radius of salt water particles, d: Distance between salt water particles, K: Constant]

この式で示されるように原油中の含塩水の粒子間に働く
吸引力は、粒径の6乗に比例し、中心間距離の4乗に反
比例する。このため、原油中に数%乃至10数%の希釈
水を注入し、攪拌することによって原油中の含塩水粒子
数を増加させ、凝集をさらに促進する。
As shown by this equation, the suction force acting between particles of salt water in crude oil is proportional to the sixth power of the particle size and inversely proportional to the fourth power of the center-to-center distance. For this reason, by injecting several percent to several ten percent of dilution water into the crude oil and stirring it, the number of salt-containing water particles in the crude oil is increased and aggregation is further promoted.

第6図に従来の電気的脱塩法の系統図を示す。FIG. 6 shows a system diagram of the conventional electrical desalination method.

原油11及び希釈水12は一般に加熱された後、混合弁
13にて混合攪拌され、ライン14を経て脱塩槽15に
入る。脱塩槽15は高電圧の電場がかけられており、含
塩水粒子は凝集し、比重差により原油より分離して含塩
排水17として系外へ排され脱塩原油16は脱塩槽15
より系外へ送られる。
Crude oil 11 and dilution water 12 are generally heated, then mixed and stirred in a mixing valve 13, and enter a desalination tank 15 via a line 14. A high-voltage electric field is applied to the desalination tank 15, and the salt water particles coagulate, are separated from the crude oil due to the difference in specific gravity, and are discharged outside the system as salt-containing waste water 17, and the desalted crude oil 16 is transferred to the desalination tank 15.
sent outside the system.

従来の電気脱塩装置を第7図、第8図によって具体的に
説明する。第7図は電気脱塩槽の縦断面、第8図は第7
図の1−1’線に沿う断面図である。
A conventional electrical desalination apparatus will be specifically explained with reference to FIGS. 7 and 8. Figure 7 is a longitudinal section of the electric desalination tank, and Figure 8 is the 7th section.
It is a sectional view taken along line 1-1' in the figure.

第7図、第8図において、201は脱塩槽、202は被
処理油供給管、203は分配管、204は集油管である
。また、この脱塩槽201内には培地電極205と、こ
の培地電極205の下方にこれと対向して設けられた高
電圧電極206が設けられており、この高電圧電極20
6には電源207から高電圧が印加される。なお、20
8はこ高電圧電極206を支持する碍子でである。そし
て、被処理油供給管202から分配管203を介して脱
塩槽201内に供給された被処理油中に含まれる微小水
滴や夾雑物等の不純物は接地電極205と高電圧電極2
06との間に生じた電界中において微小水滴が互に合体
を繰り返し、この水滴の径は次第に大きくなり、重力に
より沈降して分離される。そして、脱塩槽201の下部
に分解された水はドレン209から排出され、また微小
水滴が除去された被処理油は集油管204から排出され
る。
In FIGS. 7 and 8, 201 is a desalination tank, 202 is a treated oil supply pipe, 203 is a distribution pipe, and 204 is an oil collection pipe. Further, inside this desalination tank 201, a medium electrode 205 and a high voltage electrode 206 provided below and opposite to this medium electrode 205 are provided.
A high voltage is applied to 6 from a power supply 207. In addition, 20
8 is an insulator that supports the high voltage electrode 206. Impurities such as minute water droplets and impurities contained in the oil to be treated that is supplied from the oil to be treated supply pipe 202 to the desalination tank 201 via the distribution pipe 203 are removed from the ground electrode 205 and the high voltage electrode 201.
The minute water droplets repeatedly coalesce with each other in the electric field generated between the two water droplets, the diameter of these water droplets gradually increases, and they settle and separate due to gravity. The decomposed water in the lower part of the desalination tank 201 is discharged from the drain 209, and the oil to be treated from which minute water droplets have been removed is discharged from the oil collecting pipe 204.

なお、210は界面計であって、被処理油と分解された
水との界面212を監視する。
Note that 210 is an interface meter that monitors an interface 212 between the oil to be treated and decomposed water.

従来の電界を用いたデイツルターと呼ばれる鉱物油等の
脱塩槽は、原油中に含まれる含塩水分を高電圧の電界を
かけることにより凝集させ水滴を大きくして、重力差に
よる分離速度を増大させて効率的に脱水、脱塩するもの
であるが、水滴の凝集、分離が大粒径のものから進行す
るため、時間の経過につれ油中に残存する水滴径が小さ
いものとなり、かつ水滴量相互の距離が広がってくる。
Conventional electric field-based desalting tanks for mineral oil, etc., called Deitzruter, apply a high-voltage electric field to condense the salty water contained in crude oil, making the water droplets larger and increasing the separation speed due to the difference in gravity. However, as the water droplets coagulate and separate from the large ones, the size of the water droplets remaining in the oil becomes smaller as time passes, and the amount of water droplets decreases. The distance between them increases.

電場内の帯電した水滴間に働く力は前記(1)式に示さ
れる通りであり、水滴径の減少と水滴間距離の拡大は共
に水滴間に働く力の急激な減少を引起し、実質的に電場
内の凝集効果を期待できなくなる。その解決策のうちの
1つとして、電圧を上げる凝集力を増加させることが考
えられるが、過度の電圧の上昇は短絡の発生や高電圧装
置の導入に起因する設備コスト増等の問題があり実際的
な電圧は20.000Vが上限とされている。
The force that acts between charged water droplets in an electric field is as shown in equation (1) above, and a decrease in the diameter of the water droplets and an increase in the distance between the water droplets both cause a rapid decrease in the force that acts between the water droplets, resulting in a substantial Therefore, it becomes impossible to expect a cohesive effect within the electric field. One possible solution to this problem is to increase the cohesive force that raises the voltage, but excessive voltage increases can cause problems such as short circuits and increased equipment costs due to the introduction of high voltage equipment. The upper limit of the practical voltage is 20.000V.

また、別の解決策としてデイツルターをシリーズに設置
し、各デイツルター毎に再度希釈水を混入し油中水滴中
の塩濃度を低下を計ると共に、水滴径の増大と水滴数を
増加させ脱塩率を向上させることが行なわれている。そ
の例を第9図に示す。
Another solution is to install Daysulters in series, and mix dilution water into each Daysulter again to reduce the salt concentration in the water droplets in the oil, and increase the water droplet diameter and number of water droplets to increase the desalination rate. efforts are being made to improve the An example is shown in FIG.

第9図はデイツルターである脱塩槽をシリーズに2台設
置した一例を示しているが、この場合被分離流体である
含塩石油21は第2脱塩槽31より分離循環された希釈
水23と第1混合器22にて攪拌混合され、ライン24
を経て第1脱塩槽25へ送られる。第1脱塩槽25では
電極間で油中の水滴が合体凝集し、ドレン27として系
外に取出され、脱水脱塩された石油はライン26を経て
第2混合器28へ送られる。
FIG. 9 shows an example in which two demineralization tanks, which are Deutsulters, are installed in a series. are stirred and mixed in the first mixer 22, and the line 24
The water is then sent to the first desalination tank 25. In the first desalination tank 25, water droplets in the oil coalesce between the electrodes and are taken out of the system as a drain 27, and the dehydrated and desalted oil is sent to the second mixer 28 via a line 26.

第2混合器28にて、第1脱塩槽25にて分離処理され
た石油は、希釈水29と攪拌混合され、ライン30を経
て第2脱塩槽31に送られ、第1脱塩槽25と同様に処
理され、脱水脱塩された石油はライン32を経て系外に
送られ、こ−で分離された希釈水23は循環ポンプ34
によって第1混合器22へ送られ希釈水として使用され
る。
In the second mixer 28, the petroleum separated in the first desalination tank 25 is stirred and mixed with dilution water 29, and sent to the second desalination tank 31 via a line 30. 25, the dehydrated and desalinated petroleum is sent to the outside of the system via line 32, and dilution water 23 separated by this is sent to circulation pump 34.
is sent to the first mixer 22 and used as dilution water.

該方法では複数個の脱塩槽を設置することにより任意の
脱塩効果を上げることが可能であるが、脱塩槽の台数増
はコストの上昇原因であることや希釈水の確保等のコス
ト上昇原因が大きい問題点があり、−段で機能する高性
能脱塩槽の開発が望まれていた。
In this method, it is possible to increase the desired desalination effect by installing multiple desalination tanks, but an increase in the number of desalination tanks causes an increase in costs, and there are costs such as securing dilution water. There is a problem in that the cause of the increase is a large one, and it has been desired to develop a high-performance desalination tank that functions in the -stage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、かつ上記要望に応じ、−
段の脱塩槽により油中の脱塩を可能にする装置を提供し
ようとするものである。
The present invention has been made in view of the above-mentioned technical level and in response to the above-mentioned demands.
The present invention aims to provide a device that enables desalination in oil using stage desalination tanks.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは油中における微小水滴の凝集法を種々検討
の結果、脱塩槽の電極構造を工夫することにより、従来
の脱塩槽では達成し得なかった微小水滴を凝集させるこ
とが可能であることを確認し、本発明を完成するに至っ
た。すなわち、本発明は鉱物油を水の存在下において脱
塩する電気脱塩装置において、該装置に付設される電極
板が複数個の薄平板を等間隔に連結してなる構造体であ
って、該電極構造体は該電極板両面に複数個の突起を設
けた電極板より構成されてなることを特徴とする電気脱
塩装置である。
The present inventors have investigated various methods of coagulating micro water droplets in oil, and have found that by devising the electrode structure of the desalination tank, it is possible to coagulate micro water droplets that could not be achieved with conventional desalination tanks. We have confirmed that this is the case, and have completed the present invention. That is, the present invention provides an electric desalination apparatus for desalinating mineral oil in the presence of water, and an electrode plate attached to the apparatus is a structure in which a plurality of thin flat plates are connected at equal intervals, The electrode structure is an electrical desalination device characterized in that it is constituted by an electrode plate having a plurality of protrusions on both sides of the electrode plate.

本発明は電極板上に複数個の突起を設け、該突起近傍領
域に不平等電界を形成させ、該不平等電界中の水滴に働
く誘電泳動力によって該水滴を前記突起方向に集めるこ
とによって、各水滴間の距離、すなわち前記(1〕式に
おけるdを減少させ、各水滴間に働く吸引力を増大させ
て水滴の凝集を促すようにしたものである。
The present invention provides a plurality of protrusions on an electrode plate, forms an uneven electric field in a region near the protrusions, and collects the water droplets in the direction of the protrusions by the dielectrophoretic force acting on the water droplets in the uneven electric field. The distance between each water droplet, that is, d in the above formula (1) is reduced, and the suction force acting between each water droplet is increased to promote aggregation of the water droplets.

この手段によって油相中の微小水滴が合体、肥大して、
実質的に油相中の水分が除去され、ひいては水中に溶解
している塩分の除去が水分の除去と同時に達成される。
By this means, the minute water droplets in the oil phase coalesce and enlarge,
Substantially the water in the oil phase is removed, and thus the salts dissolved in the water are removed simultaneously with the water removal.

〔作用〕[Effect]

以下、本発明装置の電極の作用を第4図によって説明す
る。
Hereinafter, the function of the electrodes of the device of the present invention will be explained with reference to FIG.

第4図(a)は本発明の電極板41の突起部42及びそ
の近傍領域を示す作用説明図である。電極板41に荷電
することによって該突起部42近傍に不平等電界が形成
される。図中、電気力線44か平行でないことが不平等
電界性を示している。不平電界中に置かれた水滴43に
作用する力を第4図(b)に示すが、図のように水滴4
3上に誘起する電荷のため、電界強度の強い方向、すな
わち、電気力線が密な方向の方が吸引力が強く、水滴4
3は突起42方向にはゾ電気力線44に沿って移動する
FIG. 4(a) is an explanatory view showing the protrusion 42 of the electrode plate 41 of the present invention and its vicinity. By charging the electrode plate 41, an unequal electric field is formed near the protrusion 42. In the figure, the fact that the lines of electric force 44 are not parallel indicates unequal electric field properties. Figure 4(b) shows the force acting on the water drop 43 placed in an unbalanced electric field.
Due to the electric charge induced on the water droplet 4, the attraction force is stronger in the direction where the electric field strength is stronger, that is, in the direction where the electric lines of force are denser, and the water droplet 4
3 moves along the zoelectric lines of force 44 in the direction of the protrusion 42 .

第4図(C)に示すように、この移動によって、各水滴
43間の距離が減少するため、各水滴間の吸引力も急激
に増大する。(前記(1)式による)このため、油相中
の微小水滴は凝集合体し油相から分離される。
As shown in FIG. 4(C), due to this movement, the distance between each water droplet 43 decreases, and therefore the suction force between each water droplet also increases rapidly. (According to the above formula (1)) Therefore, the minute water droplets in the oil phase aggregate and coalesce and are separated from the oil phase.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図及び第3図に
よって説明する。第1図は一実施例装置の縦断面図、第
2図は第1図のI−T’線に沿う断面図であり、第3図
は本発明の特徴とする不平等電界を形成させる電極の詳
細図である。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3. FIG. 1 is a longitudinal sectional view of an embodiment of the device, FIG. 2 is a sectional view taken along line IT' in FIG. FIG.

図中、101は脱塩槽、102は被処理油供給管、10
3は分配管、104は集油管であって、被処理油は被処
理油供給管102から分配管103を介して脱塩槽10
1内に供給され、集油管104を介して排出される。そ
して、この脱塩槽101内には第1上部電極105、第
1下部電極 106及び不平等電異極を有する第2電極
対111の2対の電極対が上下に配列されている。また
、第1上部電極105、第1下部電極106及び第2電
極対群111には電源107から高電圧が印加されるよ
うに構成されている。更に、また、10Bは電極支持用
の碍子、109は分離された水を排出するドレン、11
0は被処理油と水との界面 112を監視する界面計で
ある。
In the figure, 101 is a desalination tank, 102 is a treated oil supply pipe, and 10
3 is a distribution pipe, 104 is an oil collecting pipe, and the oil to be treated is sent from the oil to be treated pipe 102 to the desalination tank 10 via the distribution pipe 103.
1 and is discharged through the oil collection pipe 104. In this desalination tank 101, two pairs of electrodes, a first upper electrode 105, a first lower electrode 106, and a second electrode pair 111 having unequal electrical polarity, are arranged one above the other. Further, a high voltage is applied to the first upper electrode 105, the first lower electrode 106, and the second electrode pair group 111 from a power source 107. Furthermore, 10B is an insulator for supporting the electrode, 109 is a drain for discharging separated water, and 11
0 is an interface meter that monitors the interface 112 between the oil to be treated and water.

以上の如く構成された本発明の一実施例装置では、被処
理油は被処理油供給管102から分配管103を介して
脱塩槽101内に供給される。そして、この被処理油中
の微小水滴は第1下部電極106と第1上部電極105
間とに生じた電界中において互いに合体して下方に沈降
し、ドレン109より排出される。すなわち、微小水滴
の大半は当該電極を通過する際に除去されるが、10μ
m以下程度の微小水滴の大半は当該電極間では合体せず
に被処理油の上方向への流れに伴い、第1上部電極10
5を通過して第2電極群111へ供給される。
In the apparatus according to the embodiment of the present invention configured as described above, the oil to be treated is supplied into the demineralization tank 101 from the oil to be treated supply pipe 102 via the distribution pipe 103. Then, the minute water droplets in the oil to be treated are transferred to the first lower electrode 106 and the first upper electrode 105.
In the electric field generated between them, they coalesce with each other, settle downward, and are discharged from the drain 109. In other words, most of the minute water droplets are removed when passing through the electrode, but 10μ
Most of the micro water droplets with a size of about m or less do not coalesce between the electrodes, but flow upwards in the oil to be treated, and are transferred to the first upper electrode 10.
5 and is supplied to the second electrode group 111.

第3図は第2電極群111をより詳細に図示したもので
あり、当該電極が不平等電界を形成する目的で、薄平板
111(a)、111ら)に突起113を設け、平行に
並べ設置している。被処理油中の微小水滴は第2電極群
111中で凝集、肥大化し、油相中を沈降する。このた
め、効率よく被処理油の脱水(脱塩)が完了する。
FIG. 3 shows the second electrode group 111 in more detail, in which the electrodes are provided with protrusions 113 on thin flat plates 111(a), 111, etc.) and arranged in parallel for the purpose of forming an uneven electric field. It is installed. The minute water droplets in the oil to be treated aggregate and enlarge in the second electrode group 111, and settle in the oil phase. Therefore, the dehydration (desalination) of the oil to be treated is completed efficiently.

第2電極群111を通過した被処理油は、はとんど水分
を含有しない油となっており、集油管104を経て脱塩
槽101より系外へ送り出される。
The oil to be treated that has passed through the second electrode group 111 contains almost no water, and is sent out of the system from the desalination tank 101 via the oil collecting pipe 104.

なお、第2電極群111は第3図に示したものに限定さ
れるものではなく平板上の突起によって不平等電界を形
成させるものであればどのような形状のものでもよい。
Note that the second electrode group 111 is not limited to that shown in FIG. 3, but may have any shape as long as it forms an uneven electric field by protrusions on a flat plate.

上述の如く本発明は、不純物を含む被処理油を収容する
脱塩槽を設けると共に、通常の脱塩槽の電極の上方に、
第2電極群を設け、これら複数の電極間に、それぞれ生
じた電界によって不純物を効率的かつ、短時間に分離す
ることができ、また電極間に印加する電圧を高くする必
要もないので火花放電の危険もない等その効果は大であ
る。
As described above, the present invention provides a demineralization tank for storing oil to be treated containing impurities, and also provides a demineralization tank above the electrodes of a normal demineralization tank.
By providing a second electrode group, impurities can be separated efficiently and in a short time by the electric field generated between these multiple electrodes, and there is no need to increase the voltage applied between the electrodes, so spark discharge The effects are great, as there is no danger of this happening.

また第2電極群111は脱塩槽101内に設置すること
に限定されるものではなく、当該脱塩槽とシリーズに設
置された脱塩槽に第2電極群を設けてもよい。
Further, the second electrode group 111 is not limited to being installed in the desalination tank 101, and the second electrode group may be installed in a desalination tank installed in series with the desalination tank.

以下、本発明を実験例をもって説明する。The present invention will be explained below using experimental examples.

2枚の薄板平板からなる電極と、表面に突起を有する薄
平板からなる電極との残留水分濃度について測定例を示
す。電極は約50mm離しており、油は灯油に粘度調整
用の流動パラフィン、食塩水、エマルジョン安定化のた
めの界面活性剤を4.3wt%、1.0wt%、0.0
5wt%混入したものを用いた。食塩水と塩分濃度約6
wt%であった。料電極に電界強度がIKV/Cmとな
るように交流荷電し、油を約1 mm / secの速
度で流通させた。結果を表に示す。
An example of measuring the residual moisture concentration of an electrode made of two thin flat plates and an electrode made of a thin flat plate having protrusions on the surface will be shown. The electrodes are separated by about 50 mm, and the oil is kerosene, liquid paraffin for viscosity adjustment, saline, and surfactant for emulsion stabilization at 4.3 wt%, 1.0 wt%, and 0.0 wt%.
A mixture containing 5 wt% was used. Salt water and salt concentration approximately 6
It was wt%. The feed electrode was charged with alternating current so that the electric field strength was IKV/Cm, and the oil was caused to flow at a rate of about 1 mm/sec. The results are shown in the table.

表: 各電極での残留水分濃度 このように突起を有する平板の方が残留水分濃度が約4
0%低くなっており、突起を設けることによって、水の
除去が効率よ〈実施されていることが分かる。
Table: Residual moisture concentration at each electrode The flat plate with protrusions has a residual moisture concentration of about 4
0%, indicating that the provision of the protrusions makes water removal more efficient.

[発明の効果] 本発明装置によれば、薄板電板上に多数の突起を設けた
電極板に荷電することによって形成される不平等電界に
おいて、油相中の微小水滴は、該電極板の突起部近傍で
凝集して肥大化し、油相中の水滴及び水滴中に溶解して
いる塩分を効率よく除去できる。
[Effects of the Invention] According to the device of the present invention, in an uneven electric field formed by charging an electrode plate having a large number of protrusions on a thin electric plate, minute water droplets in the oil phase are Water droplets in the oil phase that aggregate and enlarge near the protrusions and salt dissolved in the water droplets can be efficiently removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例装置の説明図であり
、第1図はその縦断面図、第2図は第1図のI−I’線
に沿う断面図、第3図は本発明の特徴とする不平等電界
を形成させる電極の一実施例の詳細図、第4図(a)、
ら)、(C)は本発明の詳細な説明図、第5図は電気脱
塩装置の原理の説明図、第6図は従来の電気脱塩法の系
統図、第7図、第8図は従来の電気脱塩装置の説明図、
第9図は従来の他の電気脱塩法の系統図である。
1 and 2 are explanatory diagrams of an apparatus according to an embodiment of the present invention, in which FIG. 1 is a longitudinal sectional view thereof, FIG. 2 is a sectional view taken along line II' in FIG. 1, and FIG. The figure is a detailed view of one embodiment of an electrode that forms an unequal electric field, which is a feature of the present invention, and FIG. 4(a).
(3) and (C) are detailed explanatory diagrams of the present invention, Fig. 5 is an explanatory diagram of the principle of the electrodesalination apparatus, Fig. 6 is a system diagram of the conventional electrodesalination method, Figs. 7 and 8. is an explanatory diagram of a conventional electrical desalination equipment,
FIG. 9 is a system diagram of another conventional electrodesalination method.

Claims (1)

【特許請求の範囲】[Claims]  鉱物油を水の存在下において脱塩する電気脱塩装置に
おいて、該装置に付設される電極板が複数個の薄平板を
等間隔に連結してなる構造体であって、該電極構造体は
該電極板両面に複数個の突起を設けた電極板より構成さ
れてなることを特徴とする電気脱塩装置。
In an electric desalination apparatus for desalinating mineral oil in the presence of water, an electrode plate attached to the apparatus is a structure formed by connecting a plurality of thin flat plates at equal intervals, and the electrode structure is An electrical desalination device comprising an electrode plate having a plurality of protrusions on both sides of the electrode plate.
JP25434790A 1990-09-26 1990-09-26 Electric desalination equipment Expired - Lifetime JP2766720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25434790A JP2766720B2 (en) 1990-09-26 1990-09-26 Electric desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25434790A JP2766720B2 (en) 1990-09-26 1990-09-26 Electric desalination equipment

Publications (2)

Publication Number Publication Date
JPH04135602A true JPH04135602A (en) 1992-05-11
JP2766720B2 JP2766720B2 (en) 1998-06-18

Family

ID=17263733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25434790A Expired - Lifetime JP2766720B2 (en) 1990-09-26 1990-09-26 Electric desalination equipment

Country Status (1)

Country Link
JP (1) JP2766720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508100A (en) * 2008-11-07 2012-04-05 スルザー ケムテック アクチェンゲゼルシャフト Method and apparatus for separation of immiscible fluid
JP2018512317A (en) * 2015-01-30 2018-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrostatic lens cleaning method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508100A (en) * 2008-11-07 2012-04-05 スルザー ケムテック アクチェンゲゼルシャフト Method and apparatus for separation of immiscible fluid
JP2018512317A (en) * 2015-01-30 2018-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrostatic lens cleaning method
US10511748B2 (en) 2015-01-30 2019-12-17 Robert Bosch Gmbh Electrostatic lens cleaning

Also Published As

Publication number Publication date
JP2766720B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US9764253B2 (en) High velocity electrostatic coalescing oil/water separator
KR870000334B1 (en) Electrically enhanced inclined plate separator
US10383181B2 (en) RF heating of a dielectric fluid
JP4999271B2 (en) Dual frequency electrostatic coalescence
US4252631A (en) Electrostatic coalescence system with independent AC and DC hydrophilic electrodes
CA2482171C (en) Oil desalting and dewatering
CN102021020A (en) Dielectrophoresis demulsification mechanism-based novel crude oil electric dehydration and desalination method and equipment
JPS62262757A (en) Oil dehydration apparatus
US20160008823A1 (en) Petroleum Desalting Utilizing Voltage Modulation
CN104927895A (en) High-acid crude oil electro-desalting process
CN201501846U (en) Novel crude oil electric dehydration and desalination apparatus based on dielectrophoresis demulsification mechanism
US4248686A (en) Cross flow electrofilter and method
JPH04135602A (en) Electrolytic desalter
US3701723A (en) Electric treatment of dispersions
JPH02290266A (en) Ultrasonic type crude oil dehydrating and desalting apparatus
CN111825265A (en) Oilfield produced water treatment method
JP2952664B1 (en) Method and apparatus for removing water from oil phase
US2029362A (en) Electric dehydrator
SU1333364A1 (en) Method and apparatus for dehydration and desalination of water/petroleum and water/oil emulsions
JPH03296456A (en) Dehydrating and desalting apparatus
JPH03296457A (en) Dehydrating and desalting apparatus
JPH03296455A (en) Dehydrating and desalting apparatus
US2417637A (en) Process for removing impurities from oils
JPS60150855A (en) Electrostatic desalting apparatus
GB494153A (en) A new or improved process for the separation from liquids of solids or other liquids