JPH04134037U - radiation thermometer - Google Patents
radiation thermometerInfo
- Publication number
- JPH04134037U JPH04134037U JP4974691U JP4974691U JPH04134037U JP H04134037 U JPH04134037 U JP H04134037U JP 4974691 U JP4974691 U JP 4974691U JP 4974691 U JP4974691 U JP 4974691U JP H04134037 U JPH04134037 U JP H04134037U
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- light
- radiation thermometer
- light beam
- travels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 26
- 230000003287 optical effect Effects 0.000 claims abstract description 39
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
(57)【要約】 (修正有)
【目的】消費電力や発熱量が少ないと共に、調整箇所が
少なく、使い勝手のよい放射温度計を提供すること。
【構成】測定対象2から放射される赤外線を集光レンズ
3で集めて赤外線検出器1に入射させるようにし、入射
した赤外線量に基づいて測定対象の温度を測定する放射
温度計において、前記集光レンズ3の直径方向の一方の
外側に、可視光線8を発する光源7を設けると共に、こ
の光源7の照射方向前方かつ前記外側に、前記可視光線
8を、前記一方の外側を集光レンズ3の光軸5方向に沿
って進む光線と、前記光軸5方向と直交する方向に進む
光線とに分割するビームスプリッター10を設け、さら
に、前記集光レンズ3の直径方向の他方の外側に、前記
光軸5方向と直交する方向に進む光線を前記光軸5方向
に沿う方向に反射させる反射体14を設けている。
(57) [Summary] (with amendments) [Purpose] To provide a radiation thermometer that consumes less power and generates less heat, has fewer adjustment points, and is easy to use. [Structure] In a radiation thermometer that collects infrared rays emitted from a measurement object 2 with a condenser lens 3 and makes them incident on an infrared detector 1, the temperature of the measurement object is measured based on the amount of incident infrared rays. A light source 7 that emits visible light 8 is provided on one outer side in the diametrical direction of the optical lens 3, and a condenser lens 3 is provided to emit the visible light 8 in front of the light source 7 in the irradiation direction and on the outer side. A beam splitter 10 is provided which splits the light beam into a light beam that travels along the optical axis 5 direction and a light beam that travels in a direction perpendicular to the optical axis 5 direction. A reflector 14 is provided that reflects light rays traveling in a direction perpendicular to the optical axis 5 in a direction along the optical axis 5.
Description
【0001】0001
本考案は、測定対象から放射される赤外線を集光レンズで集めて赤外線検出器 に入射させるようにし、入射した赤外線量に基づいて測定対象の温度を測定する 放射温度計に関する。 This invention uses a condensing lens to collect infrared rays emitted from the object to be measured. The temperature of the target is measured based on the amount of infrared rays incident on it. Regarding radiation thermometers.
【0002】0002
前記放射温度計は、種々の分野で利用されており、その測定態様も、放射温度 計と測定対象の双方が静止して、両者の間の距離が固定された場合のみならず、 放射温度計と測定対象のいずれか一方または双方が移動して、前記距離が変化す るような場合もある。また、近年においては、小型化が促進され、所謂ハンディ タイプの放射温度計が実用化され、測定対象も静的なものから動的なものに広が ってきている。このように、放射温度計と測定対象の少なくともいずれか一方が 動的な状態において、測定対象の温度測定を行う場合、測定領域を常に明確に把 握することが肝要である。 The radiation thermometer is used in various fields, and its measurement mode is also based on radiation temperature. Not only when the meter and the object to be measured are stationary and the distance between them is fixed; If either or both of the radiation thermometer and the measurement target move, the distance changes. In some cases, this may occur. In addition, in recent years, miniaturization has been promoted, and so-called handy type of radiation thermometer has been put into practical use, and the objects of measurement have expanded from static to dynamic objects. It's coming. In this way, at least one of the radiation thermometer and the measurement target When measuring the temperature of an object under dynamic conditions, the measurement area must always be clearly defined. It is important to hold on to it.
【0003】 このようなニーズに応える放射温度計として、例えば特公昭62− 12848号公報 に示すものがある。図5はこの公報に開示された放射温度計を概略的に示すもの で、この図において、51は測定対象52から放射される赤外線53を測定する赤外線 検出器で、ケース54内に収納されている。55はケース54の前面周部に設けられた コリメータである。56は測定対象52の表面における赤外線放射領域57の実質的な 外周位置を明らかにする可視光線58をそれぞれ発する複数の可視光源で、その照 射方向前方にはそれぞれコリメートレンズ(図外)が設けられている。0003 As a radiation thermometer that meets these needs, for example, Japanese Patent Publication No. 62-12848 There are some things shown below. Figure 5 schematically shows the radiation thermometer disclosed in this publication. In this figure, 51 is the infrared ray that measures the infrared ray 53 emitted from the measurement object 52. A detector housed in a case 54. 55 is provided on the front periphery of case 54 It is a collimator. 56 is the actual infrared radiation area 57 on the surface of the measurement target 52 Multiple visible light sources each emit visible light rays 58 that reveal the outer circumferential position. A collimating lens (not shown) is provided in front of each in the shooting direction.
【0004】 このように構成された放射温度計によれば、複数の可視光源56から発せられた 複数の可視光線57が、コリメートレンズによって調整されて測定対象52に照射さ れ、これによって、温度測定の対象である測定領域を明確に把握することができ る。0004 According to the radiation thermometer configured in this way, the radiation thermometer emitted from multiple visible light sources56 A plurality of visible light rays 57 are adjusted by a collimating lens and irradiated onto a measurement target 52. This allows you to clearly understand the measurement area that is the target of temperature measurement. Ru.
【0005】[0005]
しかしながら、上記従来の放射温度計においては、複数の可視光源56やコリメ ートレンズを用いているので、構成が複雑化する他、可視光源55による消費電力 やその発熱量が多くなり不経済であると共に、コリメートレンズ58の調整など調 整箇所が多いといった問題があった。 However, in the conventional radiation thermometer described above, multiple visible light sources56 and collimators are used. In addition to complicating the configuration, power consumption due to the visible light source55 In addition to being uneconomical due to the large amount of heat generated by the There was a problem that there were a lot of adjustments.
【0006】 本考案は、上述の事柄に留意してなされたもので、その目的とするところは、 消費電力や発熱量が少ないと共に、調整箇所が少なく、使い勝手のよい放射温度 計を提供することにある。[0006] This invention was made with the above-mentioned considerations in mind, and its purpose is to: Easy-to-use radiant temperature with low power consumption and heat generation, and fewer adjustment points The objective is to provide a measurement system.
【0007】[0007]
上記目的を達成するため、本考案においては、測定対象から放射される赤外線 を集光レンズで集めて赤外線検出器に入射させるようにし、入射した赤外線量に 基づいて測定対象の温度を測定する放射温度計において、前記集光レンズの直径 方向の一方の外側に、可視光線を発する光源を設けると共に、この光源の照射方 向前方かつ前記外側に、前記可視光線を、前記一方の外側を集光レンズの光軸方 向に沿って進む光線と、前記光軸方向と直交する方向に進む光線とに分割するビ ームスプリッターを設け、さらに、前記集光レンズの直径方向の他方の外側に、 前記光軸方向と直交する方向に進む光線を前記光軸方向に沿う方向に反射させる 反射体を設けている。 In order to achieve the above purpose, the present invention uses infrared rays emitted from the measurement target. is collected by a condensing lens and made to enter an infrared detector, and the amount of infrared rays incident on it is In a radiation thermometer that measures the temperature of a measurement target based on the diameter of the condensing lens A light source that emits visible light is provided on the outside of one of the directions, and the method of irradiating this light source is The visible light is directed forward and to the outside, and the one outside is directed toward the optical axis of the condensing lens. A beam that is divided into a light ray that travels along the optical axis direction and a light ray that travels in a direction perpendicular to the optical axis direction. a beam splitter is provided, and further outside the other diametrical direction of the condensing lens, Reflecting a light ray traveling in a direction perpendicular to the optical axis direction in a direction along the optical axis direction. A reflector is provided.
【0008】[0008]
上記放射温度計においては、光源から発せられた可視光線は、ビームスプリッ ターにおいて、その一部が集光レンズの一方の外側を集光レンズの光軸方向に沿 って進む光線となって測定対象に向かう。残りの光線は、前記光軸方向と直交す る方向に進んで、集光レンズの他方の外側において、反射体によって前記光軸方 向に沿う方向に反射された後、測定対象に向かう。従って、これら2つの光線に よって、測定対象における測定領域が明確にされる。 In the above radiation thermometer, visible light emitted from the light source is split into a beam splitter. At the center, a part of it extends along the optical axis of the condenser lens. It becomes a ray of light that travels towards the object to be measured. The remaining rays are perpendicular to the optical axis direction. The direction of the optical axis is reflected by a reflector on the other outside of the condensing lens. After being reflected in the direction along the direction, it heads toward the measurement target. Therefore, for these two rays Therefore, the measurement area of the measurement target is clarified.
【0009】[0009]
以下、本考案の実施例を、図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
【0010】 図1は、本考案の一実施例に係る放射温度計を概略的に示すもので、この図に おいて、1は測定対象2に対向するように設けられる例えばサーモパイルを用い た赤外線検出器、3はこの赤外線検出器1の赤外線入射面4の前方に設けられる 赤外透過性の集光レンズであり、この一つの焦点に赤外入射面4が位置するよう にしてある。なお、5は集光レンズ3の光軸、6は集光レンズ3によって集光さ れる赤外線を示している。0010 FIG. 1 schematically shows a radiation thermometer according to an embodiment of the present invention. In this case, 1 uses, for example, a thermopile installed to face the measurement target 2. An infrared detector 3 is provided in front of the infrared incident surface 4 of the infrared detector 1. It is an infrared-transmissive condensing lens, and the infrared incident surface 4 is located at one focal point. It is set as. In addition, 5 is the optical axis of the condensing lens 3, and 6 is the optical axis condensed by the condensing lens 3. This shows the infrared rays that can be emitted.
【0011】 7は集光レンズ3の直径方向の下方に設けられ、可視光線8を、光軸5と直交 する方向に発する光源で、この光源7としては、できるだけ広がりのない可視光 線8を発するものが好ましく、例えばレーザーダイオードよりなる。9はこの光 源7の照射方向前方に設けられる集光系で、例えば赤外レンズを用いたコリメー トレンズである。[0011] 7 is provided below the condenser lens 3 in the diametrical direction, and directs the visible light 8 at right angles to the optical axis 5. This light source 7 emits visible light with as little spread as possible. Preferably, it emits a line 8, for example consisting of a laser diode. 9 is this light A condensing system installed in front of the source 7 in the irradiation direction, such as a collimator using an infrared lens. It's Torrens.
【0012】 10は光源7から発せられ、コリメートレンズ9を経た可視光線8を、互いに直 交する2つの方向、すなわち、前記光軸5と平行かつ測定対象2に向かう方向と 、光軸5と直交する方向とに分割するビームスプリッターで、例えばハーフミラ ーよりなり、集光レンズ3の直径方向の下方に、その入射面が可視光線8の進行 方向と45°になるように配置されている。従って、このハーフミラー10に入射す る可視光線8の一部は反射されて、符号11で示すように、光軸3と平行かつ前記 赤外線6の下方の外縁(これは光軸5と平行である)12の外側(図示例では下方 )を測定対象2方向に向かって進み、残部はハーフミラー10をそのまま透過して 、符号13で示すように、光軸5と直交する方向に進む。0012 10 directs the visible light 8 emitted from the light source 7 and passed through the collimating lens 9 to each other. Two intersecting directions, that is, a direction parallel to the optical axis 5 and toward the measurement object 2; , a beam splitter that splits the beam into a direction perpendicular to the optical axis 5, such as a half mirror. The incident surface is located below the condenser lens 3 in the diametrical direction, and the incident surface It is placed at 45° with the direction. Therefore, the amount of light incident on this half mirror 10 is A part of the visible light 8 is reflected, as shown by reference numeral 11, parallel to the optical axis 3 and above. The lower outer edge of the infrared light 6 (which is parallel to the optical axis 5) 12 (in the illustrated example the lower outer edge) ) in the two directions of the measurement target, and the remaining part passes through the half mirror 10 as it is. , as indicated by reference numeral 13, in a direction perpendicular to the optical axis 5.
【0013】 14は前記光軸5と直交する方向に進んだ光線13を、光軸5と平行かつ測定対象 2に向かう方向に反射する反射体で、例えばミラーよりなり、集光レンズ3の直 径方向の上方に、45°傾けた状態に設けられている。従って、このミラー14に入 射した光線13は、符号15で示すように、光軸5と平行かつ前記赤外線6の上方の 外縁(これは光軸5と平行である)16の外側(図示例では下方)を測定対象2方 向に向かって進む。[0013] 14 directs the light ray 13 traveling in a direction perpendicular to the optical axis 5 to a point parallel to the optical axis 5 and the object to be measured. A reflector that reflects in the direction toward 2, for example, made of a mirror, which is directly connected to the condensing lens 3. It is installed radially upward at a 45° angle. Therefore, in this mirror 14 The emitted light ray 13 is parallel to the optical axis 5 and above the infrared ray 6, as shown by reference numeral 15. The outer edge (which is parallel to the optical axis 5) 16 (lower in the example shown) is the two sides of the measurement target. Go towards the direction.
【0014】 上記のように構成された放射温度計においては、光源7から発せられた可視光 線8は、ハーフミラー10において、その一部が集光レンズ3の下方の外側を集光 レンズ3の光軸5方向に沿って進む光線11となって測定対象2に向かう。そして 、残りの光線は、符号13で示すように、光源7方向と直交する方向に進んで、集 光レンズ3の上方の外側において、ミラー14によって光軸5方向に沿う方向に反 射された後、符号15で示すように、測定対象2に向かう。[0014] In the radiation thermometer configured as above, visible light emitted from the light source 7 Line 8 is a half mirror 10 that partially focuses light on the outer side below the condenser lens 3. It becomes a light ray 11 that travels along the optical axis 5 direction of the lens 3 and heads toward the measurement object 2. and , the remaining light rays travel in a direction perpendicular to the direction of the light source 7, as shown by reference numeral 13, and are concentrated. On the outside above the optical lens 3, the mirror 14 is used to reflect the direction along the optical axis 5. After being irradiated, it heads toward the object to be measured 2, as shown by reference numeral 15.
【0015】 前記光線11, 15は互いに平行かつ光軸5に平行であり、測定対象2の表面を、 図2に示すように、スポット的に照射する。この図2において、17, 18は、前記 光線11, 15が測定対象2の表面を照射したスポットを示し、これらのスポット17 , 18は、測定対象2の測定領域19の上下の位置に形成され、従って、これらのス ポット17, 18によって、前記測定領域19が明瞭に指示される。[0015] The light rays 11 and 15 are parallel to each other and parallel to the optical axis 5, and the surface of the measurement object 2 is As shown in FIG. 2, irradiation is performed in spots. In this FIG. 2, 17 and 18 are the above-mentioned It shows the spots where the rays 11 and 15 illuminated the surface of the measurement object 2, and these spots 17 , 18 are formed above and below the measurement area 19 of the measurement object 2, and therefore these Pots 17, 18 clearly indicate the measurement area 19.
【0016】 本考案は、上述の実施例に限られるものではなく、種々に変形して実施するこ とができる。例えば、図3においては、光源7を、その光軸が集光レンズ3の光 軸5と平行になるように、集光レンズ3の下方において測定対象2に向かうよう にして設けてある。他の構成については、図1に示したものと変わるところがな い。[0016] The present invention is not limited to the above-mentioned embodiments, and may be implemented with various modifications. I can do that. For example, in FIG. Directly toward the measurement object 2 below the condenser lens 3 so as to be parallel to the axis 5. It is set up as follows. There is no difference in other configurations from that shown in Figure 1. stomach.
【0017】 この実施例においては、光源7から発せられる可視光線8は、ハーフミラー10 において、光軸5と平行な光線20と、光軸5と直交する方向に進む光線21とに分 割され、この光線21は、ミラー14によって光軸5方向に沿う方向に反射された後 、符号22で示すように、測定対象2に向かう。従って、この実施例においても、 測定対象2における測定領域19が明瞭に指示される。[0017] In this embodiment, the visible light 8 emitted from the light source 7 is transmitted through the half mirror 10. , the light ray 20 is parallel to the optical axis 5 and the ray 21 traveling perpendicular to the optical axis 5. After being reflected in the direction along the optical axis 5 by the mirror 14, this light ray 21 is , as indicated by reference numeral 22, toward the measurement object 2. Therefore, also in this example, The measurement area 19 in the measurement object 2 is clearly indicated.
【0018】 また、図4に示す実施例は、前記図3における光源7,コリメートレンズ9, ハーフミラー10とミラー14を、赤外線検出器1よりも後方に位置するように光軸 5方向においてずらしたもので、この実施例の動作については説明を省略する。[0018] Further, the embodiment shown in FIG. 4 has the light source 7, collimating lens 9, Adjust the optical axis so that the half mirror 10 and the mirror 14 are located behind the infrared detector 1. The operation of this embodiment is shifted in five directions, and a description of the operation of this embodiment will be omitted.
【0019】 そして、前記コリメートレンズ9に代えて、カセグレン式反射鏡を用いた集光 系を用いてもよく、また、ハーフミラー10に代えて、プリズムを用いてもよい。 さらに、ミラー14に代えてハーフミラーやプリズムなどを用いてもよい。そして また、赤外線検出器1として、上記サーモパイル以外の固体検出器などを用いて もよい。[0019] Then, instead of the collimating lens 9, a Cassegrain reflector is used to condense the light. A prism may be used instead of the half mirror 10. Furthermore, a half mirror, a prism, or the like may be used instead of the mirror 14. and Also, as the infrared detector 1, a solid state detector other than the above thermopile may be used. Good too.
【0020】 なお、上記実施例の構成に、2個のビームスプリッター10と1つの反射体14を 追加することにより、図2において仮想線で示したスポット22, 23をも形成する ことができる。[0020] Note that two beam splitters 10 and one reflector 14 are added to the configuration of the above embodiment. By adding, spots 22 and 23 shown by imaginary lines in FIG. 2 are also formed. be able to.
【0021】[0021]
以上説明したように、本考案によれば、可視光線を発する光源を唯一つ設け、 この光源から発せられる可視光線を適宜分割・反射することにより、測定視野に 沿った2本または4本の可視光線を得ることができ、これらの光線によって測定 対象における測定領域を明確に確認することができる。 As explained above, according to the present invention, only one light source that emits visible light is provided, By appropriately dividing and reflecting the visible light emitted from this light source, the measurement field of view is 2 or 4 visible light rays along the line can be obtained and measurements can be made by these rays. The measurement area on the target can be clearly confirmed.
【0022】 そして、本考案においては、光源が唯一つであるから、消費電力や発熱量が少 なく、また、調整箇所が少なくて済むので取扱が簡単であり、また、小型でコン パクトに構成できる。特に、可搬タイプまたは遠距離タイプのものに適用すれば より大きな効果が期待できる。[0022] In addition, since there is only one light source in this invention, power consumption and heat generation are reduced. In addition, it is easy to handle because there are few adjustment points, and it is small and compact. Can be configured into pacts. Especially when applied to portable or long-distance types. Greater effects can be expected.
【図面の簡単な説明】[Brief explanation of drawings]
【図1】本考案の一実施例に係る放射温度計の構成を概
略的に示す図である。FIG. 1 is a diagram schematically showing the configuration of a radiation thermometer according to an embodiment of the present invention.
【図2】前記放射温度計の動作説明のための図である。FIG. 2 is a diagram for explaining the operation of the radiation thermometer.
【図3】本考案の他の実施例に係る放射温度計の構成を
概略的に示す図である。FIG. 3 is a diagram schematically showing the configuration of a radiation thermometer according to another embodiment of the present invention.
【図4】本考案のさらに他の実施例に係る放射温度計の
構成を概略的に示す図である。FIG. 4 is a diagram schematically showing the configuration of a radiation thermometer according to still another embodiment of the present invention.
【図5】従来の放射温度計の構成を概略的に示す図であ
る。FIG. 5 is a diagram schematically showing the configuration of a conventional radiation thermometer.
1…赤外線検出器、2…測定対象、3…集光レンズ、5
…光軸、7…光源、8…可視光線、10…ビームスプリッ
ター、14…反射体。1...Infrared detector, 2...Measurement object, 3...Condensing lens, 5
…Optical axis, 7…Light source, 8…Visible light, 10…Beam splitter, 14…Reflector.
Claims (1)
ンズで集めて赤外線検出器に入射させるようにし、入射
した赤外線量に基づいて測定対象の温度を測定する放射
温度計において、前記集光レンズの直径方向の一方の外
側に、可視光線を発する光源を設けると共に、この光源
の照射方向前方かつ前記外側に、前記可視光線を、前記
一方の外側を集光レンズの光軸方向に沿って進む光線
と、前記光軸方向と直交する方向に進む光線とに分割す
るビームスプリッターを設け、さらに、前記集光レンズ
の直径方向の他方の外側に、前記光軸方向と直交する方
向に進む光線を前記光軸方向に沿う方向に反射させる反
射体を設けたことを特徴とする放射温度計。1. A radiation thermometer that collects infrared rays emitted from a measurement object using a condensing lens and makes the collected infrared rays enter an infrared detector, and measures the temperature of the measurement object based on the amount of incident infrared rays. A light source that emits visible light is provided on one outside in the diametrical direction of the lens, and the visible light is emitted forward in the irradiation direction of the light source and on the outside along the optical axis direction of the condensing lens. A beam splitter is provided to split the light beam into a light beam that travels and a light beam that travels in a direction perpendicular to the optical axis direction, and further, a beam splitter that splits the light beam into a light beam that travels in a direction perpendicular to the optical axis direction, and a light beam that travels in a direction perpendicular to the optical axis direction is provided on the other outside of the condenser lens in the diametrical direction. A radiation thermometer comprising a reflector that reflects the light in a direction along the optical axis direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991049746U JP2578104Y2 (en) | 1991-06-02 | 1991-06-02 | Radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991049746U JP2578104Y2 (en) | 1991-06-02 | 1991-06-02 | Radiation thermometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04134037U true JPH04134037U (en) | 1992-12-14 |
JP2578104Y2 JP2578104Y2 (en) | 1998-08-06 |
Family
ID=31927622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991049746U Expired - Fee Related JP2578104Y2 (en) | 1991-06-02 | 1991-06-02 | Radiation thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2578104Y2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4315150A (en) * | 1980-07-24 | 1982-02-09 | Telatemp Corporation | Targeted infrared thermometer |
JPS6212848A (en) * | 1985-07-10 | 1987-01-21 | Mitsubishi Electric Corp | Inspection instrument |
JPS63255630A (en) * | 1987-03-30 | 1988-10-21 | テストターム・メステヒニーク・ゲー・エム・ベー・ハー・ウント・コンパニー | Radiation measuring device |
-
1991
- 1991-06-02 JP JP1991049746U patent/JP2578104Y2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4315150A (en) * | 1980-07-24 | 1982-02-09 | Telatemp Corporation | Targeted infrared thermometer |
JPS6212848A (en) * | 1985-07-10 | 1987-01-21 | Mitsubishi Electric Corp | Inspection instrument |
JPS63255630A (en) * | 1987-03-30 | 1988-10-21 | テストターム・メステヒニーク・ゲー・エム・ベー・ハー・ウント・コンパニー | Radiation measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2578104Y2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4166083B2 (en) | Ranging device | |
JP2018040748A (en) | Laser range measuring device | |
JPH04134037U (en) | radiation thermometer | |
CN106969717B (en) | Calibration method and measurement method of symmetrical optical bridge type self-stabilizing laser diameter measuring system | |
JPH0682542A (en) | Data acquiring device and communication system having device thereof | |
JPS63145929A (en) | Infrared temperature measuring apparatus | |
JP3491464B2 (en) | Laser beam divergence angle measuring device | |
JP2582007Y2 (en) | Interferometer | |
JPH07182666A (en) | Light pickup system | |
KR20190069232A (en) | Irrotational lidar sensor | |
JP2500651B2 (en) | Angle detector | |
JPH07182665A (en) | Light pickup system | |
JPS6262208A (en) | Range-finding apparatuws and method | |
SU1048307A1 (en) | Scanning interferential device having background compensation capability | |
JPH0821849A (en) | Measuring method for high-temperature body by laser doppler system | |
JPS596457Y2 (en) | light wave distance meter | |
JPH0743281B2 (en) | Infrared laser beam detector plate | |
JP2600601Y2 (en) | Optical interferometer | |
JP2531890Y2 (en) | Optical sensor | |
JPS63153442A (en) | Measuring instrument for optical characteristic of beam splitter | |
SU444053A1 (en) | Device for remote measurement of the angles of rotation of objects | |
JPS61243385A (en) | Light wave distance measuring apparatus | |
JPH09257583A (en) | Visual field check device for light detecting unit | |
JP2624501B2 (en) | Method of measuring characteristics of refractive index distribution type cylindrical lens and apparatus used therefor | |
JP3309537B2 (en) | Fourier transform spectrophotometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |