JPH04133512A - Pulse generation circuit - Google Patents

Pulse generation circuit

Info

Publication number
JPH04133512A
JPH04133512A JP90256234A JP25623490A JPH04133512A JP H04133512 A JPH04133512 A JP H04133512A JP 90256234 A JP90256234 A JP 90256234A JP 25623490 A JP25623490 A JP 25623490A JP H04133512 A JPH04133512 A JP H04133512A
Authority
JP
Japan
Prior art keywords
fet
diode
zener diode
gate
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP90256234A
Other languages
Japanese (ja)
Other versions
JP2648388B2 (en
Inventor
Akihiko Iwata
明彦 岩田
Takeo Haruta
春田 健雄
Hitoshi Wakata
若田 仁志
Akihiro Suzuki
昭弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2256234A priority Critical patent/JP2648388B2/en
Priority to US07/757,419 priority patent/US5305338A/en
Priority to GB9119426A priority patent/GB2250131B/en
Priority to DE4131949A priority patent/DE4131949C2/en
Publication of JPH04133512A publication Critical patent/JPH04133512A/en
Application granted granted Critical
Publication of JP2648388B2 publication Critical patent/JP2648388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the overvoltage and the destruction of a pulse generation circuit by accelerating an avalanching phenomenon by connecting a Zener diode with diode in series and a resistance with capacitor in parallel between the drain and gate of an overvoltage protective FET and a resistor between the gate and source of the FET. CONSTITUTION:The delay in responding time of an FET 9A is most strongly affected by the delay in responding time of a Zener diode 11. Therefore, a high-speed dynamic clamper 30 is formed by connecting a resistor 31 and capacitor 32 in parallel with the Zener diode 11 and diode 12 connected in series. In addition, the avalanching effect is accelerated so as to make the responsiveness of the Zener diode 11 faster by superimposing the Zener current of the diode 11 upon the discharge current of the capacitor 32. In order to make the responsiveness faster, the destruction of this circuit is prevented by relieving the overvoltage to the overvoltage protective FET 9A based on the delay in responsiveness of the FET 9A.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、例えば放電励起パルスレーザ装置等に使用
されるパルス発生回路に関するものである。
The present invention relates to a pulse generation circuit used, for example, in a discharge-excited pulsed laser device.

【従来の技術】[Conventional technology]

第5図(A)、  (B)は、例えば特願平2−342
51号に示された従来のパルス発生回路を示す回路図で
あり、図において、2は充電用リアクトル、3は充電用
ダイオード、4は充放電を行う主コンデンサ、5は充電
用抵抗、6はピーキングコンデンサ、7はガス放電によ
って内部に収容した金属(例えば銅)を加熱、気化させ
てレーザ出力を得る放電管(レーザチューブ)である。 8はパルス発生用のスイッチで、固体スイッチ素子とし
てのFET(を界効果トランジスタ)9を並列接続した
ものを更に多段にわたって直列接続したものからなる。 また、これらのFET9のうち、各並列段について、特
定の各1個ずつのFE79A(過電圧保護用FETとも
言う)は夫々ゲートが他のゲートから切り離されている
。 さらに、そのゲートとドレインとの間にはツェナーダイ
オード11及びダイオード12の直列回路が接続され、
ゲートとソースとの間には抵抗13が接続されている。 なお、ツェナーダイオード11ダイオード12および抵
抗13はダイナミッククランパを構成している。また、
20はFET9Aのドレインに設けた逆流防止用ダイオ
ードである。 いま、直並列接続されたFET9のゲート信号が入力さ
れると、各FET9がON動作し、主コンデンサ4の大
きな充電々圧がこれらのFET9を通して放電管7に印
加されると共に、放電々流が供給される。いま、スイッ
チタイミングが各FET9の直列段で異なると、例えば
、直列段S〜SI、のうち第1段目SIの複数のFET
9のうちあるFETのスイッチタイミングt1が他の段
のFET9のスイッチタイミングto(第6図(a))
に比べて遅れ、第1段目の各ドレイン・ソース間に集中
的に大きな電圧(第6図(b))が印加され、第1段目
における各FET9は破壊される可能性がある。しかし
、この第1段目のFET9に並列接続されたFET9A
のドレイン・ゲート間に接続されたツェナーダイオード
11が第7図に示すツェナー電圧V、を超える上記過電
圧を受けると、ツェナーダイオード11はV6以上の電
圧を負担しえないので、ダイオード12を通して電流が
抵抗13に流れる。このとき、抵抗13に流れる電流1
.は、例えば第6図(d)に示すようになる。従って、
抵抗13の両端の電圧が上昇するので、ゲート電圧も上
昇する(第6図(C))。 ゲート電圧がしきい値電圧を超えると、直ちにそのFE
T9Aのドレイン・ソース間が導通し、本来第1段目の
各FET9に分流すべき電流が集中的にFET9Aのド
レイン・ソース間に流れる。 他方、FET9.FET9Aの各ソース側には、第5図
(b)に示すように浮遊インダクタンス21及び並列の
浮遊インダクタンス22が寄生している。第5図に示し
た回路においては、通常、浮遊インダクタンス22は低
インダクタンス値となるように回路配置等に工夫がなさ
れている。もし、そうでない場合には抵抗13を流れる
電流ibの立上りがなまってFET9のゲート電圧の上
昇がゆるやかとなり、FET9Aの導通が遅れ保護効果
が薄れることになる。従って、浮遊インダクタンス21
に比べて低インダクタンス値となっている。そこで、F
ET9のスイッチング直後にこれら浮遊インダクタンス
21.22に蓄えられた電気エネルギーによって低イン
ダクタンス側にあるFET9Aに逆電流が流れようとす
る。すると、逆電流が集中的に、このFET9Aに流れ
るのを逆流防止ダイオード20が阻止して、FET9A
がその逆電流で破壊されるのを防止する。
Figures 5 (A) and (B) are, for example, Japanese Patent Application No. 2-342.
51 is a circuit diagram showing a conventional pulse generation circuit, in which 2 is a charging reactor, 3 is a charging diode, 4 is a main capacitor for charging and discharging, 5 is a charging resistor, and 6 is a The peaking capacitor 7 is a discharge tube (laser tube) that heats and vaporizes metal (for example, copper) housed inside by gas discharge to obtain a laser output. Reference numeral 8 denotes a switch for generating pulses, which is composed of FETs (field effect transistors) 9 as solid state switching elements connected in parallel and further connected in series in multiple stages. Furthermore, among these FETs 9, in each parallel stage, each specific FE79A (also referred to as an overvoltage protection FET) has its gate separated from the other gates. Furthermore, a series circuit of a Zener diode 11 and a diode 12 is connected between the gate and the drain.
A resistor 13 is connected between the gate and the source. Note that the Zener diode 11, diode 12, and resistor 13 constitute a dynamic clamper. Also,
20 is a backflow prevention diode provided at the drain of FET 9A. Now, when the gate signals of the FETs 9 connected in series and parallel are input, each FET 9 is turned ON, and the large charging voltage of the main capacitor 4 is applied to the discharge tube 7 through these FETs 9, and the discharge current is Supplied. Now, if the switch timing is different for each series stage of FET9, for example, a plurality of FETs in the first stage SI among the series stages S to SI
9, the switch timing t1 of one FET 9 is the switch timing to of another FET 9 (FIG. 6(a))
, a large voltage (FIG. 6(b)) is intensively applied between each drain and source in the first stage, and each FET 9 in the first stage may be destroyed. However, FET9A connected in parallel to this first stage FET9
When the Zener diode 11 connected between the drain and gate of the zener diode 11 receives the above-mentioned overvoltage exceeding the Zener voltage V shown in FIG. The current flows through the resistor 13. At this time, the current 1 flowing through the resistor 13
.. is as shown in FIG. 6(d), for example. Therefore,
Since the voltage across the resistor 13 increases, the gate voltage also increases (FIG. 6(C)). As soon as the gate voltage exceeds the threshold voltage, the FE
The drain and source of T9A become conductive, and the current that should originally be divided to each FET 9 in the first stage flows intensively between the drain and source of FET 9A. On the other hand, FET9. A floating inductance 21 and a parallel floating inductance 22 are parasitic on each source side of the FET 9A, as shown in FIG. 5(b). In the circuit shown in FIG. 5, the circuit layout and the like are usually devised so that the floating inductance 22 has a low inductance value. If this is not the case, the rise of the current ib flowing through the resistor 13 will be blunted, and the gate voltage of the FET 9 will rise slowly, and the conduction of the FET 9A will be delayed and the protective effect will be weakened. Therefore, the stray inductance 21
It has a low inductance value compared to . Therefore, F
Immediately after switching of ET9, the electric energy stored in these floating inductances 21 and 22 causes a reverse current to flow through FET9A on the low inductance side. Then, the reverse current prevents the reverse current from flowing intensively to this FET9A, and the reverse current prevents the reverse current from flowing through the FET9A.
prevents it from being destroyed by the reverse current.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来のパルス発生回路は以上のように構成されているの
で、直並列に接続されたFETの各直列段の導通タイミ
ングがずれると、導通タイミングが遅れたパンクのFE
T(例えば、FET9A)に過電圧が印加されて破壊す
ることがある。このため、ダイナミッククランパを各直
列に接続してFETへの過電圧の印加を防止するように
している。しかし、過電圧破壊は瞬間的な電気エネルギ
ーによるものであり、ツェナーダイオードの応答性の遅
れと言えども無視し得ない。その僅かな応答性の遅れが
悪条件と重なり、これが原因で過電圧破壊に到ることも
ある等の問題点があった。 この発明は上記のような問題点を解消するためになされ
たもので、ダイナミッククランパが持つツェナーダイオ
ードの応答性を向上させるためツェナーダイオードに並
列に抵抗とコンデンサを接続してなだれ現象を助長させ
、多のFET間との時間遅れを短縮して過電圧破壊を防
止するパルス発生回路を得ることを目的とする。
Conventional pulse generation circuits are configured as described above, so if the conduction timing of each series stage of FETs connected in series and parallel is shifted, a punctured FE with delayed conduction timing may occur.
An overvoltage may be applied to T (for example, FET 9A) and it may be destroyed. For this reason, dynamic clampers are connected in series to prevent overvoltage from being applied to the FETs. However, overvoltage breakdown is caused by instantaneous electrical energy, and cannot be ignored even though it is caused by a delay in the response of the Zener diode. This slight delay in response overlaps with adverse conditions, which poses problems such as overvoltage breakdown. This invention was made to solve the above problems, and in order to improve the response of the Zener diode of the dynamic clamper, a resistor and a capacitor are connected in parallel to the Zener diode to promote the avalanche phenomenon. It is an object of the present invention to provide a pulse generation circuit that prevents overvoltage breakdown by shortening the time delay between multiple FETs.

【課題を解決するための手段】[Means to solve the problem]

この発明に係るパルス発生回路は、放電管に直列に接続
され、主コンデンサに高電圧を印加して充電し、直並列
にFETを接続したスイッチをONしてパルス放電を生
ずる前記放電管と、前記FETの直列段に少なくとも1
ヶ以上設けられゲートが他のFETから切離されてドレ
イン・ゲート間にツェナーダイオードとダイオードとを
接続し、またゲート・ソース間に抵抗を接続した過電圧
保護用FETと、その過電圧保護用FETのドレイン・
ゲート間に並列に接続され、前記ツェナーダイオードの
応答性を速める抵抗とコンデンサとを設けたものである
The pulse generation circuit according to the present invention includes a discharge tube connected in series to the discharge tube, which charges a main capacitor by applying a high voltage, and generates a pulse discharge by turning on a switch having FETs connected in series and parallel; At least one in series stage of said FET.
An overvoltage protection FET with a gate separated from other FETs, a Zener diode and a diode connected between the drain and gate, and a resistor connected between the gate and source; drain·
A resistor and a capacitor are connected in parallel between the gates to speed up the response of the Zener diode.

【作 用】[For use]

この発明における高速ダイナミッククランパは、FET
の直列段に他のFETからゲートが切離され、ドレイン
・ゲート間にツェナーダイオードとダイオードとの直列
回路と、抵抗及びコンデンサとを並列に接続する。そし
て、前記ツェナーダイオードのツェナー電流と前記コン
デンサの放電電流とを重畳して、なだれ効果を助長し、
ツェナーダイオードの応答性を早めるようにするので、
FETの応答性遅延に基<FETへの過電圧を緩和して
破壊から防止する。
The high-speed dynamic clamper in this invention is a FET
The gate is separated from other FETs in the series stage, and a series circuit of a Zener diode and a diode, a resistor, and a capacitor are connected in parallel between the drain and gate. and superimposing the Zener current of the Zener diode and the discharge current of the capacitor to promote an avalanche effect,
This speeds up the response of the Zener diode, so
Based on the response delay of the FET, the overvoltage applied to the FET is alleviated to prevent it from being destroyed.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。図中
、第5図と同一の部分は同一の符号をもって図示した第
1図及び第2図において、30は高速ダイナミッククラ
ンパであり、31は抵抗、32はコンデンサである。 次に動作について説明する。レーザ光発生の回路動作は
第5図(A)と同一であるので詳細説明は省略する。ま
ず、第1図の回路において通常はFET9の直列段S、
−S、には電圧■。が均等に分圧されている。スイッチ
8がONLでピーキングコンデンサ6にコンデンサ4の
放電々流13が流れると、所定時間後に放電管7が放電
を開始してパルス状の放電々流i。を流す。しかし、こ
の時、直列段のFET9の瞬時的な応答時間にずれが生
ずると、第1段目のFET9に分流すべき電流がFET
9Aのドレイン・ソース間に集中的に流れて過電圧を発
生する。この過電圧は他のFET9を保護するためのフ
ユーズ的作用として敢えてFET9Aの破壊も止むなし
と過電圧破壊を一方で容認し、他方で破壊を避ける方策
が従来から講じられてきた。ここで、その過電圧を少し
でも緩和して集中電流を避けようとすれば、FET9A
の応答時間を極力速め、瞬時破壊の電気エネルギーを引
き下げることが有効な手段となる。すなわち、FET9
Aの応答時間の遅れは、ツェナーダイオード11の応答
時間の遅れが最も影響する。そこで、第4図の波形図に
示すように、仮にFET9の直列段82〜S9よりわず
かに遅れてFET9AのSlがONした場合にも、その
ONタイムを短縮させるために第2図に示すように直列
に接続されたツェナーダイオード11とダイオード12
に並列に抵抗31とコンデンサ32とを接続して高速ダ
イナミッククランパ30を形成する。 第3図のようにFET9Aには充電電圧vcが充電され
ており、この電圧はt0時のS、の電圧と一致している
。時刻t0にS2〜S7が導通したとすると、Slの電
圧VDは急激に増加しようとする。その時、VDの両端
の増加と共に、コンデンサ32には電流が流れ込み、そ
の電流は抵抗13を通るから、Vcに電圧を発生させる
。vGの大きさが時刻tXでしきい値に達すると、FE
T9Aが導通を開始し電圧v0の上昇をくい止める。つ
まり、コンデンサ32が一種のツェナダイオード的役割
を果たすことになる。時刻t。−t、Iの間にわずかに
上昇した電圧V、は次の繰り返しスイッチングの時刻ま
でに抵抗31にて放電される。コンデンサ32の応答は
一般的に遅れがないから、ツェナダイオードの応答遅れ
分を補償することができる。
An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, the same parts as in FIG. 5 are indicated by the same reference numerals. In FIGS. 1 and 2, 30 is a high-speed dynamic clamper, 31 is a resistor, and 32 is a capacitor. Next, the operation will be explained. Since the circuit operation for laser beam generation is the same as that shown in FIG. 5(A), detailed explanation will be omitted. First, in the circuit of FIG. 1, normally the series stage S of FET9,
-S is the voltage ■. are equally divided. When the switch 8 is ONL and the discharge current 13 of the capacitor 4 flows into the peaking capacitor 6, the discharge tube 7 starts discharging after a predetermined time and a pulsed discharge flow i is generated. flow. However, at this time, if a lag occurs in the instantaneous response time of the FET 9 in the series stage, the current that should be shunted to the FET 9 in the first stage is
9A flows intensively between the drain and source, generating an overvoltage. This overvoltage acts as a fuse to protect the other FETs 9, and measures have been taken in the past to allow the overvoltage destruction without stopping the destruction of the FET 9A, and to avoid the destruction on the other hand. Here, if you want to alleviate the overvoltage even a little and avoid concentrated current, use FET9A
An effective means is to speed up the response time as much as possible and reduce the electrical energy required for instantaneous breakdown. That is, FET9
The response time delay of A is most affected by the response time delay of the Zener diode 11. Therefore, as shown in the waveform diagram of FIG. 4, even if FET9A's Sl is turned on slightly later than the series stage 82 to S9 of FET9, in order to shorten the ON time, as shown in FIG. Zener diode 11 and diode 12 connected in series with
A high-speed dynamic clamper 30 is formed by connecting a resistor 31 and a capacitor 32 in parallel. As shown in FIG. 3, the FET 9A is charged with a charging voltage vc, and this voltage matches the voltage of S at time t0. Assuming that S2 to S7 become conductive at time t0, the voltage VD of Sl is about to increase rapidly. At that time, as the voltage across VD increases, a current flows into the capacitor 32, and this current passes through the resistor 13, thereby generating a voltage at Vc. When the magnitude of vG reaches the threshold at time tX, FE
T9A starts conducting and prevents the voltage v0 from rising. In other words, the capacitor 32 plays the role of a kind of Zener diode. Time t. The voltage V, which has slightly increased between -t and I, is discharged at the resistor 31 by the time of the next repeated switching. Since the response of the capacitor 32 generally has no delay, it is possible to compensate for the response delay of the Zener diode.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、ゲートが他のFET
から切離された過電圧保護用FETのドレイン・ゲート
間に直列にツェナーダイオードとダイオードを、また並
列に抵抗とコンデンサとを接続し、ゲート・ソース間に
抵抗を接続して構成したので、ツェナーを流とコンデン
サの放電々流とが重畳されてナダレ現象を助長すること
になり、ツェナーダイオードの応答性が速まって応答性
遅延が原因で破壊する過電圧を低減できる効果がある。
As described above, according to the present invention, the gate is connected to another FET.
A zener diode and a diode are connected in series between the drain and gate of the overvoltage protection FET, which is separated from the FET, and a resistor and a capacitor are connected in parallel. The current and the discharge current of the capacitor are superimposed to promote the sagging phenomenon, which speeds up the response of the Zener diode, which has the effect of reducing overvoltage that can cause damage due to response delay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるパルス発生回路の構
成図、第2図はこの発明の一実施例による過電圧保護用
FETの回路図、第3図、第4図はこの発明の要部波形
図、第5図(A)は従来のパルス発生回路の構成図、同
(B)は従来の通電圧保護用FETの回路図、第6図は
第5図の要部波形図、第7図は第5図のツェナーダイオ
ードの特性図である。 図において、4は主コンデンサ、8はスイッチ、9はF
ET (電解効果トランジスタ)、9Aは過電圧保護用
FET、11はツェナーダイオード、12はダイオード
、13.31は抵抗、32はコンデンサである。 なお、図中、同一符号は同一、又は相当部分を示す。 特 許 出 願 人  三菱電機株式会社代理人   
弁理士  1)澤  博 昭(外2名) 第 図 →t 第 図 (A)
FIG. 1 is a block diagram of a pulse generation circuit according to an embodiment of the invention, FIG. 2 is a circuit diagram of an overvoltage protection FET according to an embodiment of the invention, and FIGS. 3 and 4 are main parts of the invention. Waveform diagrams, Figure 5 (A) is a configuration diagram of a conventional pulse generation circuit, Figure 5 (B) is a circuit diagram of a conventional voltage protection FET, Figure 6 is a waveform diagram of the main part of Figure 5, Figure 7 The figure is a characteristic diagram of the Zener diode shown in FIG. In the figure, 4 is the main capacitor, 8 is the switch, and 9 is F
ET (field effect transistor), 9A is an overvoltage protection FET, 11 is a Zener diode, 12 is a diode, 13.31 is a resistor, and 32 is a capacitor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Corporation agent
Patent attorney 1) Hiroshi Sawa (2 others) Figure → t Figure (A)

Claims (1)

【特許請求の範囲】[Claims]  放電管に直列に接続された主コンデンサに高電圧を印
加して充電し、直並列にFETを接続したスイッチをオ
ンして前記放電管をパルス放電するパルス発生回路にお
いて、前記FETの直列段に少なくとも1ケ以上設けら
れゲートが他のFETから切離されてドレイン・ゲート
間にツェナーダイオードとダイオードとを接続し、また
ゲート・ソース間に抵抗を接続した過電圧保護用FET
と、前記過電圧保護用FETのドレイン・ゲート間に並
列に接続され前記ツェナーダイオードの応答性を速める
抵抗とコンデンサとを設けたことを特徴とするパルス発
生回路。
In a pulse generation circuit that applies a high voltage to a main capacitor connected in series to a discharge tube to charge it, and turns on a switch to which FETs are connected in series and parallel to discharge the discharge tube in pulses, Overvoltage protection FET with at least one gate separated from other FETs, a Zener diode and a diode connected between the drain and gate, and a resistor connected between the gate and source.
and a resistor and a capacitor connected in parallel between the drain and gate of the overvoltage protection FET to speed up the response of the Zener diode.
JP2256234A 1990-09-25 1990-09-25 Pulse generation circuit Expired - Fee Related JP2648388B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2256234A JP2648388B2 (en) 1990-09-25 1990-09-25 Pulse generation circuit
US07/757,419 US5305338A (en) 1990-09-25 1991-09-10 Switch device for laser
GB9119426A GB2250131B (en) 1990-09-25 1991-09-11 Switch device for laser
DE4131949A DE4131949C2 (en) 1990-09-25 1991-09-25 Switching devices for a discharge-excited pulse laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2256234A JP2648388B2 (en) 1990-09-25 1990-09-25 Pulse generation circuit

Publications (2)

Publication Number Publication Date
JPH04133512A true JPH04133512A (en) 1992-05-07
JP2648388B2 JP2648388B2 (en) 1997-08-27

Family

ID=17289798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2256234A Expired - Fee Related JP2648388B2 (en) 1990-09-25 1990-09-25 Pulse generation circuit

Country Status (1)

Country Link
JP (1) JP2648388B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716507A1 (en) * 1994-12-07 1996-06-12 Commissariat A L'energie Atomique Control circuit for a high current switch having an isolated gate and impulse switch using such a circuit
US6296428B1 (en) 1998-11-24 2001-10-02 Nkk Corporation Burr removing method and apparatus
JP2009037936A (en) * 2007-08-03 2009-02-19 Hitachi Medical Corp High voltage switch control circuit, and x-ray device using the same
JP2015186008A (en) * 2014-03-24 2015-10-22 株式会社デンソー Input protective circuit
JP2018098901A (en) * 2016-12-13 2018-06-21 ラピスセミコンダクタ株式会社 Charge pump circuit and boosting circuit
EP3557764A1 (en) * 2018-04-19 2019-10-23 Infineon Technologies Austria AG Electronic circuit with a transistor device and a clamping circuit
JP2022036577A (en) * 2020-08-24 2022-03-08 株式会社デンソー Load drive circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716507A1 (en) * 1994-12-07 1996-06-12 Commissariat A L'energie Atomique Control circuit for a high current switch having an isolated gate and impulse switch using such a circuit
US6296428B1 (en) 1998-11-24 2001-10-02 Nkk Corporation Burr removing method and apparatus
US6402441B2 (en) 1998-11-24 2002-06-11 Nkk Corporation Burr removing method and apparatus
US6648564B2 (en) 1998-11-24 2003-11-18 Nkk Corporation Burr removing method and apparatus
JP2009037936A (en) * 2007-08-03 2009-02-19 Hitachi Medical Corp High voltage switch control circuit, and x-ray device using the same
JP2015186008A (en) * 2014-03-24 2015-10-22 株式会社デンソー Input protective circuit
JP2018098901A (en) * 2016-12-13 2018-06-21 ラピスセミコンダクタ株式会社 Charge pump circuit and boosting circuit
EP3557764A1 (en) * 2018-04-19 2019-10-23 Infineon Technologies Austria AG Electronic circuit with a transistor device and a clamping circuit
US11158627B2 (en) 2018-04-19 2021-10-26 Infineon Technologies Austria Ag Electronic circuit with a transistor device and a clamping circuit
JP2022036577A (en) * 2020-08-24 2022-03-08 株式会社デンソー Load drive circuit

Also Published As

Publication number Publication date
JP2648388B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US4658320A (en) Switch contact arc suppressor
US4987324A (en) High-speed CMOS buffer with controlled slew rate
EP0615653B1 (en) Inductive load dump circuit
US8879222B2 (en) Trigger circuit and method of using same
JP2005109162A (en) Overvoltage protective circuit of output mos transistor
JPH09205727A (en) Power transistor with short-circuit protection
JP3067448B2 (en) Semiconductor device
US4421994A (en) High speed line driver with ground output capability
JPH04133512A (en) Pulse generation circuit
US5525925A (en) Simple power MOSFET low side driver switch-off circuit with limited di/dt and fast response
US9543932B2 (en) Matrix stages solid state ultrafast switch
US5535086A (en) ESD protection circuit and method for BICMOS devices
US4791521A (en) Method and apparatus for reducing transient noise by premagnetization of parasitic inductance
US5103148A (en) Low voltage circuit to control high voltage transistor
KR0132780B1 (en) Integrated logic circuit
JP2007088599A (en) Gate circuit of insulated gate semiconductor device
JP3066754B2 (en) Gate drive circuit
JPH06216735A (en) Output circuit
JP3282378B2 (en) Power element drive protection circuit and MOSFET drive protection circuit
CN113258913A (en) Semiconductor switch with ESD protection circuit
JPH03237810A (en) Pulse generating circuit
EP0614278B1 (en) Drive circuit for use with voltage-driven semiconductor device
JPH07143734A (en) Driver circuit for voltage driving type element
JPH02134014A (en) Overcurrent protection circuit for conduction modulation type mosfet
JPH0678525A (en) Driver circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees