JPH0413431B2 - - Google Patents
Info
- Publication number
- JPH0413431B2 JPH0413431B2 JP115285A JP115285A JPH0413431B2 JP H0413431 B2 JPH0413431 B2 JP H0413431B2 JP 115285 A JP115285 A JP 115285A JP 115285 A JP115285 A JP 115285A JP H0413431 B2 JPH0413431 B2 JP H0413431B2
- Authority
- JP
- Japan
- Prior art keywords
- tin
- copper
- peeling
- alloy layer
- dissolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 30
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 25
- 238000004090 dissolution Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 17
- 229910001174 tin-lead alloy Inorganic materials 0.000 claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 16
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 229910001431 copper ion Inorganic materials 0.000 claims description 8
- 239000003381 stabilizer Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000012286 potassium permanganate Substances 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 21
- 230000003628 erosive effect Effects 0.000 description 18
- 238000007747 plating Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 5
- 150000001879 copper Chemical class 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/30—Acidic compositions for etching other metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/44—Compositions for etching metallic material from a metallic material substrate of different composition
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- ing And Chemical Polishing (AREA)
Description
「産業上の利用分野」
この発明は銅または銅合金材表面の錫または
錫・鉛合金層の溶解剥離方法に関するものであ
り、この方法は、特に表面に錫または錫・鉛合金
層を有する銅または銅合金材料のスクラツプより
錫または錫・鉛合金層を溶解剥離して銅および銅
合金材をスクラツプより再生・回収する方法に好
適なものである。
「従来の技術」および「問題点」
周知のように、錫または錫・鉛合金層を有する
銅または銅合金材には事前にめつきされ、プレス
加工などの機械加工をされたもの、部品になつた
後にめつきを施こされたもの、製品に成形された
後に半田付け加工をされたものなどがあり、電気
部品、電子材料分野で広く使用されている。
ところで、上記銅または銅合金材を用いた製品
の加工工程中に発生するスクラツプおよび寿命が
つきた製品のスクラツプには、錫または錫合金が
0.1〜5wt%程度含まれている。この錫または錫合
金が融着したままのスクラツプは、利用用途が非
常に限定されてしまうので、錫または錫・鉛合金
層を除去して銅または銅合金材を再生・回収し用
途拡大を図る必要がある。
これに対し、従来、銅および銅合金材表面の錫
層の溶解剥離法においては、下記のような酸性銅
塩法による方法が提案されている。
この酸性銅塩法の特徴は、基材の浸食溶解がほ
とんどないという大きな利点を有することであ
る。しかし、この酸性銅塩法では、錫層単体のみ
の溶解剥離しかできず、特に、錫・鉛合金層の溶
解剥離については、ほとんど効果がなく、しかも
錫層のみの溶解剥離作業においても、しばしば不
均一溶解部が発生し、溶解剥離速度も襲いため
に、実用には供し得ない。従つて、従来は上記ス
クラツプを原料段階へ戻して再生利用するしかな
く、再生効率上、大きな問題となつている。
この発明は、上記の問題点を改善したものであ
り、錫のみならず錫・鉛合金層の溶解除去をも可
能にし、溶解状態の均一化、迅速化および基材の
溶解浸食をできるだけ少なくした銅または銅合金
材表面の錫または錫合金層の溶解剥離方法を提供
することを目的とするものである。
「問題点を解決するための手段」
この発明の溶解剥離方法に用いる剥離液は、銅
イオン0.5〜10wt%、発生期の酸素を有する物質
0.1〜15wt%および硫酸、硝酸、塩酸のうちから
選ばれる1種以上の酸5〜30wt%からなる水溶
液である。
上記発生期を有する物質としては、過酸化水素
0.1〜5wt%と、その安定剤(例えば、三徳化学株
式会社製の過酸化水素安定剤;ポリエチレングリ
コール・カブロラクタム系化合物)1〜10wt%
からなるものや、過マンガン酸カリウム0.1〜2wt
%が好適である。
「作用」
上記剥離液は、酸性銅塩法を基本としたもので
あり、これに発生期の酸素を有する物質を小量含
有させることにより錫単体のみならず、錫・鉛合
金層の溶解剥離を可能にし、さらに均一溶解性、
迅速性を向上させ、しかも基材の溶解浸食を極力
少なくすることができるものである。
上記構成において、銅イオン濃度は0.5〜10wt
%、好ましくは1〜5wt%の濃度範囲で使用する
のが良い。というのは、銅イオン濃度が0.5wt%
未満の場合は、銅イオンと、錫イオンおよび鉛イ
オンとの置換効果が少なくなり、均一溶解剥離が
期待できず、逆に、10wt%を越える場合はそれ
まで以上の効果向上が期待できなくなるからであ
る。
また、過酸化水素濃度は0.1〜5wt%、好ましく
は1〜3wt%の濃度範囲で使用するのが良い。と
いうのは、過酸化水素濃度が0.1wt%未満の場合
は、錫・鉛合金層の溶解剥離ができなくなり、し
かも錫層の均一溶解性もなくなり、逆に5%を越
える場合は、基材の溶解浸食が激しくなり、基材
の損失が大きくなるからである。
さらに、過酸化水素安定剤の濃度は、1〜
10wt%が適当で過酸化水素の濃度に比例し、過
酸化水素に対する比率は、安定剤/過酸化水素=
1〜10の範囲が好ましい。というのは、この比率
が1未満の場合は、その効果が期待できず、過酸
化水素の分解が激しく安定せず、逆に比率が10を
越える場合は過酸化水素の分解が抑制され、その
働きを阻害するからである。
さらにまた、過酸化水素+安定剤のかわりに用
いる発生期の酸素を有する物質である過マンガン
酸カリウム濃度は、0.1〜2wt%好ましくは0.1〜
1wt%の濃度範囲で使用するのがよい。というの
は、過マンガン酸カリウム濃度が0.1wt%未満の
場合は、錫・鉛合金層の剥離が出来なくなり、し
かも均一溶解性も無くなり、逆に2wt%を越える
場合は、基材の溶解浸食が激しくなるからであ
る。
また、硫酸、硝酸、塩酸単独、または、これら
の混合物の酸濃度は、5〜30wt%、好ましくは
10〜25wt%の濃度範囲で使用するのが良い。と
いうのは、この酸濃度が5wt%未満の場合は、そ
の効果が期待出来ず、溶解剥離時間が非常に長く
なり、しかも均一溶解性が無くなり、逆に、この
酸濃度が30wt%を越える場合はそれまで以上の
溶解効果の向上が期待できず、不経済であり、ガ
ス発生量の増加などにより環境および作業性が悪
くなるからである。
従つて、上記性能を有する剥離液中にスクラツ
プを浸漬する本発明の方法によれば、基材の銅ま
たは銅合金材の溶解浸食を少なくして表面の錫ま
たは錫・鉛合金層を容易、速やかに剥離すること
ができ、スクラツプ材の再生、回収を効率的に行
なうことが可能となる。
次に、この発明を実施例によりさらに詳しく説
明する。
「実施例」
() 被処理材(サンプル)
(a) 寸法;厚さ0.5mm×幅50mm×長さ100mm
(b) 材質;
(イ)C1201(りん脱酸銅)
(ロ)C2680(黄銅)
(ハ)C5212(りん青銅)
(ニ)C7351(洋白)
(c) 錫または錫・鉛合金層(電気めつきによ
り)
(1) 錫めつき膜厚……1.0μm
(2) 錫・鉛合金めつき膜厚……5.0μm
の仕様でサンプルを作成した。
() 剥離状態の判定は、目視により下記の4段
階に区分して行なつた。
(a) 99%以上溶解剥離………◎
(b) 95%以上溶解剥離………○
(c) 50%以上溶解剥離………△
(d) 50%未満溶解剥離………×
() 基材浸食状態の判定は、目視により下記の
4段階に区分して行なつた。
(a) 浸食無 ………◎
(b) 浸食若干有 ………○
(c) 浸食有 ………△
(d) 浸食顕著 ………×
実施例 1
剥離液組成(1)
銅イオン ……30g
過酸化水素 ……10g
安定剤(三徳化学株式会社製) ……50g
硫 酸 ……100g
水 ……総量が1になるまで添加
前記()のサンプルを室温で上記溶解剥離液
に浸漬してめつき層の剥離状態および基材の浸食
状態を判定した。その結果を表1に示した。
"Industrial Application Field" This invention relates to a method for dissolving and peeling a tin or tin-lead alloy layer on the surface of a copper or copper alloy material. Alternatively, it is suitable for a method of dissolving and peeling off the tin or tin-lead alloy layer from the scrap of the copper alloy material to regenerate and recover copper and the copper alloy material from the scrap. ``Prior Art'' and ``Problems'' As is well known, copper or copper alloy materials having a tin or tin-lead alloy layer are plated in advance and machined such as press working, or parts. Some are plated after aging, others are soldered after being molded into products, and are widely used in the fields of electrical parts and electronic materials. By the way, the scrap generated during the processing process of products using copper or copper alloy materials and the scrap of products that have reached the end of their service life contain tin or tin alloys.
Contains about 0.1 to 5wt%. This scrap with tin or tin alloy still fused has very limited uses, so the tin or tin-lead alloy layer is removed and the copper or copper alloy material is recycled and recovered to expand its uses. There is a need. On the other hand, in the conventional method for dissolving and peeling off the tin layer on the surface of copper and copper alloy materials, the following acidic copper salt method has been proposed. A feature of this acidic copper salt method is that it has the great advantage of almost no erosion and dissolution of the base material. However, this acidic copper salt method can only dissolve and peel off the tin layer alone, and is particularly ineffective when it comes to dissolving and peeling off tin-lead alloy layers.Furthermore, even in the process of dissolving and peeling only the tin layer, it is often difficult to remove the tin layer. This method cannot be put to practical use because non-uniform melting occurs and the speed of dissolution and peeling is affected. Therefore, conventionally, the scraps have to be recycled by returning them to the raw material stage, which poses a major problem in terms of recycling efficiency. This invention improves the above-mentioned problems and makes it possible to dissolve and remove not only tin but also tin-lead alloy layers, uniformize and speed up the dissolution state, and minimize dissolution erosion of the base material. The object of the present invention is to provide a method for dissolving and peeling off a tin or tin alloy layer on the surface of a copper or copper alloy material. "Means for Solving the Problems" The stripping solution used in the dissolution stripping method of the present invention is a material containing 0.5 to 10 wt% of copper ions and nascent oxygen.
It is an aqueous solution consisting of 0.1 to 15 wt% and 5 to 30 wt% of one or more acids selected from sulfuric acid, nitric acid, and hydrochloric acid. Hydrogen peroxide is a substance that has the above developmental period.
0.1 to 5 wt% and its stabilizer (for example, hydrogen peroxide stabilizer manufactured by Santoku Chemical Co., Ltd.; polyethylene glycol/cabrolactam compound) 1 to 10 wt%
or potassium permanganate 0.1-2wt
% is preferred. "Effect" The above stripping solution is based on the acid copper salt method, and by adding a small amount of a substance containing nascent oxygen to it, it can dissolve and strip not only tin alone but also tin-lead alloy layers. and even more uniform solubility,
It is possible to improve speed and to minimize dissolution and erosion of the base material. In the above configuration, the copper ion concentration is 0.5~10wt
%, preferably in the range of 1 to 5 wt%. This is because the copper ion concentration is 0.5wt%.
If it is less than 10wt%, the effect of replacing copper ions with tin and lead ions will be reduced, and uniform dissolution and peeling cannot be expected.On the other hand, if it exceeds 10wt%, no further improvement in the effect can be expected. It is. Further, the hydrogen peroxide concentration is preferably used in a range of 0.1 to 5 wt%, preferably 1 to 3 wt%. This is because if the hydrogen peroxide concentration is less than 0.1wt%, the tin-lead alloy layer will not be able to be dissolved and peeled off, and the tin layer will not have uniform solubility.On the other hand, if it exceeds 5%, the base material This is because the dissolution and erosion of the base material becomes severe and the loss of the base material becomes large. Furthermore, the concentration of hydrogen peroxide stabilizer is between 1 and
10wt% is appropriate and is proportional to the concentration of hydrogen peroxide, and the ratio to hydrogen peroxide is stabilizer/hydrogen peroxide =
A range of 1 to 10 is preferred. This is because if this ratio is less than 1, the effect cannot be expected and the decomposition of hydrogen peroxide is severe and unstable, whereas if the ratio exceeds 10, the decomposition of hydrogen peroxide is suppressed and its This is because it inhibits work. Furthermore, the concentration of potassium permanganate, which is a substance containing nascent oxygen used instead of hydrogen peroxide + stabilizer, is 0.1 to 2 wt%, preferably 0.1 to 2 wt%.
It is best to use it in a concentration range of 1wt%. This is because if the potassium permanganate concentration is less than 0.1wt%, the tin-lead alloy layer will not be able to be peeled off and will not have uniform solubility; on the other hand, if it exceeds 2wt%, it will cause dissolution and erosion of the base material. This is because it becomes more intense. In addition, the acid concentration of sulfuric acid, nitric acid, hydrochloric acid alone, or a mixture thereof is 5 to 30 wt%, preferably
It is best to use it in a concentration range of 10 to 25 wt%. This is because if the acid concentration is less than 5wt%, the effect cannot be expected, the dissolution and peeling time becomes extremely long, and uniform solubility is lost; conversely, if the acid concentration exceeds 30wt% This is because the dissolution effect cannot be expected to be improved any further than before, and it is uneconomical, and the environment and workability are deteriorated due to an increase in the amount of gas generated. Therefore, according to the method of the present invention in which the scrap is immersed in a stripping solution having the above-mentioned properties, the tin or tin-lead alloy layer on the surface can be easily removed by reducing the dissolution erosion of the base copper or copper alloy material. It can be peeled off quickly, and the scrap material can be recycled and recovered efficiently. Next, the present invention will be explained in more detail with reference to Examples. "Example" () Material to be treated (sample) (a) Dimensions: Thickness: 0.5 mm x Width: 50 mm x Length: 100 mm (b) Material: (a) C1201 (phosphorus deoxidized copper) (b) C2680 (brass) (c) C5212 (phosphor bronze) (d) C7351 (nickel silver) (c) Tin or tin-lead alloy layer (by electroplating) (1) Tin plating film thickness...1.0μm (2) Tin-lead A sample was prepared with an alloy plating thickness of 5.0 μm. () Judgment of the peeling state was carried out by visual inspection in the following four stages. (a) 99% or more dissolution and peeling……◎ (b) 95% or more dissolution and peeling……○ (c) 50% or more dissolution and peeling……△ (d) Less than 50% dissolution and peeling……× () The state of base material erosion was visually determined in the following four stages. (a) No erosion......◎ (b) Slight erosion......○ (c) Erosion......△ (d) Significant erosion......× Example 1 Stripper composition (1) Copper ion... 30g Hydrogen peroxide...10g Stabilizer (manufactured by Santoku Chemical Co., Ltd.)...50g Sulfuric acid...100g Water...Add until the total amount is 1.Immerse the sample in () above in the above dissolving and stripping solution at room temperature. The state of peeling of the plating layer and the state of erosion of the base material were determined. The results are shown in Table 1.
【表】
実施例 2
剥離液組成(1)
銅イオン ……80g
過マンガン酸カリウム ……10g
硝 酸 ……200g
水 ……総量が1になるまで添加
前記()のサンプルを室温で上記溶解剥離液
に浸漬してめつき層の剥離状態および基材の浸食
状態を判定した。その結果を表2に示した。[Table] Example 2 Stripping solution composition (1) Copper ion...80g Potassium permanganate...10g Nitric acid...200g Water...Add until the total amount becomes 1 Dissolve and strip the sample in () above at room temperature. The peeling state of the plating layer and the erosion state of the base material were determined by immersing it in a liquid. The results are shown in Table 2.
【表】
実施例 3
剥離液組成(1)
銅イオン ……50g
過酸化水素 ……30g
安定剤(三徳化学株式会社製) ……90g
硫 酸 ……100g
塩 酸 ……100g
水 ……総量が1になるまで添加
前記()のサンプルを室温で上記溶解剥離液
に浸漬してめつき層の剥離状態および基材の浸食
状態を判定した。その結果を表3に示した。[Table] Example 3 Stripper composition (1) Copper ion...50g Hydrogen peroxide...30g Stabilizer (manufactured by Santoku Chemical Co., Ltd.)...90g Sulfuric acid...100g Hydrochloric acid...100g Water...Total amount The sample in () above was immersed in the dissolving and removing solution at room temperature, and the peeling state of the plating layer and the erosion state of the base material were determined. The results are shown in Table 3.
【表】【table】
【表】
実施例 4〜9
下記の表4の各材質を各々同表4の各対応する
剥離液中に浸漬して、めつき層の剥離状態および
基材の浸食状態を判定した。その結果を同じ表4
に示した。
上記各実施例に対し、下記表5に示した材質、
剥離液組成により比較例を実施した。その結果を
同表5に示した。[Table] Examples 4 to 9 Each of the materials shown in Table 4 below was immersed in the corresponding stripping solution shown in Table 4, and the peeling state of the plating layer and the erosion state of the base material were determined. The results are shown in Table 4.
It was shown to. For each of the above examples, the materials shown in Table 5 below,
Comparative examples were conducted using different stripping solution compositions. The results are shown in Table 5.
【表】【table】
【表】【table】
【表】
以上より明らかなように、比較例においては、
めつき層の剥離と、基材浸食の少なさとを同時に
満足させるものがないのに対し、実施例において
は、基材をほとんど浸食させることなくめつき層
を剥離することができており、しかも剥離に要す
る時間も少なく済んでいる。
「発明の効果」
以上説明したように、この発明の方法によれ
ば、錫のみならず錫・鉛合金層の溶解除去をも可
能にし、溶解状態の均一化、迅速化を図ることが
でき、しかも基材である銅または銅合金材の溶解
浸食を少量に抑えることができる。[Table] As is clear from the above, in the comparative example,
While there is no method that simultaneously satisfies peeling of the plating layer and minimal erosion of the base material, in the examples, the plating layer can be peeled off with almost no erosion of the base material. The time required for peeling is also short. "Effects of the Invention" As explained above, according to the method of the present invention, not only tin but also the tin-lead alloy layer can be dissolved and removed, and the melting state can be made uniform and faster. Moreover, dissolution erosion of the copper or copper alloy material that is the base material can be suppressed to a small amount.
Claims (1)
する物質を0.1〜15wt%、硫酸、硝酸および塩酸
のうちから選ばれる1種以上からなる酸を5〜
30wt%含有してなる溶解剥離水溶液に、表面に
錫または錫・鉛合金層を有する銅または銅合金材
を浸漬して、前記銅または銅合金材表面の錫また
は錫・鉛合金層を溶解して剥離することを特徴と
する銅または銅合金材表面の錫または錫・合金層
の溶解剥離方法。 2 発生期の酸素を有する物質が過酸化水素0.1
〜5wt%と過酸化水素安定剤1〜10wt%とからな
ることを特徴とする特許請求の範囲第1項に記載
の銅または銅合金材表面の錫または錫・鉛合金層
の溶解剥離方法。 3 発生期の酸素を有する物質が0.1〜2wt%の過
マンガン酸カリウムであることを特徴とする特許
請求の範囲第1項に記載の銅または銅合金材表面
の錫または錫・鉛合金層の溶解剥離方法。[Claims] 1. 0.5 to 10 wt% of copper ions, 0.1 to 15 wt% of a substance containing nascent oxygen, and 5 to 10 wt% of an acid consisting of one or more selected from sulfuric acid, nitric acid, and hydrochloric acid.
A copper or copper alloy material having a tin or tin-lead alloy layer on the surface is immersed in a dissolving and stripping aqueous solution containing 30 wt% to dissolve the tin or tin-lead alloy layer on the surface of the copper or copper alloy material. A method for dissolving and peeling a tin or tin-alloy layer on a surface of a copper or copper alloy material, the method comprising peeling off the tin or tin-alloy layer on the surface of a copper or copper alloy material. 2 The nascent oxygen-containing substance is hydrogen peroxide 0.1
5 wt% and 1 to 10 wt% of a hydrogen peroxide stabilizer, the method for dissolving and peeling off a tin or tin-lead alloy layer on a surface of a copper or copper alloy material according to claim 1. 3. The tin or tin-lead alloy layer on the surface of the copper or copper alloy material according to claim 1, wherein the substance containing oxygen in the nascent stage is 0.1 to 2 wt% potassium permanganate. Dissolution and peeling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP115285A JPS61159580A (en) | 1985-01-08 | 1985-01-08 | Method for dissolving and removing tin or tin-lead alloy layer on surface of copper or copper alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP115285A JPS61159580A (en) | 1985-01-08 | 1985-01-08 | Method for dissolving and removing tin or tin-lead alloy layer on surface of copper or copper alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61159580A JPS61159580A (en) | 1986-07-19 |
JPH0413431B2 true JPH0413431B2 (en) | 1992-03-09 |
Family
ID=11493459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP115285A Granted JPS61159580A (en) | 1985-01-08 | 1985-01-08 | Method for dissolving and removing tin or tin-lead alloy layer on surface of copper or copper alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61159580A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2671276B2 (en) * | 1986-08-29 | 1997-10-29 | 日鉱金属 株式会社 | How to treat copper scrap |
EP2453041B1 (en) * | 2010-11-10 | 2014-02-12 | Atotech Deutschland GmbH | Solution and process for the pre-treatment of copper surfaces using an N-alkoxylated adhesion-promoting compound |
CN106893876B (en) * | 2017-01-04 | 2019-01-15 | 嘉兴凯蒂市场营销策划有限公司 | A kind of recovery method of useless tinned wire |
-
1985
- 1985-01-08 JP JP115285A patent/JPS61159580A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61159580A (en) | 1986-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4678552A (en) | Selective electrolytic stripping of metal coatings from base metal substrates | |
AU570325B2 (en) | Selective nickel stripping compositions and method of stripping | |
CH661742A5 (en) | SOLVENT REMOVAL SOLUTION. | |
CN105177578B (en) | Deplating liquid and deplating method for deplating copper-based palladium-nickel alloy plating layer | |
DE69014789T2 (en) | COMPOSITION AND METHOD FOR REMOVING TIN OR TIN LEAD ALLOYS FROM COPPER SURFACES. | |
JPS6354077B2 (en) | ||
US3137600A (en) | Dissolution of copper | |
US4424097A (en) | Metal stripping process and composition | |
US3793172A (en) | Processes and baths for electro-stripping plated metal deposits from articles | |
US2353786A (en) | Solution and method for stripping oxide films from aluminum and its alloys | |
JPH0413431B2 (en) | ||
EP0257058B1 (en) | Process for regenerating solder stripping solutions | |
US4950359A (en) | Process for removing a coating containing niobium from a substrate | |
JP5481179B2 (en) | Method for stripping Sn plating layer of Cu-based material | |
US5380400A (en) | Chemical etchant for palladium | |
JPH0146591B2 (en) | ||
KR920006353B1 (en) | Composition and method of metal dissolution utilizing pyrrolidone | |
WO2000075404A1 (en) | Electrolytic removing agent for silver and method for electrolytic removing | |
JPH06272098A (en) | Electrolytic peeling solution and peeling method of coating film made of tin or tin alloy | |
US3262775A (en) | Stripping of chromium plate using a solution containing sulfamic acid and a water soluble chloride | |
JPH0355554B2 (en) | ||
KR100710481B1 (en) | Composition for stripping tin and stripping method using the same | |
JPH01129984A (en) | Method for removing oxide film on cu-sn type copper-based alloy | |
JP2011140678A (en) | Recycling method of silver-plated copper or copper alloy scrap | |
JPS63161178A (en) | Release solution for tin or tin alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |