JPH03296456A - Dehydrating and desalting apparatus - Google Patents

Dehydrating and desalting apparatus

Info

Publication number
JPH03296456A
JPH03296456A JP9626390A JP9626390A JPH03296456A JP H03296456 A JPH03296456 A JP H03296456A JP 9626390 A JP9626390 A JP 9626390A JP 9626390 A JP9626390 A JP 9626390A JP H03296456 A JPH03296456 A JP H03296456A
Authority
JP
Japan
Prior art keywords
oil
electrode
treatment tank
electrodes
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9626390A
Other languages
Japanese (ja)
Inventor
Masahito Kaneko
雅人 金子
Michio Haneda
羽田 道夫
Yoichi Matsumoto
陽一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9626390A priority Critical patent/JPH03296456A/en
Publication of JPH03296456A publication Critical patent/JPH03296456A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve dehydrating and desalting efficiency in low voltage, in arranging opposed electrodes in oil containing waterdrops to flocculate, settle and separate waterdrops under an electric field, by constituting at least one electrodes of flat electrodes having many acute-angle projections. CONSTITUTION:The supply pipe 2 of oil to be treated is opened above the oil-water interface 11 of a treatment-tank 1 and groups of pipe-shaped electrodes 5, 6 horizontally opposed to each other are arranged above the opening of the supply pipe 2 and, further, a flat electrode group 12 containing flat electrodes 13 having many acute-angle projections and flat electrodes 14 vertically opposed thereto is arranged. The recovery pipe 4 of treated oil is opened to the upper part of the treatment tank 1 and the drain pipe 9 of salt-containing water is connected to the bottom part of the treatment tank 1. As a result, dehydrating and desalting efficiency can be improved in low voltage. Further, even oil with low moisture content can be easily dehydrated and desalted and separation efficiency can be also drastically enhanced as compared with a conventional apparatus.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原油、重質油、燃料油、石油精製残渣油、並
びに、石炭液化油、オイルサンド油、シェールオイル等
の合成油がら脱水脱塩を行う装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to dehydration of crude oil, heavy oil, fuel oil, petroleum refinery residue oil, and synthetic oils such as coal liquefied oil, oil sand oil, and shale oil. The present invention relates to a device for desalting.

(従来の技術) 第7図は、従来の電気脱水脱塩装置の系統図である。被
処理油15に対し、数%から数十%の真水又は塩分濃度
の低い塩水を希釈水16として注入し、必要に応じて、
それらを予め加熱してから注入し、混合弁I7で混合撹
拌して被処理油中の塩分を希釈水に移行させた混合液1
8を、処理槽19に導入し、高電圧の電界をかけて含塩
水滴を凝集させ、肥大化した水滴を比重差により沈降分
離して、処理槽19の上部より回収油20と底部より含
塩排水21を取り出すものである。
(Prior Art) FIG. 7 is a system diagram of a conventional electrical dehydration and desalination apparatus. A few percent to several tens of percent of fresh water or salt water with a low salinity concentration is injected into the oil 15 to be treated as dilution water 16, and if necessary,
Mixed liquid 1 in which the salts in the oil to be treated are transferred to dilution water by heating them in advance and then injecting them and stirring them with the mixing valve I7.
8 is introduced into the treatment tank 19, a high-voltage electric field is applied to cause the salt-containing water droplets to coagulate, and the enlarged water droplets are separated by sedimentation due to the difference in specific gravity. This is to take out the salt waste water 21.

第8図の装置は、第7図の変形であって処理槽を2段に
設けた装置である。被処理油22に対し、東2処理槽3
2から回収した排水を希釈水24として添加し、第1混
合器23で混合撹拌して被処理油中の塩分を希釈水に移
行させ、その第1混合液25を、第1処理槽26に導入
し、高電圧の電界をかけて含塩水滴を凝集させ、肥大化
した水滴を比重差により沈降分離して、処理槽26の上
部より分離油27と底部より含塩排水28を取り出し、
分離油27に対しては系外から希釈水29を添加して第
2混合器30で混合撹拌し、その第2混合液31を第2
処理槽32に導入し、再び高電圧の電界をかけて含塩水
滴を凝集させ、肥大化した水滴を比重差により沈降分離
して、処理槽32の上部より回収油34と底部より回収
希釈水24を取り出し、該希釈水24はポンプ33で第
1混合器23に戻すようにしたものである。
The apparatus shown in FIG. 8 is a modification of the apparatus shown in FIG. 7, and has two processing tanks. East 2 treatment tank 3 for treated oil 22
The waste water collected from 2 is added as dilution water 24, mixed and stirred in the first mixer 23 to transfer the salt in the oil to be treated to the dilution water, and the first mixed liquid 25 is transferred to the first treatment tank 26. The salt-containing water droplets are coagulated by applying a high-voltage electric field, and the enlarged water droplets are separated by sedimentation due to the difference in specific gravity, and the separated oil 27 is taken out from the top of the treatment tank 26 and the salt-containing wastewater 28 is taken out from the bottom.
Dilution water 29 is added to the separated oil 27 from outside the system, mixed and stirred in a second mixer 30, and the second mixed liquid 31 is mixed in a second mixer 30.
The salt-containing water droplets are introduced into the treatment tank 32, and a high-voltage electric field is applied again to cause the salt-containing water droplets to coagulate, and the enlarged water droplets are separated by sedimentation due to the difference in specific gravity. 24 is taken out, and the dilution water 24 is returned to the first mixer 23 by a pump 33.

第5図及び第6図は、従来の電気脱水脱塩装置の処理槽
の構造を示した概念図であり、第5図は正面断面図、第
6図は第5図のI−1矢視断面図である。処理槽l内に
被処理油を導入するために、供給管2に接続する分配管
3を油水界面11の上方で開口させ、その上方に末端を
閉じたバイブ状対向電極5,6を水平に配置し、電源7
より碍子8を介して上記電極に接続し、処理槽1の上部
に油回収管4を、底部には排水管9を接続し、油水界面
を検知するために界面計10を配置する。
5 and 6 are conceptual diagrams showing the structure of a treatment tank of a conventional electric dehydration and desalination apparatus, with FIG. 5 being a front sectional view and FIG. 6 being viewed from the I-1 arrow in FIG. FIG. In order to introduce the oil to be treated into the treatment tank 1, a distribution pipe 3 connected to the supply pipe 2 is opened above the oil-water interface 11, and above it, vibrator-shaped counter electrodes 5 and 6 with closed ends are placed horizontally. Place and power supply 7
The treatment tank 1 is connected to the above electrode via an insulator 8, an oil recovery pipe 4 is connected to the top of the treatment tank 1, a drain pipe 9 is connected to the bottom, and an interface meter 10 is arranged to detect the oil-water interface.

この処理槽では、上記のパイプ状対向電極5及び6の間
に高電圧をかけて、電極間の含塩水粒子に電荷を与える
とともに、静電力により粒子相互に吸引力を作用させて
凝集合一を促進するものである。その際の吸引力は次式
で表すことができる。
In this treatment tank, a high voltage is applied between the pipe-shaped opposing electrodes 5 and 6 to charge the salt-containing water particles between the electrodes, and the particles are coagulated by applying an attractive force to each other using electrostatic force. It promotes The suction force at that time can be expressed by the following formula.

F = k E ’a ’/d ’         
  (1)F・含塩水粒子間の吸引力 E、電位傾度 a:含塩水粒子の半径 d:含塩水粒子間の距離 に:定数 この式で示されるように被処理油中の粒子間に働く吸引
力は、粒径の6乗に比例し、粒子間距離の4乗に反比例
する。このため従来は、希釈水を注入して混合撹拌する
ことにより、被処理油中の含塩水粒子数を増加させて粒
子間距離を小さくし、凝集合一を促進させていた。
F = kE 'a'/d'
(1) F: Attraction force E between salt water particles, potential gradient a: Radius of salt water particles d: Distance between salt water particles: Constant Acts between particles in the oil to be treated as shown by this formula The suction force is proportional to the sixth power of the particle size and inversely proportional to the fourth power of the distance between particles. For this reason, conventionally, by injecting dilution water and mixing and stirring, the number of salt-containing water particles in the oil to be treated was increased, the distance between the particles was reduced, and aggregation and coalescence was promoted.

(発明が解決しようとする課題) しかし、上記の装置では、水滴の凝集沈降が大粒径のも
のから進行するため、時間の経過とともに、小粒径の水
滴が残り、水滴相互の距離も広がるために、吸引力は上
記(1)式に示されるように急激に低下し、凝集効果を
期待することができな(なる。その際に、電圧を上げて
凝集効果を高めることも考えられるが、過度の電圧上昇
は、短絡の発生や高電圧装置の導入のための設備費の増
加等の問題があり、実際的な電界強度は5KV/cmが
上限とされている。また、処理槽をシリーズに設置して
、第8図のように後段の希釈水を前段の処理槽に混入し
て被処理油中の塩濃度を低下させるとともに、水滴の粒
径の増大と水滴の数の増加を図り、脱水脱塩効率を同上
させることも行われているが、装置の規模が大きくなり
、希釈水の確保も含めてコストの上昇要因となる。
(Problem to be solved by the invention) However, in the above device, the coagulation and sedimentation of water droplets progresses from the large-sized ones, so as time passes, small-sized water droplets remain and the distance between the water droplets increases. Therefore, the attraction force decreases rapidly as shown in equation (1) above, and a coagulation effect cannot be expected. Excessive voltage rise causes problems such as the occurrence of short circuits and increased equipment costs for introducing high voltage equipment, and the practical electric field strength is set at an upper limit of 5 KV/cm. As shown in Figure 8, dilution water in the latter stage is mixed into the treatment tank in the former stage to reduce the salt concentration in the oil to be treated, and also to increase the particle size and number of water droplets. Although attempts have been made to improve the dehydration and desalination efficiency, the scale of the equipment increases, which increases costs, including the need to secure dilution water.

そこで、本発明は、上記の問題を解消し、低電圧で脱水
脱塩効率の良い装置を提供しようとするものである。
Therefore, the present invention aims to solve the above-mentioned problems and provide a device with low voltage and high dehydration and desalination efficiency.

(課題を解決するための手段) 本発明は、水滴を含有する油中に対向電極を配置して電
場の下で水滴を凝集沈降分離する脱水脱塩装置において
、少なくとも一方の電極を多数の鋭角の突起を有する平
板状電極(以下トゲ付平板電極という)としたことを特
徴とする脱水脱塩装置である。
(Means for Solving the Problems) The present invention provides a dehydrating and desalting apparatus in which a counter electrode is disposed in oil containing water droplets and the water droplets are coagulated and sedimented under an electric field. This is a dehydration/desalination device characterized by a flat plate electrode having protrusions (hereinafter referred to as a flat plate electrode with spikes).

なお、トゲ付平板電極を含む電極群の外に従来の対向電
極群とを組み合わせて使用する場合は、両者を1つの処
理槽本体内に組み込むこともできるし、別の処理槽内に
組み込むことも可能である。
In addition, when using a conventional counter electrode group in combination with an electrode group including flat plate electrodes with barbs, both can be incorporated into one processing tank main body, or they can be integrated into separate processing tanks. is also possible.

別の処理槽に組み込むときには、第Iの処理槽で被処理
油中の水滴の凝集合一を進め、次いで、第2の処理槽の
トゲ付平板電極を含む電極群でさらに凝集合一を進める
とともに沈降分離を行うものである。
When incorporating into another treatment tank, the water droplets in the oil to be treated are coagulated and coalesced in the first processing tank, and then further coagulated and coalesced in the electrode group including the barbed flat plate electrode in the second treatment tank. This method also performs sedimentation separation.

(作用) 第1図〜第4図は、本発明の1具体例である脱水脱塩装
置の処理槽の概念図であり、第1図は正面断面図、第2
図は第1図のI−I矢視断面図、第3図及び第4図はト
ゲ付平板電極群の拡大図である。この処理槽は、上記第
5図、第6図の従来装置のパイプ状の水平対向電極の上
方にトゲ付平板電極群を配置したものである。それ故、
トゲ付平板電極を含む垂直対向電極を中心に説明する。
(Function) FIGS. 1 to 4 are conceptual diagrams of a processing tank of a dehydration and desalination apparatus that is a specific example of the present invention, and FIG. 1 is a front sectional view, and FIG.
The figure is a sectional view taken along the line II in FIG. 1, and FIGS. 3 and 4 are enlarged views of the barbed flat plate electrode group. This processing tank has a group of flat plate electrodes with barbs arranged above the pipe-shaped horizontally opposed electrodes of the conventional apparatus shown in FIGS. 5 and 6 above. Therefore,
The explanation will focus on vertically opposed electrodes including flat plate electrodes with spikes.

第3図及び第4図のトゲ付平板電極群12は、トゲ付平
板電極13と平板状電極14を対向させたものであるが
、いずれもトゲ付平板電極を採用して両者を対向配置し
てもよい。また、トゲ付平板電極群を含む垂直対向電極
群を別の処理槽に配置してもよい。
The barbed flat plate electrode group 12 shown in FIGS. 3 and 4 has a barbed flat plate electrode 13 and a flat plate electrode 14 facing each other, but both employ barbed flat plate electrodes and arrange the two to face each other. It's okay. Further, the vertically opposed electrode group including the barbed flat plate electrode group may be arranged in a separate processing tank.

ところで、被処理油は、パイプ状の水平対向電極間に形
成される電場に送られ、被処理油中の水滴に電荷が与え
られ、静電的吸引力により凝集合一するが、水滴の凝集
沈降が大粒径のものから進行するため、時間の経過とと
もに小粒径の水滴が残り、水滴相互の距離も広がるため
に、吸引力は低下して凝集合一が実質上停止し、水滴は
単一粒子として挙動し、対向電極への移動もなくなる。
By the way, the oil to be treated is sent to an electric field formed between pipe-shaped horizontally opposing electrodes, and the water droplets in the oil are charged and coagulate due to electrostatic attraction, but the water droplets do not cohere. As sedimentation progresses from large-sized particles, small-sized water droplets remain as time passes, and the distance between the water droplets increases, causing the suction force to decrease and coagulation to virtually stop, causing the water droplets to It behaves as a single particle and no longer migrates to the counter electrode.

ところが微小水滴は正極に吸引させやすく、さらに、ト
ゲ付平板電極を使用すると、その先端を中心とする不平
等電界が形成され、トゲ付平板電極の先端に強い電場が
できるので、水滴はこのトゲ付平板電極の先端部に吸引
されて凝集し、水滴の肥大化が容易に促進される。これ
に対し、パイプ状電極間においては、電界は均一である
ために、水滴が電極に吸引されるカは比較的弱く、吸引
される水滴も電極の一点に集められることがないので、
水滴の凝集肥大化速度も大きなものとはならない。また
、不平等電界が形成される場においては、電気流体力学
的現象(Electric Hydro Dynami
cFlow)によって、撹拌対流が生起されるため、電
極への水滴接近頻度が増大し、電極部における凝集が促
進される。なお、このトゲ付平板電極に流す電流は、交
流でも直流でもよい。但し、直流を流すときには、トゲ
付平板電極をプラスに接続する方が好ましい。なぜなら
、水滴が正極により吸引されるためである。
However, minute water droplets are easily attracted to the positive electrode, and furthermore, when a flat plate electrode with spikes is used, an unequal electric field is formed centered at the tip of the flat plate electrode. The water droplets are attracted to the tip of the attached flat plate electrode and agglomerate, easily promoting enlargement of the water droplets. On the other hand, since the electric field is uniform between the pipe-shaped electrodes, the force of attracting water droplets to the electrodes is relatively weak, and the attracted water droplets are not concentrated at one point on the electrodes.
The rate at which the water droplets coagulate and enlarge is also not large. Furthermore, in a field where an unequal electric field is formed, an electrohydrodynamic phenomenon (Electric Hydrodynamic
cFlow) causes stirring convection, which increases the frequency with which water droplets approach the electrode and promotes aggregation at the electrode. Note that the current flowing through the barbed flat plate electrode may be alternating current or direct current. However, when flowing direct current, it is preferable to connect the barbed flat plate electrode to the positive terminal. This is because water droplets are attracted by the positive electrode.

」二記処理槽1においては、水分含有量の高い被処理油
を分配管3より供給し、まず、パイプ状対向電極5,6
で水滴の凝集合一を行い、肥大化した水滴を沈降させる
ともに、水分含有量の低下した被処理油を上昇させてト
ゲ付平板電極群12に送り、トゲ付平板電極I3と平板
状電極工4の間の不平等電界で微細な水滴の凝集を図り
、肥大化した水滴は処理槽1の底部の排水管9より排出
するとともに、脱水脱塩された油は処理槽1の上部の回
収管4より糸外に取り出す。また、トゲ付平板電極群1
2を別の処理槽に配置するときには、パイプ状対向電極
を有する処理槽本体で水滴を凝集合一させ、ある程度肥
大化させて沈降分離してから、トゲ付平板電極群12に
送り、さらに、凝集及び沈降を行って、脱水脱塩処理を
行う。
In the treatment tank 1 mentioned above, the oil to be treated with a high water content is supplied from the distribution pipe 3, and first, the pipe-shaped counter electrodes 5, 6
The water droplets are agglomerated and coalesced, and the enlarged water droplets are allowed to settle, while the oil to be treated with a reduced water content is raised and sent to the barbed flat electrode group 12, which connects the barbed flat plate electrode I3 and the flat plate electrode assembly. Microscopic water droplets are coagulated by the unequal electric field between 4 and the enlarged water droplets are discharged from the drain pipe 9 at the bottom of the treatment tank 1, and the dehydrated and desalted oil is drained from the collection pipe at the top of the treatment tank 1. 4 Remove the strands from the outside. In addition, barbed flat plate electrode group 1
2 is placed in another processing tank, the water droplets are coagulated and coalesced in the processing tank body having a pipe-shaped counter electrode, enlarged to some extent, sedimented and separated, and then sent to the barbed flat plate electrode group 12, and further, Coagulation and sedimentation are performed to perform dehydration and desalination treatment.

(実施例) 第9図の処理槽を用いて、0.5wt%の水を含有する
軽油を81/hrで供給し、脱水実験を行った。
(Example) Using the treatment tank shown in FIG. 9, a dehydration experiment was conducted by supplying light oil containing 0.5 wt% water at a rate of 81/hr.

なお、軽油中の水滴の平均粒径は約13μmであった。Note that the average particle size of water droplets in the light oil was about 13 μm.

トゲ付平板電極に対向する平板状電極は、面積120c
m’、厚さ0.5+nmのステンレス製の薄板を52m
mの間隔て垂直に配置し、該薄板平板状電極間25mm
の位置に平行になるように、トゲ付平板電極を垂直に設
けた。該トゲ付平板電極は、板厚0.5marの平板を
縦横10mm間隔でv字型に両面交互に折り返してトゲ
部の高さを5mn+とじたものである。
The flat electrode facing the barbed flat electrode has an area of 120c.
m', 52m of stainless steel thin plate with a thickness of 0.5+nm
vertically arranged at intervals of m, with a distance of 25 mm between the thin plate electrodes.
A flat plate electrode with spikes was provided vertically so as to be parallel to the position. The barbed flat plate electrode is made by folding a flat plate having a thickness of 0.5 mm alternately in a V-shape on both sides at intervals of 10 mm vertically and horizontally so that the height of the spines is 5 mm+.

そして、平板状電極及びトゲ付平板電極に対し、200
0V(電界強度IKV/cm)で交流を1時間流したと
ころ、水分含有ff1O,06wt%の軽油を8g得る
ことができた。
Then, for the flat plate electrode and the flat plate electrode with spikes,
When alternating current was passed for 1 hour at 0 V (electric field strength IKV/cm), 8 g of light oil with a water content of ff1O, 06 wt% could be obtained.

(比較例) 比較のために、第10図の平板状対向電極を有する処理
槽を用いて、0.5vt%の水を含有する軽油を81/
hrで供給し、脱水実験を行った。なお、軽油中の水滴
の平均粒径は約13μlであった。そして、平板状対向
電極は面積120cm”、厚さ0.51のステンレス製
薄板を251の間隔で垂直に配置し、2500V(電界
強度IKV/cm)で交流を1時間流したところ、水分
含有量0.21)yt%の軽油を81得た。
(Comparative Example) For comparison, a treatment tank having a flat counter electrode as shown in FIG. 10 was used to treat light oil containing 0.5vt% water at
hr, and a dehydration experiment was conducted. Note that the average particle size of water droplets in the light oil was about 13 μl. The planar counter electrode was made of thin stainless steel plates with an area of 120 cm and a thickness of 0.51 cm, which were vertically arranged at intervals of 25 cm, and when alternating current was applied at 2500 V (electric field strength IKV/cm) for 1 hour, the moisture content was measured. 0.21) yt% of light oil was obtained.

(発明の効果) 本発明は、上記の構成を採用することにより、低い水分
含有量の油からも容易に脱水脱塩することができ、分離
効率も従来装置に比較して飛躍的に同上させることがで
きた。
(Effects of the Invention) By adopting the above configuration, the present invention can easily dehydrate and desalinate even oil with a low water content, and the separation efficiency is dramatically improved compared to conventional equipment. I was able to do that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1具体例である脱水脱塩装置の処理槽
の正面断面図、第2図は第1図の>1矢視断面図、第3
図及び第4図は第1図で使用するトゲ付平板電極群の拡
大図、第5図は従来の処理槽の正面断面図、第6図は第
5図のI−1矢視断面図、第7図及び第8図は従来の電
気脱水脱塩装置の系統図、第9図は実施例で使用した脱
水脱塩装置の断面図、第10図は比較例で使用した脱水
脱塩装置の断面図である。 5゛錦3 雷 第7図 第8図 ¥9図 苓 第10図
FIG. 1 is a front cross-sectional view of a processing tank of a dehydration and desalination apparatus which is a specific example of the present invention, FIG.
4 and 4 are enlarged views of the barbed flat electrode group used in FIG. 1, FIG. 5 is a front cross-sectional view of a conventional processing tank, and FIG. 6 is a cross-sectional view taken along arrow I-1 in FIG. Figures 7 and 8 are system diagrams of conventional electrical dehydration and desalination equipment, Figure 9 is a sectional view of the dehydration and desalination equipment used in the examples, and Figure 10 is the diagram of the dehydration and desalination equipment used in comparative examples. FIG. 5゛Nishiki 3 Lightning Figure 7 Figure 8 ¥9 Figure Ryo Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)水滴を含有する油中に対向電極を配置して電場の
下で水滴を凝集沈降分離する脱水脱塩装置において、多
数の鋭角の突起を有する平板状電極を少なくとも一方の
電極として使用したことを特徴とする脱水脱塩装置。
(1) In a dehydration/desalination device in which a counter electrode is placed in oil containing water droplets and the water droplets are coagulated and separated under an electric field, a flat electrode having a large number of acute-angled protrusions is used as at least one electrode. A dehydration desalination device characterized by:
(2)処理槽の油水界面の上方に、被処理油の供給管を
開口させ、該開口の上方に水平に対向する電極群を配置
し、さらにその上に、多数の鋭角の突起を有する平板状
電極とこれに垂直に対向する電極を含む電極群を配置し
、処理槽の上部に処理油の回収管を開口させ、処理槽の
底部に含塩水の排水管を接続したことを特徴とする請求
項(1)記載の脱水脱塩装置。
(2) A supply pipe for the oil to be treated is opened above the oil-water interface of the processing tank, a group of horizontally opposing electrodes is arranged above the opening, and a flat plate having a large number of acute-angled protrusions is placed above it. The method is characterized in that an electrode group including a shaped electrode and an electrode perpendicularly opposed thereto is arranged, a recovery pipe for treated oil is opened at the top of the treatment tank, and a drainage pipe for saline water is connected to the bottom of the treatment tank. The dehydration desalination apparatus according to claim (1).
(3)水滴を含有する油を導入する第1処理槽に、対向
電極群を配置し、該槽に導管を介して接続する第2処理
槽に、該槽の油水界面上方に被処理油の供給管を開口さ
せ、該開口の上方に多数の鋭角の突起を有する平板状電
極とこれに垂直に対向する電極を含む電極群を配置し、
さらにその上方に処理油の回収管を開口させ、処理槽の
底部に含塩水の排水管を接続したことを特徴とする請求
項(1)記載の脱水脱塩装置。
(3) A group of counter electrodes is arranged in a first treatment tank into which oil containing water droplets is introduced, and a second treatment tank connected to the tank via a conduit is provided with the oil to be treated above the oil-water interface of the tank. A supply pipe is opened, and an electrode group including a flat electrode having a large number of acute-angled protrusions and an electrode facing perpendicularly thereto is arranged above the opening;
2. The dehydration and desalination apparatus according to claim 1, further comprising a recovery pipe for treated oil opened above the treatment tank, and a drain pipe for saline water connected to the bottom of the treatment tank.
JP9626390A 1990-04-13 1990-04-13 Dehydrating and desalting apparatus Pending JPH03296456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9626390A JPH03296456A (en) 1990-04-13 1990-04-13 Dehydrating and desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9626390A JPH03296456A (en) 1990-04-13 1990-04-13 Dehydrating and desalting apparatus

Publications (1)

Publication Number Publication Date
JPH03296456A true JPH03296456A (en) 1991-12-27

Family

ID=14160288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9626390A Pending JPH03296456A (en) 1990-04-13 1990-04-13 Dehydrating and desalting apparatus

Country Status (1)

Country Link
JP (1) JPH03296456A (en)

Similar Documents

Publication Publication Date Title
KR870000334B1 (en) Electrically enhanced inclined plate separator
US9764253B2 (en) High velocity electrostatic coalescing oil/water separator
US7351320B2 (en) Multiple frequency electrostatic coalescence
US10383181B2 (en) RF heating of a dielectric fluid
CN102021020A (en) Dielectrophoresis demulsification mechanism-based novel crude oil electric dehydration and desalination method and equipment
US7758738B2 (en) Separating multiple components of a stream
US5817224A (en) Electrostatic device and method for enhancing chemical aggregation of particles in water suspension
CN1015962B (en) Distributing charge composite electrode and desalt system
BR0306194B1 (en) METHOD FOR INCREASING SEPARATION OF LARGER AND LIGHTER IMISCIBLE COMPONENTS OF AN EMULSION
EP0167619A1 (en) Method and apparatus for separating impurities from low conductivity liquids
CN104927895A (en) High-acid crude oil electro-desalting process
US20160008823A1 (en) Petroleum Desalting Utilizing Voltage Modulation
JPS5910309A (en) Electrode apparatus
CN201501846U (en) Novel crude oil electric dehydration and desalination apparatus based on dielectrophoresis demulsification mechanism
JPH02290266A (en) Ultrasonic type crude oil dehydrating and desalting apparatus
US987115A (en) Separating and collecting particles of one liquid suspended in another liquid.
CN204824743U (en) Magnetoelectric emulsion breaker
JPH03296456A (en) Dehydrating and desalting apparatus
JPH03296457A (en) Dehydrating and desalting apparatus
JP2766720B2 (en) Electric desalination equipment
JPH03296455A (en) Dehydrating and desalting apparatus
CN206529434U (en) A kind of efficient magnetoelectricity emulsion breaker
CN107267195B (en) Coal tar electric desalting and dewatering system and method
DE2042554A1 (en) Method and device for removing impurities from liquid chains
CN104531205A (en) Microwave-enhanced static crude oil dehydration device