JPH0413317B2 - - Google Patents

Info

Publication number
JPH0413317B2
JPH0413317B2 JP1684584A JP1684584A JPH0413317B2 JP H0413317 B2 JPH0413317 B2 JP H0413317B2 JP 1684584 A JP1684584 A JP 1684584A JP 1684584 A JP1684584 A JP 1684584A JP H0413317 B2 JPH0413317 B2 JP H0413317B2
Authority
JP
Japan
Prior art keywords
weight
cement
parts
polymer additive
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1684584A
Other languages
Japanese (ja)
Other versions
JPS60161381A (en
Inventor
Osamu Nakamura
Tooru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1684584A priority Critical patent/JPS60161381A/en
Publication of JPS60161381A publication Critical patent/JPS60161381A/en
Publication of JPH0413317B2 publication Critical patent/JPH0413317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、軽量セメント成形品の製造方法に
関する。 従来セメント系混練物の押出成形においては、
セメント系混練物に保水性を付与するため、メチ
ルセルロース、ポリビニルアルコールなどのハイ
ドロモデイフアイを添加することが必須の要件と
される。 ところで、一般にセメント系成形品、特に無機
質建材には凍結融解に対する強度を付与するため
セメント系混練物にAE剤を添加し、その空気連
行性を利用して多数の微小気孔を組織内に形成す
ることが行なわれる。これらAE剤としては例え
ばポリオキシエチレンアルキルフエノールエーテ
ル、アルキルアリルサルフオネートソーダ塩、ア
ルキルベンゼンサルフオネートアミン塩、ポリオ
キシエチレンアルキルエーテル、ポリアルキルス
ルホン酸ナトリウムなどが知られているが、これ
らAE剤をハイドロモデイフアイの添加されたセ
メント系混練物に添加すると、セメント混練物の
流動性が非常に悪くなり押出成形時に成形不能と
なつたり、あるいは成形品強度が低下し、満足す
る結果が得られない問題があつた。 これはセメント混練物に添加されるハイドロモ
デイフアイ自身がある程度の空気連行性と減水性
を有しているため同じく空気連行性及び減水性を
有したAE剤を添加すると、ハイドロモデイフア
イとの相溶性が悪いことも相俟つて減水性能が過
剰となりセメント混練物の流動性が失なわれるた
めであると考えられる。 一方、セメント系混練物の押出成形品は一定以
上の圧力で押出成形されるため密度が高く、また
硬いといつた性質があり、これらを改善するため
にセメント混練物中に発泡ポリスチレン粒子を混
入することが提案されかつ広く実施されるに至つ
ている。 しかし、発泡ポリスチレン粒子はセメント組織
内に単に閉じ込められているにすぎないため成形
品の物理的強度の面から見れば添加量に限界があ
り、一定量以上の添加は無理であるといつた問題
があつた。 このため、セメント系混練物の押出成形におい
ては、成形品に耐凍害性を付与し、あるいは軽量
化のための改善を行なうのは困難であるといつた
問題があつた。 この発明は上記問題に鑑み、セメント系混練物
の押出成形において、これら混練物の押出成形性
を損なうことなく耐凍害性が付与でき、しかも、
軽量化のための発泡ポリスチレン粒子の添加も、
成形品の強度低下のおそれなく大量になし得る軽
量セメント成形品の製造方法を得ることを目的と
してなされたものであつて、セメント、骨材及び
補強繊維を混合して成るセメント混合材料100重
量部に対し、0.1〜10重量部の発泡ポリスチレン
粒子と、0.2〜1.0重量部のハイドロモデイフアイ
と、0.1〜0.5重量部の熱可塑性合成樹脂繊維と、
前記セメント混合材料中のセメント量に対し0.2
〜5重量%に相当する下記微粒子重合体添加物
と、必要な水とを加えて均一混合し、該均一混合
物を押出成形して成形体を得、次いで該成形体を
オートクレーブで高温高圧蒸気養生することを特
徴とするものである。 記 一般式 (式中R1は水素、メチル基:R2は炭素原子1〜
8のアルコール残基)であらわされるアクリル酸
あるいはメタクリル酸のエステル、スチレン、ブ
タジエン及びビニリデンクロライドから成る一群
より選ばれた一又は複数の重合可能な疎水性を有
する単量体95〜99重量%と、少なくとも一つのカ
ルボキシル、ヒドロキシル、アミド、ニトリルあ
るいはスルホネートを有するエチレン系不飽和化
合物で重合可能な親水性を有する単量体であつ
て、単量体の形ではアルカリ水溶液に少なくとも
5%溶けるもの5〜1重量%とを重合させ粒径
0.1〜1.0μmの球形粒子とした微粒子重合体添加
物。 本発明においてセメント混合材料としては通常
一般に行なわれている配合割合とされたものを意
味し、例えば、ポルトランドセメント、白色ポル
トランドセメントなどの水硬性セメント50重量部
に、珪藻土、フライアツシユ、活性白土、珪砂な
どのシリカ質骨材37重量部、石綿など無機補強繊
維5重量部、パルプなどの有機補強繊維8重量部
を添加し、合計100重量部とされた如くの従来周
知の配合範囲内のものが用いられる。 また、発泡ポリスチレン粒子は押出成形品の軽
量化、さらには成形品の断熱性、耐凍害性等を付
与することを目的として添加されるものであつ
て、粒径が0.5mm〜2mmの範囲内のものが使用さ
れる。 この発泡ポリスチレン粒子の添加量をセメント
混合材料100重量部に対し0.1〜10重量部とするの
は、0.1重量部より少ないと添加の意味がなく、
また10重量部を超えると押出成形が困難となり成
品の物理的強度が著るしく低下するからである。 また、ハイドロモデイフアイはセメント系混練
物に保水性、成形性を付与することを目的として
添加されるものであつて、例えばメチルセルロー
ス、ポリビニルアルコールなどが用いられ、その
添加量はセメント混合材料100重量部に対し0.2〜
1.0重量部とされる。 この理由は、0.2重量部より少ないと保水性が
得られず、また、1.0重量部より多いと、セメン
ト混合材料の粘性が強くなり流動性が阻害される
こととなるからである。 また、熱可塑性合成樹脂繊維は未硬化の成形体
に補助効果を付与するためと、後述の高温高圧蒸
気養生時に熱溶融させ繊維の存在した空洞内面に
付着させることにより成形品に耐浸水性を付与す
るためで、ポリプロピレンやポリエチレン等の繊
維が好適に用いられる。この繊維の添加量をセメ
ント混合材料100重量部に対し、0.1〜1.0重量部
とするのは0.1重量部より少ないと添加の効果が
なく、また、1.0重量部より多いとセメント系混
練物内において繊維の占める体積が増加し、かえ
つて成形品強度を低下せしめる原因となるからで
ある。 また本願発明に使用される微粒子重合体添加物
は、95〜99%の重合可能疎水性成分と5〜1重量
%の重合可能親水性成分とを重合させて得られる
粒径0.1〜1.0μmの球形の微粒子をなすもので、疎
水性と親水性の二種の相反する性質を合せ有す
る。 上記微粒子重合体添加物は、主として、AE剤
として添加され、セメント混合材料中に多数の微
小気孔を形成させセメント成形品の耐凍害性を付
与するのであるが、これら以外に、球形をなすこ
とよりセメント粒子間の摩擦を軽減し、ある程度
の減水性を有するにもかかわらずセメント混練物
の流動性を阻害することなく、チクリトロピツク
な性質を付与するといつた性質を有し、かつ、従
来のAE剤には見られないセメント粒子間、及び、
セメント粒子と他の添加物との間を接着させると
いつた性質を有する。 この微粒子重合体は、一般式 (式中R1は水素、メチル基、R2は炭素原子1〜
8のアルコール残基)であらわされるアクリル酸
あるいはメタクリル酸のエステル、スチレン、ブ
タジエン及びビニリデンクロライドから成る一群
から選ばれた一又は複数の重合可能な疎水性を有
する単量体95〜99重量%と、少なくとも一つのカ
ルボキシル、ヒドロキシル、アミド、ニトリルあ
るいはスルホネートを有するエチレン系不飽和化
合物で重合可能な親水性を有する単量体であつ
て、単量体の形ではアルカリ水溶液に少なくとも
5%溶けるもの5〜1重量%とを重合させて得ら
れるものであつて、具体的には、脱イオン水1200
gおよびカリウムバーサルフエート16gの混合物
を85℃に加温し、表1に示す単量体混合物A〜I
のいずれか一種を添加し撹拌後さらに約1時間85
℃の温度条件を維持し、得たアクリル系の分散液
を冷却し濾過すれば分散液の状態として得られ
る。 この微粒子重合体添加物をセメント混合材料中
のセメント量に対し0.2〜5重量%に相当する添
加量とするのは0.2重量%より少ないと、
The present invention relates to a method for manufacturing lightweight cement molded articles. In conventional extrusion molding of cement-based kneaded materials,
In order to impart water retention properties to cement-based kneaded materials, it is essential to add hydromodifiers such as methyl cellulose and polyvinyl alcohol. By the way, in order to give cement-based molded products, especially inorganic building materials, strength against freezing and thawing, an AE agent is generally added to the cement-based mixture, and its air entrainment properties are utilized to form numerous micropores within the structure. things will be done. Known examples of these AE agents include polyoxyethylene alkyl phenol ether, alkylaryl sulfonate sodium salt, alkyl benzene sulfonate amine salt, polyoxyethylene alkyl ether, and sodium polyalkyl sulfonate. When added to a cement mixture containing hydromodifier, the fluidity of the cement mixture becomes extremely poor, making it impossible to form it during extrusion molding, or reducing the strength of the molded product, resulting in unsatisfactory results. I had a problem that I couldn't solve. This is because the hydromodifier itself, which is added to the cement mixture, has a certain degree of air-entraining and water-reducing properties, so if an AE agent that also has air-entraining and water-reducing properties is added, the hydromodifier will This is thought to be due to the fact that the water-reducing performance is excessive and the fluidity of the cement mixture is lost due to the poor compatibility of the cement. On the other hand, extruded products made from cement-based mixtures are extruded under pressure above a certain level, so they have properties such as high density and hardness. To improve these properties, foamed polystyrene particles are mixed into the cement mixture. It has been proposed and widely implemented. However, since expanded polystyrene particles are simply confined within the cement structure, there is a limit to the amount that can be added from the perspective of the physical strength of the molded product, and there is a problem that it is impossible to add more than a certain amount. It was hot. For this reason, in extrusion molding of cement-based kneaded products, there has been a problem in that it is difficult to impart frost damage resistance to molded products or to make improvements to reduce weight. In view of the above-mentioned problems, this invention can impart frost damage resistance to cement-based kneaded materials without impairing the extrudability of the kneaded materials during extrusion molding, and furthermore,
Addition of expanded polystyrene particles to reduce weight
100 parts by weight of a cement mixture material made by mixing cement, aggregate, and reinforcing fibers, which was developed for the purpose of obtaining a method for manufacturing lightweight cement molded products that can be produced in large quantities without fear of reducing the strength of the molded product. 0.1 to 10 parts by weight of expanded polystyrene particles, 0.2 to 1.0 parts by weight of hydromodifier, and 0.1 to 0.5 parts by weight of thermoplastic synthetic resin fibers.
0.2 for the amount of cement in the cement mixture material
The following particulate polymer additive corresponding to ~5% by weight and the necessary water are added and mixed uniformly, the uniform mixture is extruded to obtain a molded body, and the molded body is then cured with high temperature and high pressure steam in an autoclave. It is characterized by: General formula (In the formula, R 1 is hydrogen, methyl group: R 2 is 1 to 1 carbon atom
95 to 99% by weight of one or more polymerizable hydrophobic monomers selected from the group consisting of esters of acrylic acid or methacrylic acid represented by alcohol residues (8), styrene, butadiene, and vinylidene chloride; , ethylenically unsaturated compounds having at least one carboxyl, hydroxyl, amide, nitrile or sulfonate, polymerizable hydrophilic monomers which in monomeric form are at least 5% soluble in aqueous alkaline solutions5 ~1% by weight is polymerized and the particle size is
Fine particle polymer additive in the form of spherical particles of 0.1 to 1.0 μm. In the present invention, the cement mixture material refers to a material in a commonly used mixing ratio, for example, 50 parts by weight of hydraulic cement such as Portland cement or white Portland cement, diatomaceous earth, fly ash, activated clay, and silica sand. 37 parts by weight of siliceous aggregate, 5 parts by weight of inorganic reinforcing fibers such as asbestos, 8 parts by weight of organic reinforcing fibers such as pulp, for a total of 100 parts by weight. used. In addition, expanded polystyrene particles are added for the purpose of reducing the weight of extrusion molded products, as well as imparting insulation properties, frost damage resistance, etc. to molded products, and the particle size is within the range of 0.5 mm to 2 mm. are used. The reason why the amount of expanded polystyrene particles to be added is 0.1 to 10 parts by weight per 100 parts by weight of the cement mixture is that if it is less than 0.1 part by weight, there is no point in adding it.
Moreover, if the amount exceeds 10 parts by weight, extrusion molding becomes difficult and the physical strength of the product decreases significantly. Hydromodifiers are added for the purpose of imparting water retention and moldability to cement-based kneaded materials. For example, methylcellulose, polyvinyl alcohol, etc. are used, and the amount added is 100% of the cement mixture material. 0.2 to parts by weight
It is assumed to be 1.0 part by weight. The reason for this is that if it is less than 0.2 parts by weight, water retention cannot be obtained, and if it is more than 1.0 parts by weight, the viscosity of the cement mixture material becomes strong and fluidity is inhibited. In addition, the thermoplastic synthetic resin fibers provide an auxiliary effect to the uncured molded product, and they also make the molded product water resistant by being melted and attached to the inner surface of the cavity where the fibers were present during high-temperature, high-pressure steam curing (described later). For this purpose, fibers such as polypropylene and polyethylene are preferably used. The amount of fiber added should be 0.1 to 1.0 parts by weight per 100 parts by weight of the cement mixture.If it is less than 0.1 part by weight, the addition will not be effective, and if it is more than 1.0 parts by weight, it will not be effective in the cement mixture. This is because the volume occupied by the fibers increases, which in turn causes a decrease in the strength of the molded product. Further, the particulate polymer additive used in the present invention has a particle size of 0.1 to 1.0 μm obtained by polymerizing 95 to 99% of a polymerizable hydrophobic component and 5 to 1% by weight of a polymerizable hydrophilic component. It is a spherical fine particle that has two contradictory properties: hydrophobic and hydrophilic. The above-mentioned fine particle polymer additive is mainly added as an AE agent to form a large number of micropores in the cement mixture material and impart frost damage resistance to the cement molded product. It has properties such as reducing friction between cement particles, imparting ticlitropic properties without impeding the fluidity of cement mixtures despite having a certain degree of water-reducing properties, and unlike conventional AE. between cement particles that are not found in the agent, and
It has properties such as adhesion between cement particles and other additives. This particulate polymer has the general formula (In the formula, R 1 is hydrogen, methyl group, R 2 is 1 to 1 carbon atom
95 to 99% by weight of one or more polymerizable hydrophobic monomers selected from the group consisting of esters of acrylic acid or methacrylic acid represented by alcohol residues (8), styrene, butadiene, and vinylidene chloride; , ethylenically unsaturated compounds having at least one carboxyl, hydroxyl, amide, nitrile or sulfonate, polymerizable hydrophilic monomers which in monomeric form are at least 5% soluble in aqueous alkaline solutions5 ~1% by weight, specifically, deionized water 1200% by weight.
A mixture of 16 g of potassium versalphate and 16 g of potassium versalphate was heated to 85°C to form monomer mixtures A to I shown in Table 1.
Add one of the following and continue stirring for about 1 hour.85
If the obtained acrylic dispersion is cooled and filtered while maintaining the temperature condition of .degree. C., a dispersion can be obtained. The addition amount of this particulate polymer additive is less than 0.2% by weight, which corresponds to 0.2 to 5% by weight based on the amount of cement in the cement mixture material.

【表】【table】

【表】 気孔形成が充分に行なわれず、また、5重量%よ
り多いとセメント混合材料内での減水性が過大と
なり、セメント粒子間の摩擦軽減作用のみによつ
てはも早や流動性が得られなくなり、押出成形の
不良を生じることとなるからである。 また、本願発明において用いられるオートクレ
ーブの養生条件は、セメント混合材料中に添加さ
れるシリカ源の種類により条件範囲が異なり、即
ち、硅藻土、フライアツシユ、活性白土等の非晶
質シリカの場合は、蒸気圧2Kg/cm2〜8Kg/cm2×
8時間、珪砂等結晶性シリカの場合は6Kg/cm2
8Kg/cm2×8時間の条件とされ、いずれの場合
も、熱可塑性合成樹脂、発泡ポリスチレン粒子の
溶融温度との相関により、180℃以上の温度条件
とされる。 次に、この発明の作用、効果について説明す
る。 前述した従来周知の配合割合としたセメント混
合材料100重量部に対し、0.1〜10重量部の発泡ポ
リスチレン粒子、0.2〜1.0重量部のハイドロモデ
イフアイと0.1〜1.0重量部の熱可塑性合成樹脂繊
維例えばポリピロピレン繊維及びセメント混合材
料中のセメント量に対し0.2〜5重量%に相当す
る微粒子重合体添加物を添加し、必要な水、例え
ば、セメント混合材料100重量部に対し、45〜50
重量部の水を加え混練する。 該混練物は、ハイドロモデイフアイにより保水
性及び流動性が付与され、微粒子重合体添加物の
空気連行性によつて、微小気泡が混練物中に生成
される。また、このとき、微粒子重合体添加物に
よつて、混練物にチクリトロピツクな性質も付与
される。 さらに、微粒子重合体添加物は、球形をなし、
セメント粒子間にあつて、それらの摩擦をも軽減
するから、減水性を有するにもかかわらず、セメ
ント混合物の流動性は良好に維持される。 次いで、該セメント混練物を真空式押出機にて
成形し、これを一次養生後、オートクレーブで高
温高圧蒸気養生を行なう。 この高温高圧蒸気養生時、熱可塑性合成樹脂繊
維、発泡ポリスチレン粒子は、熱により溶融さ
れ、夫々の存在していた空間の内面に膜状に付着
する。 従つてセメント成形品内には、微粒子重合体添
加物の空気連行性によつて生じた多数の微細気泡
と、発泡ポリスチレン粒子等の溶融痕から出来た
マクロ的な気孔が存在し、これら多数の微小気泡
及び気孔によつてバツフアー効果が発揮され、成
形品に耐凍害性が付与され、同時に成形品の軽量
化も実現される。 さらに微粒子重合体添加物は接着性を有するた
めセメントマトリツクス同志の間隙を接合させる
と同時に、発泡ポリスチレン粒子等の溶融界面と
マトリツクスとの接合も実現され、もつて多量の
気孔の存在にもかかわらず成形品の強度を保証し
得るのである。 次に、表2の配合に基づいてセメント混練物を
得、これを口径20mm×200mmの長方形状をなすダ
イより押出成形し、次いでこの成形体を180℃、
8Kg/cm2×8時間のオートクレーブ養生させ、そ
のものにつき材料試験を行なつたところ、表2の
下欄記載の結果が得られた。 なお、表2において記載の比較例は微粒子重合
体添加物を含まないほかは実施例と同一配合とし
たものである。
[Table] Pore formation is not sufficient, and if the amount exceeds 5% by weight, the water reduction property within the cement mixture material becomes excessive, and fluidity is no longer obtained solely by the effect of reducing friction between cement particles. This is because it becomes impossible to do so, resulting in defects in extrusion molding. Furthermore, the range of curing conditions in the autoclave used in the present invention varies depending on the type of silica source added to the cement mixture. , vapor pressure 2Kg/cm 2 ~ 8Kg/cm 2 ×
8 hours, 6Kg/cm 2 ~ for crystalline silica such as silica sand
The conditions are 8 kg/cm 2 ×8 hours, and in both cases, the temperature is 180° C. or higher due to the correlation with the melting temperature of the thermoplastic synthetic resin and expanded polystyrene particles. Next, the functions and effects of this invention will be explained. 0.1 to 10 parts by weight of expanded polystyrene particles, 0.2 to 1.0 parts by weight of hydromodifier, and 0.1 to 1.0 parts by weight of thermoplastic synthetic resin fibers to 100 parts by weight of the cement mixture material having the previously well-known mixing ratio. For example, add a fine particle polymer additive corresponding to 0.2 to 5% by weight based on the amount of polypropylene fiber and cement in the cement mixture, and add the necessary water, e.g. 45 to 50% by weight to 100 parts by weight of the cement mixture.
Add part by weight of water and knead. The kneaded material is imparted with water retention and fluidity by the hydromodifier, and microbubbles are generated in the kneaded material due to the air entrainment properties of the particulate polymer additive. At this time, the fine particle polymer additive also imparts ticlitropic properties to the kneaded material. Furthermore, the particulate polymer additive has a spherical shape,
Since it is present between cement particles and also reduces friction between them, the fluidity of the cement mixture is maintained well despite having water-reducing properties. Next, the cement kneaded product is molded using a vacuum extruder, and after primary curing, it is subjected to high-temperature, high-pressure steam curing in an autoclave. During this high-temperature, high-pressure steam curing, the thermoplastic synthetic resin fibers and expanded polystyrene particles are melted by heat and adhere in the form of a film to the inner surface of the space where each existed. Therefore, in a cement molded product, there are many microscopic air bubbles created by the air-entraining properties of the particulate polymer additive, and macroscopic pores created from the melting traces of expanded polystyrene particles, etc. The microbubbles and pores exhibit a buffering effect, imparting frost damage resistance to the molded product, and at the same time reducing the weight of the molded product. Furthermore, since the particulate polymer additive has adhesive properties, it is possible to bond the gaps between cement matrices, and at the same time, it is possible to bond the molten interface of expanded polystyrene particles and the like to the matrix, despite the presence of a large number of pores. First, the strength of the molded product can be guaranteed. Next, a cement mixture was obtained based on the formulation in Table 2, and this was extruded through a rectangular die with a diameter of 20 mm x 200 mm.
After curing in an autoclave for 8 kg/cm 2 ×8 hours, material tests were performed on the product, and the results shown in the lower column of Table 2 were obtained. In addition, the comparative example described in Table 2 had the same formulation as the example except that the particulate polymer additive was not included.

【表】【table】

【表】 上記結果より明らかなように、微粒子重合体添
加物を使用した本願発明においては、特に曲げ強
度に顕著な効果が認められ大量の発泡ポリスチレ
ン粒子の添加にもかかわらず、充分な強度を発揮
し、かつ、耐凍害性に優れ、また軽量なセメント
成形品が押出成形により成形出来ることが判明し
た。
[Table] As is clear from the above results, the present invention using the fine particle polymer additive has a particularly remarkable effect on bending strength, and despite the addition of a large amount of expanded polystyrene particles, sufficient strength was achieved. It has been found that a lightweight cement molded product can be formed by extrusion molding.

Claims (1)

【特許請求の範囲】 1 セメント、骨材及び補強繊維を混合して成る
セメント混合材料100重量部に対し、0.1〜10重量
部の発泡ポリスチレン粒子と、0.2〜1.0重量部の
ハイドロモデイフアイと、0.1〜0.5重量部の熱可
塑性合成樹脂繊維と、前記セメント混合材料中の
セメント量に対し0.2〜5重量%に相当する下記
微粒子重合体添加物と、必要な水とを加えて均一
混合し、該均一混合物を押出成形して成形体を
得、次いで該成形体をオートクレーブで高温高圧
蒸気養生することを特徴とする軽量セメント成形
品の製造方法。 記 一般式 (式中R1は水素、メチル基、R2は炭素原子1〜
8のアルコール残基)であらわされるアクリル酸
あるいはメタクリル酸のエステル、スチレン、ブ
タジエン及びビニリデンクロライドから成る一群
より選ばれた一又は複数の重合可能な疎水性を有
する単量体95〜99重量%と、少なくとも一つのカ
ルボキシル、ヒドロキシル、アミド、ニトリルあ
るいはスルホネートを有するエチレン系不飽和化
合物で重合可能な親水性を有する単量体であつ
て、単量体の形ではアルカリ水溶液に少なくとも
5%溶けるもの5〜1重量%とを重合させ粒径
0.1〜1.0μmの球形粒子とした微粒子重合体添加
剤。
[Claims] 1. 0.1 to 10 parts by weight of expanded polystyrene particles and 0.2 to 1.0 parts by weight of hydromodifier to 100 parts by weight of a cement mixed material made by mixing cement, aggregate, and reinforcing fibers. , 0.1 to 0.5 parts by weight of thermoplastic synthetic resin fibers, the following particulate polymer additive corresponding to 0.2 to 5% by weight based on the amount of cement in the cement mixture material, and the necessary water are added and mixed uniformly. . A method for producing a lightweight cement molded article, which comprises extruding the homogeneous mixture to obtain a molded body, and then curing the molded body with high temperature and high pressure steam in an autoclave. General formula (In the formula, R 1 is hydrogen, methyl group, R 2 is 1 to 1 carbon atom
95 to 99% by weight of one or more polymerizable hydrophobic monomers selected from the group consisting of esters of acrylic acid or methacrylic acid represented by alcohol residues (8), styrene, butadiene, and vinylidene chloride; , ethylenically unsaturated compounds having at least one carboxyl, hydroxyl, amide, nitrile or sulfonate, polymerizable hydrophilic monomers which in monomeric form are at least 5% soluble in aqueous alkaline solutions5 ~1% by weight is polymerized and the particle size is
Fine particle polymer additive in the form of spherical particles of 0.1 to 1.0 μm.
JP1684584A 1984-01-30 1984-01-30 Manufacture of lightweight cement formed product Granted JPS60161381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1684584A JPS60161381A (en) 1984-01-30 1984-01-30 Manufacture of lightweight cement formed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1684584A JPS60161381A (en) 1984-01-30 1984-01-30 Manufacture of lightweight cement formed product

Publications (2)

Publication Number Publication Date
JPS60161381A JPS60161381A (en) 1985-08-23
JPH0413317B2 true JPH0413317B2 (en) 1992-03-09

Family

ID=11927542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1684584A Granted JPS60161381A (en) 1984-01-30 1984-01-30 Manufacture of lightweight cement formed product

Country Status (1)

Country Link
JP (1) JPS60161381A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832620B2 (en) * 1986-08-29 1996-03-29 ライオン株式会社 Oral composition
EP0347432B1 (en) * 1987-08-25 1993-12-22 Anchor Building Products Limited Lightweight concrete roof tiles and similar products
JP2540190B2 (en) * 1988-07-12 1996-10-02 積水化学工業株式会社 Method for manufacturing lightweight cement compact
DE4300330A1 (en) * 1992-01-09 1994-03-03 Lothar Dipl Ing Kaden Light concrete for road construction - contains sintered polystyrene foam particles to reduce surface smoothness and the formation of surface ice
US5549859A (en) * 1992-08-11 1996-08-27 E. Khashoggi Industries Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions
US5545297A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Methods for continuously placing filaments within hydraulically settable compositions being extruded into articles of manufacture
JPH06144952A (en) * 1992-11-10 1994-05-24 Kubota Corp Production of ceramic building material
US5395442A (en) * 1993-04-14 1995-03-07 Boral Concrete Products, Inc. Lightweight concrete roof tiles
KR200455915Y1 (en) * 2011-05-04 2011-09-30 김학원 Billboard menu
CN108975812A (en) * 2018-08-01 2018-12-11 成都富思特新材料有限公司 A kind of A grades of fireproof heated boards of Si modification inorganic slurry permeability and preparation method thereof

Also Published As

Publication number Publication date
JPS60161381A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
JPH0413317B2 (en)
US3781396A (en) Method of manufacturing synthetic resin-cement products
US3250736A (en) Latex modified cement mortar compositions
US4613649A (en) Process for producing plastic concrete
JPS62260745A (en) Manufacture of hydraulic material, concrete material and concrete
JPH0516463B2 (en)
JP5513789B2 (en) Insulation
JP2574182B2 (en) Extrusion molding method of inorganic plate
JP3206983B2 (en) Additives for cement-based extrusions
JPH01119575A (en) Production of expansion-extrusion molded building material
JP3115091B2 (en) Manufacturing method of cement molding
JPH07126055A (en) Hydraulic composition, extrusion molded article and production thereof
JPS6131334A (en) Manufacture of plastic concrete
JPH05294699A (en) Hydraulic composition for extrusion molding and extrusion-molded product
JPH03131553A (en) Improved cement composition and production thereof
JP3618399B2 (en) Hydraulic composition
JP3030449B2 (en) Cement composite board and method of manufacturing the same
JPH07109163A (en) Production of hydraulic composition and production of extrusion-molded article of hydraulic composition
JPH0158140B2 (en)
JPS6141877B2 (en)
JPH0130778B2 (en)
JPS61163156A (en) Manufacture of plastic concrete
JP2005104749A (en) Soft mortar sheet and method of producing the same
JPH03218988A (en) Production of lightweight gas concrete product
JPS63210082A (en) Manufacture of lightweight cement products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term