JPH04133327A - Method of finely processing semiconductor - Google Patents

Method of finely processing semiconductor

Info

Publication number
JPH04133327A
JPH04133327A JP25666190A JP25666190A JPH04133327A JP H04133327 A JPH04133327 A JP H04133327A JP 25666190 A JP25666190 A JP 25666190A JP 25666190 A JP25666190 A JP 25666190A JP H04133327 A JPH04133327 A JP H04133327A
Authority
JP
Japan
Prior art keywords
electron beam
irradiated
pattern
semiconductor
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25666190A
Other languages
Japanese (ja)
Inventor
Seiji Nogiwa
誠二 野極
Kazuya Suda
須田 一哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP25666190A priority Critical patent/JPH04133327A/en
Publication of JPH04133327A publication Critical patent/JPH04133327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Weting (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To execute a very fine processing operation without using a resist by a method wherein a pattern is drawn directly on the surface of a semiconductor by using an electron beam and the pattern is etched. CONSTITUTION:By using an electron beam aligner, a diffraction grating pattern of 235nm intervals on an InP substrate 1 of a compound semiconductor is irradiated with an electron beam. Parts irradiated with the electron beam are denoted by reference numeral 2. Irradiation conditions with the electron beam are as follows: an accelerating voltage of 50keV; a beam current of 60pA; a beam diameter of 15nm; and a dose of 3.36nC/cm. After the electron beam has been irradiated, the surface of the InP substrate 1 is etched by using a mixed liquid of bromine water (Br+H2O) with phosphoric acid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エツチングにより凹凸パターンを形成する半
導体の微細加工方法において、電子線の照射部と非照射
部とのエツチング速度の差を利用して凹凸を形成するこ
とにより、半導体素子の加工精度を高め、歩留りを改善
し、製造工程を簡略化するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a semiconductor microfabrication method in which a concavo-convex pattern is formed by etching, which utilizes the difference in etching speed between an electron beam irradiated area and a non-irradiated area. By forming unevenness using the wafer, the processing accuracy of the semiconductor element is improved, the yield is improved, and the manufacturing process is simplified.

〔従来の技術〕[Conventional technology]

半導体の表面に微細な凹凸パターンを形成するため、従
来は、 (1)被加工材の表面にレジスト膜を塗布し、(2)光
や電子線あるいはX線等を照射(露光)し、(3)現像
を行って照射された部分または照射されなかった部分の
レジスト膜を除去し、 (4)  この残ったレジスト膜をマスクとし、適当な
エツチング液によって、レジスト膜で被服されていない
材料部分を溶解除去し、 (5)  エツチングが終了した後にレジスト膜を除去
する という工程を順番に行っていた。
In order to form a fine uneven pattern on the surface of a semiconductor, the conventional methods are (1) applying a resist film to the surface of the workpiece, (2) irradiating (exposure) with light, electron beams, or X-rays, and ( 3) Perform development to remove the resist film in the irradiated or non-irradiated areas; (4) Using this remaining resist film as a mask, use an appropriate etching solution to remove the parts of the material that are not covered by the resist film. The steps of (5) removing the resist film after etching was completed were performed in order.

最小加工寸法としては、通常の光による露光では0.5
μsが限界とされている。この限界は、加工図形が描か
れたフォトマスクを用いて露光するた杓、光の回折効果
が生じるからである。さらに微細な加工を行うには、光
の干渉縞(ホログラフィ−)を用いた干渉露光や、電子
線を照射して描画する電子露光が用いられている。これ
らの−船釣な加工寸法は0.1〜0.2μmとされてい
る。
The minimum processing size is 0.5 when exposed to normal light.
The limit is μs. This limit is due to the diffraction effect of light that occurs when a photomask on which a processed pattern is drawn is used for exposure. To perform even finer processing, interference exposure using optical interference fringes (holography) and electronic exposure using electron beam irradiation to draw images are used. The typical processing dimensions of these are 0.1 to 0.2 μm.

また、エツチング方法としては、液体による方法(ウェ
ットエツチング)の他に、気体やプラズマを用いた方法
(ドライエツチング)も利用されている。
Further, as an etching method, in addition to a method using a liquid (wet etching), a method using gas or plasma (dry etching) is also used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の微細加工方法では、レジスト塗布、露光
、現像、エツチング、レジスト除去などの複雑な工程を
含むため、作業能率が悪く、歩留りも悪化する欠点があ
った。
However, conventional microfabrication methods involve complicated steps such as resist coating, exposure, development, etching, and resist removal, so they have the disadvantage of poor working efficiency and poor yield.

また、加工精度がレジストの感光性能に依存するため、
微細化には限界があった。
In addition, since processing accuracy depends on the photosensitive performance of the resist,
There were limits to miniaturization.

本発明は、以上の課題を解決し、レジストを用いること
なく加工が可能な半導体の微細加工方法を提供すること
を目的とする。
An object of the present invention is to solve the above problems and provide a semiconductor microfabrication method that can be processed without using a resist.

〔課題を解決するた約の手段〕 本発明の半導体の微細加工方法は、エツチングしようと
するパターンを半導体表面に電子線で描画し、電子線が
照射された部分と照射されなかった部分とのエツチング
速度の差により半導体表面に凹凸を形成することを特徴
とする。
[Means for Solving the Problems] The semiconductor microfabrication method of the present invention draws a pattern to be etched on the semiconductor surface with an electron beam, and distinguishes between the areas irradiated with the electron beam and the areas not irradiated. It is characterized by forming unevenness on the semiconductor surface due to the difference in etching speed.

〔作 用〕[For production]

半導体に電子線を照射すると、照射部と非照射部との間
でエツチング速度の違いが生じる。そこで、半導体表面
に電子線で直接にパターンを描画し、これをエツチング
する。この方法によれば、レジストを用いる必要がなく
、しかも電子線による直接描画のため、非常に微細な加
工が可能となる。
When a semiconductor is irradiated with an electron beam, a difference in etching rate occurs between the irradiated area and the non-irradiated area. Therefore, a pattern is drawn directly on the semiconductor surface using an electron beam and then etched. According to this method, there is no need to use a resist, and since direct drawing is performed using an electron beam, very fine processing is possible.

電子線照射によるエツチング速度の変化は、現象として
確認されている。このような現象が生じる原因は明確で
はないが、電子線照射による結晶の欠陥が関係している
ものと考えられる。
Changes in etching rate due to electron beam irradiation have been confirmed as a phenomenon. The cause of this phenomenon is not clear, but it is thought to be related to crystal defects caused by electron beam irradiation.

〔実施例〕〔Example〕

第1図は本発明実施例を示す図であり、基板上に回折格
子パターンを形成した構造を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, and shows a structure in which a diffraction grating pattern is formed on a substrate.

この例では、化合物半導体であるInP基板1に、電子
線露光装置を用い、235n+++ M@の回折格子状
パターンに電子線を掃引して照射した。電子線照射部を
参照番号2で示す。電子線の照射条件は、加速電圧 :
5QkV ビーム電流:60pA ビーム径 :150m ドーズ量 +  3.36 nC/cmとした。
In this example, an electron beam exposure device was used to irradiate an InP substrate 1, which is a compound semiconductor, with a sweeping electron beam in a diffraction grating pattern of 235n++M@. The electron beam irradiation section is indicated by reference number 2. The electron beam irradiation conditions are acceleration voltage:
5QkV Beam current: 60pA Beam diameter: 150m Dose amount +3.36 nC/cm.

電子線を照射した後、このInP基板1の表面を臭素水
(Br+LD)と燐酸との混合液でエツチングした。
After electron beam irradiation, the surface of this InP substrate 1 was etched with a mixed solution of bromine water (Br+LD) and phosphoric acid.

エツチング後のInP基板1の表面の二次電子顕微鏡写
真を第2図に示す。写真の中央下部に見える白線の長さ
が198nmである。ただしこの写真は、電子線を照射
する前にレジストを塗布し、レジストを介して電子線を
照射し、レジストを完全に除去した後にエツチングした
ものである。
A secondary electron micrograph of the surface of the InP substrate 1 after etching is shown in FIG. The length of the white line visible at the bottom center of the photograph is 198 nm. However, in this photograph, a resist was applied before irradiation with an electron beam, the electron beam was irradiated through the resist, and etching was performed after the resist was completely removed.

写真から明らかなように、電子線が照射された部分のエ
ツチング速度が他の部分より速いため、照射パターンに
したがって回折格子状の凹凸パターンが得られた。レジ
ストによる電子の吸収や前方散乱が生じることを考える
と、レジスト無しに直接照射すれば、さらに精度のよい
パターンを形成できると考えられる。
As is clear from the photograph, since the etching rate of the portion irradiated with the electron beam was faster than that of other portions, a diffraction grating-like uneven pattern was obtained according to the irradiation pattern. Considering that absorption and forward scattering of electrons occur by the resist, it is thought that a more precise pattern can be formed by direct irradiation without a resist.

以上の実施例ではInPにパターンを形成した場合につ
いて説明したが、InGaAsP 5InGaAsなど
の半導体でも同様の結果が得られており、本発明を同様
に実施できる。また、Sl、GaAs、 GaPなどの
他の半導体でも実施可能であると考えられる。
In the above embodiments, a case was explained in which a pattern was formed in InP, but similar results have been obtained with semiconductors such as InGaAsP, 5InGaAs, and the present invention can be implemented in the same manner. It is also believed that other semiconductors such as Sl, GaAs, and GaP can be used.

エツチング方法としては、ウェットエツチングだけでな
く、ドライエツチングを利用しても本発明を同様に実施
できる。
As the etching method, not only wet etching but also dry etching can be used to carry out the present invention.

レジストを介して電子線を照射することもできるので、
同一基板に、部分的にはレジストマスクを用いた微細加
工を施し、その他の部分には本発明の方法による微細加
工を施すこともできる。
It is also possible to irradiate the electron beam through the resist, so
The same substrate can be partially microfabricated using a resist mask, and other parts can be microfabricated using the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体の微細加ニガ法は
、レジストを使用しないで半導体表面に直接に電子線を
照射するため、レジストの感光性能や前方散乱の影響が
なく極微細な加工が可能となる効果がある。また、作業
工程が簡略化されるため、作業能率が向上し、加工歩留
りも向上する効果がある。
As explained above, the semiconductor microprocessing method of the present invention directly irradiates the semiconductor surface with an electron beam without using a resist, so it is possible to perform ultrafine processing without affecting the photosensitivity of the resist or forward scattering. There is an effect that makes it possible. Furthermore, since the working process is simplified, working efficiency is improved and the processing yield is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す斜視図。 第2図は実施例の結晶構造を示す二次電子顕微鏡写真。 1・・・InP基板、2・・・電子線照射部。 特許出願人 光計測技術開発株式会社 代理人 弁理士 井 出 直 孝 兇 亮 FIG. 1 is a perspective view showing an embodiment of the present invention. FIG. 2 is a secondary electron micrograph showing the crystal structure of the example. 1... InP substrate, 2... Electron beam irradiation section. Patent applicant: Optical Measurement Technology Development Co., Ltd. Agent: Patent Attorney Naotaka Ide 兇 Ryo

Claims (1)

【特許請求の範囲】 1、あらかじめ定められたパターンにしたがって半導体
をエッチングする半導体の微細加工方法において、 エッチングしようとするパターンを半導体表面に電子線
で描画し、 電子線が照射された部分と照射されなかった部分とのエ
ッチング速度の差により半導体表面に凹凸を形成する ことを特徴とする半導体の微細加工方法。
[Claims] 1. In a semiconductor microfabrication method in which a semiconductor is etched according to a predetermined pattern, a pattern to be etched is drawn on the semiconductor surface with an electron beam, and a portion irradiated with the electron beam and the irradiated portion are drawn. A semiconductor microfabrication method characterized by forming unevenness on a semiconductor surface due to a difference in etching rate between the etching rate and the unetched portion.
JP25666190A 1990-09-25 1990-09-25 Method of finely processing semiconductor Pending JPH04133327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25666190A JPH04133327A (en) 1990-09-25 1990-09-25 Method of finely processing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25666190A JPH04133327A (en) 1990-09-25 1990-09-25 Method of finely processing semiconductor

Publications (1)

Publication Number Publication Date
JPH04133327A true JPH04133327A (en) 1992-05-07

Family

ID=17295716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25666190A Pending JPH04133327A (en) 1990-09-25 1990-09-25 Method of finely processing semiconductor

Country Status (1)

Country Link
JP (1) JPH04133327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065642A1 (en) * 1999-04-26 2000-11-02 Shin-Etsu Handotai Co., Ltd. Production methods of compound semiconductor single crystal and compound semiconductor element
WO2020187763A1 (en) * 2019-03-19 2020-09-24 Osram Opto Semiconductors Gmbh Method for structuring a semiconductor surface and semiconductor body comprising a semiconductor surface having at least one structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065642A1 (en) * 1999-04-26 2000-11-02 Shin-Etsu Handotai Co., Ltd. Production methods of compound semiconductor single crystal and compound semiconductor element
US6589447B1 (en) * 1999-04-26 2003-07-08 Shin-Etsu Handotai Co., Ltd. Compound semiconductor single crystal and fabrication process for compound semiconductor device
WO2020187763A1 (en) * 2019-03-19 2020-09-24 Osram Opto Semiconductors Gmbh Method for structuring a semiconductor surface and semiconductor body comprising a semiconductor surface having at least one structure

Similar Documents

Publication Publication Date Title
JPH0262853B2 (en)
JPS6318858B2 (en)
JPH05281752A (en) Processing method by convergent ion beam
JPH04133327A (en) Method of finely processing semiconductor
JPH0653106A (en) Formation of fine resist pattern
JPS63165851A (en) Forming method for photoresist pattern
JPS6060725A (en) Forming method of pattern
JPS58214151A (en) Development method for forming resist micropattern
JPS58152241A (en) Manufacture of high-precision mask
JPS58154285A (en) Manufacture of diffraction grating
JPS61204933A (en) Manufacture of semiconductor device
JPS60262422A (en) Mask pattern correcting method
JPS6054775B2 (en) Dry development method
JPS5852641A (en) Mask blank for drawing
JP3549683B2 (en) Pattern formation method
JPS6097625A (en) Formation of pattern
JPH04318852A (en) Resist pattern forming method
JPS5957429A (en) Forming method for fine pattern
JPH0313583B2 (en)
JPS59228648A (en) Method for developing photoresist
JPS5848919A (en) Preparation of semiconductor device
JP2000122293A (en) Pattern forming material and pattern forming method using that
JPH0795507B2 (en) Method of forming resist film pattern
JPS634700B2 (en)
JPH0715870B2 (en) Pattern formation method