JPH04132705A - Production of hydrophilic fine grain - Google Patents

Production of hydrophilic fine grain

Info

Publication number
JPH04132705A
JPH04132705A JP41589990A JP41589990A JPH04132705A JP H04132705 A JPH04132705 A JP H04132705A JP 41589990 A JP41589990 A JP 41589990A JP 41589990 A JP41589990 A JP 41589990A JP H04132705 A JPH04132705 A JP H04132705A
Authority
JP
Japan
Prior art keywords
water
fine particles
organic solvent
miscible organic
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41589990A
Other languages
Japanese (ja)
Other versions
JP3054447B2 (en
Inventor
Akira Furukawa
彰 古川
Hideji Oda
秀次 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Publication of JPH04132705A publication Critical patent/JPH04132705A/en
Application granted granted Critical
Publication of JP3054447B2 publication Critical patent/JP3054447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To obtain fine grains having excellent water absorption in drying and antistatic properties after film forming by (co)polymerizing an acrylamide (derivative) with p-styrene sulfonic acid (salt), (meth)acrylic acid (salt), etc., in a water-miscible organic solvent, etc., in the presence of a soluble resin. CONSTITUTION:In a water-miscible organic solvent or a mixed solvent of water- miscible organic solvent/water, a homogeneous polymerization of a monomer soluble in the above-mentioned solvent(s) and selected from (A) an acrylic amide (derivative), (B) p-styrene sulfonic acid (salt) and (C) (meth)acrylic acid (salt) or copolymerization of (D) a vinyl compound [preferably styrene (derivative), (meth)acrylic acid ester, (meth)acrylonitrile or maleic acid (derivative)] polymerizable with the monomers of the components A to C is carried out in the presence of a resin soluble to the above-mentioned organic solvent to provide the aimed fine grains.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野】[Industrial application field]

本発明は水溶性ポリマーを微粒子の形状で製造する方法
に係わるもので、従来の水溶性ポリマー溶液に比較して
、微粒子状に分散した状態であることから、分散液の粘
土を大幅にに低下させることで、水溶性ポリマーを高濃
度の状態で流動性を維持したままで製造し、かつ使用に
供することを可能にするものである。 [0002] さらに、高濃度で分散した水溶性ポリマーを水中にて水
溶液にする際にも、単に分散液を希釈するだけで良く、
従来の粉末状ポリマーを溶解させる工程が不用になるも
のである。対称となる水溶液ポリマーとしては高分子凝
集剤その他に利用されるポリアクリルアミドや分散剤そ
の他で使用されるポリアクリル酸、あるいは帯電防止剤
等の用途で用いられるポリスチレンスルホン酸ナトリウ
ム等の種々の水溶性ポリマーやこれらの共重合体がいず
れも高濃度の微粒子の状態で製造されることから、高分
子量ポリマーを低粘度のまま輸送することが可能であり
、かつそのままの状態で例えばコーテイング液として使
用可能であり、水中で使用する場合にも単に希釈するだ
けで良いというメリットを有する。 [0003] さらに、本発明では微粒子に架橋構造を付与することで
水中に於ても元の形状を保持することが可能であり、用
途としては例えば液体クロマトグラフィー用充填剤、マ
ット剤、スペーサー 医療診断薬用担体その他への応用
が可能である。 さらには、微粒子中の架橋度を適度に調節することで、
高吸水性微粒子とすることも可能であり、これを使用し
た高吸水性シート材料やインクジェット記録材料への応
用が可能である。 [0004]
The present invention relates to a method for producing a water-soluble polymer in the form of fine particles, and compared to conventional water-soluble polymer solutions, the clay content of the dispersion is significantly reduced because the polymer is dispersed in the form of fine particles. By doing so, it is possible to produce and use water-soluble polymers in a highly concentrated state while maintaining fluidity. [0002] Furthermore, when making a water-soluble polymer dispersed at a high concentration into an aqueous solution in water, it is sufficient to simply dilute the dispersion,
This eliminates the need for the conventional process of dissolving powdered polymers. Examples of aqueous polymers that can be used include various water-soluble polymers such as polyacrylamide, which is used as a polymer flocculant, polyacrylic acid, which is used as a dispersant, and sodium polystyrene sulfonate, which is used as an antistatic agent. Since both polymers and their copolymers are manufactured in the form of highly concentrated fine particles, it is possible to transport high molecular weight polymers with low viscosity, and they can be used as is, for example, as a coating liquid. This has the advantage that it only needs to be diluted when used underwater. [0003] Further, in the present invention, by imparting a crosslinked structure to the fine particles, it is possible to maintain the original shape even in water, and the applications include, for example, fillers for liquid chromatography, matting agents, spacers, medical care. It can be applied to carriers for diagnostic drugs and other applications. Furthermore, by appropriately adjusting the degree of crosslinking in the fine particles,
It is also possible to form highly water-absorbent fine particles, which can be applied to highly water-absorbent sheet materials and inkjet recording materials. [0004]

【従来の技術】[Conventional technology]

水溶性ポリマーは水溶液の形で広範囲の産業分野におい
て使用されているが、供給されている形態としては(i
)水溶液、(ii)乾燥粉体、あるいは(iii)炭化
水素媒体中にエマルジョン状に分散した状態、のいずれ
かの形状を有している。 [0005] (i)の水溶液の状態では、高分子量の水溶性ポリマー
溶液では、濃度が低い場合であっても溶液粘度が著しく
増加して送液が困難であったり、輸送に際しても固形分
当りの輸送費用がかさむ等の問題があった。あるいは、
水溶性ポリマー溶液をコーテイング液として塗布する場
合においても、多量の水分を蒸発させる必要があり、さ
らに塗布に際しても塗液粘度が高すぎことで種々の問題
を発生することが多い。 [0006] 水溶性ポリマーを(ii)の乾燥粉末にした場合には、
乾燥工程で多量の熱エネルギーを必要とすることや、粉
末を水に再溶解する場合にも多大の熱エネルギーと時間
を要するのが常である。 [0007] 近年、(iii)のように、水溶性ポリマーを炭化水素
系媒体中等でエマルジョンの状態で製造する、いわゆる
逆相乳化重合あるいは逆相懸濁重合が工業的規模で実施
されるようになり、油中に分散したエマルジョンの状態
で水溶性ポリマーが供給されるようになってきたが、こ
の場合に水溶性ポリマーのエマルジョンを水中にて再溶
解させる際に、水に混和しない有機溶剤を除去する必要
があり、有害性あるいは引火性の点で扱いにくい問題が
生じている。 [0008] 水溶性ポリマーをコーテイング液として使用する場合に
、塗液の粘度が高くなりすぎるという問題や、他の水溶
性ポリマーと併用して使用した場合の相溶性がしばしば
問題となり、こうした場合、ポリマーの分子量を低下さ
せることで粘度低下及び相溶性向上を図ることもあった
が、皮膜形成後の膜物性の悪化等好ましからざる結果を
得ることがしばしば見られる。こうした問題を解決する
ためには、水溶性ポリマーを微粒子状に形成し、高分子
量でありながら低粘度を実現し、かつ他の水溶性ポリマ
ーとの混和を可能にした状態でコーテイング液とするこ
とが考えられるが、これを実現する方法がこれまで存在
しなかった。さらに、水溶性ポリマーを架橋することで
、例えば耐水性やあるいは吸水性を付与することも考え
られるが、架橋高分子そのものを水溶液にすることは著
しい液粘度の増大をきたし、塗液とすることは実際上不
可能であった。 [0009]
Although water-soluble polymers are used in a wide range of industrial fields in the form of aqueous solutions, they are supplied in the form (i
) an aqueous solution, (ii) a dry powder, or (iii) an emulsion dispersed in a hydrocarbon medium. [0005] In the aqueous solution state of (i), in the case of a high molecular weight water-soluble polymer solution, the viscosity of the solution increases significantly even when the concentration is low, making it difficult to transport the solution, and the concentration per solid content increases during transportation. There were problems such as high transportation costs. or,
Even when a water-soluble polymer solution is applied as a coating liquid, it is necessary to evaporate a large amount of water, and furthermore, the viscosity of the coating liquid is too high, which often causes various problems. [0006] When the water-soluble polymer is made into dry powder (ii),
The drying process usually requires a large amount of thermal energy, and redissolving the powder in water also requires a large amount of thermal energy and time. [0007] In recent years, as in (iii), so-called reverse-phase emulsion polymerization or reverse-phase suspension polymerization, in which a water-soluble polymer is produced in an emulsion state in a hydrocarbon medium, etc., has been carried out on an industrial scale. Water-soluble polymers have come to be supplied in the form of emulsions dispersed in oil, but in this case, when redissolving the water-soluble polymer emulsion in water, it is necessary to use an organic solvent that is immiscible with water. need to be removed, creating a difficult problem in terms of toxicity or flammability. [0008] When using a water-soluble polymer as a coating liquid, there are often problems such as the viscosity of the coating liquid becoming too high and compatibility when used in combination with other water-soluble polymers. Although it has sometimes been attempted to lower the viscosity and improve the compatibility by lowering the molecular weight of the polymer, undesirable results such as deterioration of the physical properties of the film after film formation are often observed. In order to solve these problems, it is necessary to form water-soluble polymers into fine particles, achieve low viscosity despite high molecular weight, and make coating liquids that can be mixed with other water-soluble polymers. is possible, but until now there has been no method to achieve this. Furthermore, by crosslinking a water-soluble polymer, it is possible to impart water resistance or water absorption, for example, but making the crosslinked polymer itself into an aqueous solution would significantly increase the liquid viscosity, making it difficult to use as a coating liquid. was practically impossible. [0009]

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は微粒子状の親水性ポリマーの製造方法を
提供するものであり、その形態が平均粒径において高々
10ミクロン以下の微粒子の形状を有するものを選択的
に製造する方法を与えるものである。 [0010]
An object of the present invention is to provide a method for producing a hydrophilic polymer in the form of fine particles, and to provide a method for selectively producing a hydrophilic polymer having a shape of fine particles with an average particle size of at most 10 microns or less. be. [0010]

【課題を解決するための手段】[Means to solve the problem]

このような微粒子を形成するモノマーとしてアクリルア
ミド及びその誘導体、p−スチレンスルホン酸およびそ
の塩、 (メタ)アクリル酸及びそれらの塩等をこれら
のモノマー単独もしくはこれらの共重合体、あるいは他
のモノマーとの共重合体として微粒子状に形成するもの
であり、重合の溶媒としてエタノール等の水混和性有機
溶媒を使用し、かつ重合の際にあらかじめ水混和性有機
溶媒又は水との混和溶媒に可溶性のポリマーを存在させ
ておき、上記モノマー類を重合することで微粒子として
親水性ポリマーを形成する方法である。 [0011] 即ち、本発明は水混和性有機溶媒中又は水混和性有機溶
媒/みずの混和溶媒中において、これらの溶媒に可溶の
樹脂の存在下、これらの溶媒に可溶な下記(a)〜(c
)から選ばれるモノマーの単独重合または下記(a)〜
(d)から選ばれるモノマーの共重合を行うことを特徴
とする親水性微粒子の製造方法である。 (a)アクリルアミドおよびその誘導体、(b)p−ス
チレンスルホン酸およびその塩、(c) (メタ)アク
リル酸およびその塩、(d)前記(a)〜(c)のモノ
マーと共重合可能なビニル化合物、[0012] このような重合法はdispersion polym
erizationあるいは分散重合法と称されており
、一般的にはモノマーの状態では溶媒に可溶性であるが
、重合によりポリマー化することで溶媒に不溶性となる
ようなモノマーの重合を、適当なポリマー分散剤の存在
下でおこなうことを特徴とする。この方法では重合が開
始する以前の状態では反応混合物がすべて溶媒に溶解し
た均−系であり、重合の進行に伴いはじめて生成ポリマ
ーが析出した不均一系に移行するのが一般的である。こ
の際、分散安定剤として系にあらかじめ添加されるポリ
マーの存在は極めて重要であり、こうしたポリマーの存
在しない場合には、通常ポリマーは低分子量の沈澱物と
して回収され、本発明で言うような微粒子を得られない
のが通常である。 [0013] 本発明では親水性モノマーを適当なポリマー分散安定剤
とともに水混和性有機溶媒中又はこれと水との混和溶媒
中で重合し、生成ポリマーがこれらの溶媒に対して低い
溶解性を示すことを利用し、これを微粒子状に析出せし
めるとともに、非水系溶剤を使用することで他の疎水性
モノマーとの共重合をも容易にするものである。また重
合の際に、例えば(a)〜(d)から選ばれるモノマー
以外の分子内に2個以上の重合性ビニル基を有する架橋
性モノマーを共重合することで、粒子的架橋構造を有す
る親水性微粒子の製造をも可能にするものである。分子
内に2個以上の重合性ビニル基を有する架橋性モノマー
としては、メチレンビスアクリルアミド、(メタ)アク
リル酸ビニルエステル、ジビニルベンゼン、エチレング
リコールジ(メタ)アクリレート等が挙げられる。 [0014] 一方で、親水性樹脂を粒子状に製造する方法のひとつに
、例えばモノマー水溶液をn−ヘキサンのような脂肪族
炭化水素もしくは芳香族炭化水素、ハロゲン化炭化水素
溶剤中に分散、懸濁した状態で行う逆相懸濁重合法等が
あるが、この様な方法では水に相溶しない有機溶剤の除
去が必要であったり、大きさの点で本発明で言うような
、例えば10μm以下の微粒子を選択的にかつ粒子径の
揃った形で得ることは困難であった。 [0015] 本発明では水と相溶性を有する有機溶媒を使用するため
、生成した親木性ポリマー微粒子が分散した系をそのま
ま利用することも可能であり、また遠心分離等により微
粒子を分離することも可能である。あるいは重合液有機
溶媒を漕力し、水中に微粒子が溶解もしくは半溶解した
状態で使用することもできる。粒子内架橋の程度により
水中で粒子が完全に溶解した状態から、水中でも親水性
ポリマー微粒子がその形態を保持した状態まで任意にコ
ントロールできる。 [0016] 本発明では、適当なポリマーを分散安定剤として使用す
ることで、親水性モノマーを用い、水混和性有機溶媒中
又はこれと水との混和溶媒中で安定に親水性ポリマーか
らなる微粒子を合成するものである力飄重合開始以前の
状態でモノマーもしくは分散安定剤の溶解性が乏しく、
均一な溶液を得ることが困難な場合には溶解を助ける意
味で他の溶剤(水等)を必要量添加してもよい。 [0017] 分散安定剤として使用するポリマーは重合媒体に可溶性
を有するものであれば一般に使用可能であるが、生成す
る親水性ポリマー微粒子に対しである程度の吸着能を有
するものが好ましい。この意味で、ポリビニルピロリド
ン、ポリ酢酸ビニル及びその部分鹸化物、ポリビニルア
ルコール、ポリメタクリル酸のようなポリマーが有効で
あるが、これ以外にも極めて多種のポリマーが使用可能
である。 [0018] 水混和性有機溶媒としてはメタノール、エタノール、イ
ンフロパノール、ブタノールのようなアルコールの使用
が特に好ましいカミこれ以外にアセトン、メチルエチル
ケトンのようなケトン、ジオキサン、メチルエチルケト
ン、テトラヒドロフランといった種々の有機溶剤が使用
可能である。これら水混和性有機溶剤と水との比率は、
モノマーの混合物を溶解する範囲で設定し、カリ生成す
るポリマーを少なくとも部分的に不溶化するように混合
比をとることが重要である。 [0019] 本発明により得られる微粒子の表面もしくは内部の改質
の目的で種々のモノマーを共重合させることも可能であ
る。例えば、酸あるいは塩基性基を有するモノマーの共
重合により、こうした官能基を有する親水性微粒子の製
造も容易である。疎水性モノマーの共重合においても、
水混和性有機溶媒を使用することで、組成比上特に大き
な差異のない均質な樹脂微粒子が得られることが多い。 [00201 本発明で使用するモノマーとしては、アクリルアミド、
p−スチレンスルポン酸ナトリウム、2−アクリルアミ
ド−2−メチルプロパンスルホン酸ナトリウムのように
、モノマーの状態では水混和性有機溶媒又はこれと水と
の混和溶媒に可溶性であるが、重合することで該媒体中
で不溶性となるようなモノマーの重合を行うのであるが
、共重合成分として種々のモノマーを導入することもで
きる。 [0021] 例えばN−メチロールアクリルアミドのような自己架橋
性モノマーやスチレンあるいは口(メタ)アクリル酸エ
ステルのような疎水性モノマー あるいは(メタ)アク
リル酸、2−アクリルアミド−2−メチルプロパンスル
ホン酸のような酸性基を有する七ツマ−や、N、N−ジ
メチルアミノエチル(メタ)アクリレートのような塩基
性モノマー あるいは、クロロメチルスチレンのような
反応性基を有するモノマーを共重合させることができる
。この際、共重合モノマーとして生成ポリマーのアルコ
ールにたいする溶解性をあまりに高めるような成分を多
量に導入すると、粒子形成が損なわれ安定かつ微細な粒
子を得難い場合が時としである。このような場合には生
成ポリマーの溶解度を低下させる目的で他の溶剤を添加
することで微粒子形成させることも可能である。 [0022] また、微粒子形成の後に他の反応性試薬の添加により、
粒子組成の変換も可能であり例えば、アクリルアミド微
粒子を本発明による方法で形成した後、アルカリ加水分
解によりポリアクリル酸塩微粒子に変換することも可能
である。 [0023] 本発明で形成された微粒子はそれ自体で水混和性有機溶
媒中又はこれと水との混和溶媒中に安定に分散するため
、そのままでも使用可能でありまた水等に希釈して使用
することも可能である。あるいは用途に応じて水混和性
有機溶媒を除去した状態で、粉末状あるいは水分散系と
しても使用可能である。 [0024] コーティング材料として本発明に関わる微粒子分散系の
みで皮膜形成した場合、往々にして体積収縮による皮膜
のひび割れやカールを引き起こす場合があるがこうした
際にはたとえばポリビニルアルコールのような皮膜形成
性のよい水溶性ポリマーを添加することで良好な皮膜を
形成することができる。 [0025]
As monomers that form such fine particles, acrylamide and its derivatives, p-styrenesulfonic acid and its salts, (meth)acrylic acid and their salts, etc. are used alone or in copolymers of these monomers, or in combination with other monomers. It is formed into fine particles as a copolymer of This is a method in which a hydrophilic polymer is formed as fine particles by allowing a polymer to exist and polymerizing the above monomers. [0011] That is, the present invention provides the following (a) which is soluble in these solvents in a water-miscible organic solvent or a mixed solvent of water-miscible organic solvent/water in the presence of a resin soluble in these solvents. ~(c
) Homopolymerization of monomers selected from ) or the following (a) ~
This is a method for producing hydrophilic fine particles characterized by copolymerizing monomers selected from (d). (a) acrylamide and its derivatives, (b) p-styrenesulfonic acid and its salts, (c) (meth)acrylic acid and its salts, (d) copolymerizable with the monomers (a) to (c) above. Vinyl compounds, [0012] Such polymerization methods are dispersion poly
This method is called erization or dispersion polymerization method, and is generally used to polymerize monomers that are soluble in solvents in their monomer state, but become insoluble in solvents by polymerization, using an appropriate polymer dispersant. It is characterized by being carried out in the presence of. In this method, before polymerization starts, the reaction mixture is generally a homogeneous system in which all of the reaction mixture is dissolved in a solvent, and as the polymerization progresses, it becomes a heterogeneous system in which the produced polymer precipitates. At this time, the presence of a polymer that is added in advance to the system as a dispersion stabilizer is extremely important; in the absence of such a polymer, the polymer is usually recovered as a low molecular weight precipitate, resulting in fine particles as referred to in the present invention. Usually it is not possible to obtain. [0013] In the present invention, a hydrophilic monomer is polymerized together with a suitable polymer dispersion stabilizer in a water-miscible organic solvent or in a mixed solvent of this and water, and the resulting polymer exhibits low solubility in these solvents. By taking advantage of this fact, it can be precipitated into fine particles, and by using a non-aqueous solvent, it can be easily copolymerized with other hydrophobic monomers. In addition, during polymerization, for example, by copolymerizing a crosslinkable monomer having two or more polymerizable vinyl groups in the molecule other than the monomers selected from (a) to (d), hydrophilic monomers having a particulate crosslinked structure can be used. This also makes it possible to produce synthetic particles. Examples of crosslinkable monomers having two or more polymerizable vinyl groups in the molecule include methylene bisacrylamide, (meth)acrylic acid vinyl ester, divinylbenzene, ethylene glycol di(meth)acrylate, and the like. [0014] On the other hand, one method for producing a hydrophilic resin in the form of particles is, for example, dispersing or suspending a monomer aqueous solution in an aliphatic hydrocarbon, aromatic hydrocarbon, or halogenated hydrocarbon solvent such as n-hexane. There are reverse-phase suspension polymerization methods that are carried out in a turbid state, but such methods require the removal of organic solvents that are not compatible with water, and in terms of size, for example, 10 μm as referred to in the present invention. It has been difficult to selectively obtain the following fine particles with uniform particle diameters. [0015] Since the present invention uses an organic solvent that is compatible with water, it is possible to use the system in which the generated wood-philic polymer fine particles are dispersed as is, or to separate the fine particles by centrifugation or the like. is also possible. Alternatively, the polymerization solution can be used in a state in which the organic solvent is heated and the fine particles are dissolved or semi-dissolved in water. Depending on the degree of intraparticle crosslinking, it is possible to arbitrarily control the state from a state in which the particles are completely dissolved in water to a state in which the hydrophilic polymer fine particles maintain their shape even in water. [0016] In the present invention, by using a suitable polymer as a dispersion stabilizer, fine particles made of a hydrophilic polymer can be produced stably in a water-miscible organic solvent or a mixed solvent of this and water using a hydrophilic monomer. The solubility of monomers or dispersion stabilizers is poor before the start of force-dried polymerization, which is used to synthesize
If it is difficult to obtain a uniform solution, a necessary amount of other solvent (such as water) may be added to aid dissolution. [0017] The polymer used as the dispersion stabilizer can generally be used as long as it is soluble in the polymerization medium, but it is preferable that the polymer has a certain degree of adsorption ability for the generated hydrophilic polymer fine particles. In this sense, polymers such as polyvinylpyrrolidone, polyvinyl acetate and partially saponified products thereof, polyvinyl alcohol, and polymethacrylic acid are effective, but a wide variety of other polymers can also be used. [0018] As the water-miscible organic solvent, it is particularly preferable to use alcohols such as methanol, ethanol, infropanol, butanol. In addition, various organic solvents such as acetone, ketones such as methyl ethyl ketone, dioxane, methyl ethyl ketone, and tetrahydrofuran can be used. It is possible. The ratio of these water-miscible organic solvents to water is
It is important to set the monomer mixture within a range that dissolves it, and to set the mixing ratio so as to at least partially insolubilize the potash-forming polymer. [0019] It is also possible to copolymerize various monomers for the purpose of modifying the surface or interior of the fine particles obtained by the present invention. For example, hydrophilic fine particles having such functional groups can be easily produced by copolymerizing monomers having acid or basic groups. Also in the copolymerization of hydrophobic monomers,
By using a water-miscible organic solvent, it is often possible to obtain homogeneous resin fine particles with no particularly large difference in composition ratio. [00201 Monomers used in the present invention include acrylamide,
Like sodium p-styrene sulfonate and sodium 2-acrylamido-2-methylpropanesulfonate, they are soluble in water-miscible organic solvents or mixed solvents with water in the monomer state, but when polymerized, Although monomers that are insoluble in the medium are polymerized, various monomers can also be introduced as copolymerization components. [0021] For example, a self-crosslinking monomer such as N-methylolacrylamide, a hydrophobic monomer such as styrene or (meth)acrylic acid ester, or (meth)acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, etc. A basic monomer such as N,N-dimethylaminoethyl (meth)acrylate or a monomer having a reactive group such as chloromethylstyrene can be copolymerized. At this time, if a large amount of a component which excessively increases the solubility of the resulting polymer in alcohol is introduced as a copolymerizable monomer, particle formation may be impaired and it may be difficult to obtain stable and fine particles. In such cases, it is also possible to form fine particles by adding another solvent for the purpose of reducing the solubility of the produced polymer. [0022] Also, by adding other reactive reagents after forming the microparticles,
It is also possible to change the particle composition; for example, acrylamide microparticles can be formed by the method according to the invention and then converted into polyacrylate microparticles by alkaline hydrolysis. [0023] The fine particles formed in the present invention can be stably dispersed by themselves in a water-miscible organic solvent or in a mixed solvent with water, so they can be used as they are, or they can be used after being diluted with water, etc. It is also possible to do so. Alternatively, depending on the application, it can be used in the form of a powder or water dispersion after removing the water-miscible organic solvent. [0024] When a film is formed using only the fine particle dispersion system according to the present invention as a coating material, cracking or curling of the film may occur due to volume shrinkage. A good film can be formed by adding a water-soluble polymer with good properties. [0025]

【実施例】【Example】

以下に実施例により本発明をより詳しく説明する。 [0026] 実施例1 攪拌機、温度計、窒素導入管および還流冷却管を備えた
500m14つロフラスコにアクリルアミド35g、2
−アクリルアミド−2−メチルプロパンスルホン酸15
g、スチレン2gおよびN−メチロールアクリルアミド
1gを加え、さらにポリビニルピロリドン7gおよびエ
タノール150gを加え70℃に加熱攪拌した。約30
分窒素置換した後、AIBNo、5gを添加することで
重合を開始した。生成物は0.2μmの単分散性微粒子
からなる安定な白色エマルジョンであった。 [0027] 実施例2 実施例1で得られたエマルジョンに10%水酸化ナトリ
ウム水溶液50m1を40℃で滴下したところ、スルホ
ン酸基の中和とともにアンモニアの発生が認められ、ア
クリルアミド成分の加水分解によるアクリル酸ナトリウ
ムユニットの生成が確認された。この際粒子の凝集等は
観測されず、粒子径の変化も殆ど認められなかった。 [0028] 実施例3 実施例1と同様にp−スチレンスルホン酸ナトリウム6
0gおよびポリビニルピロリドン6.5gにエタノール
150gおよび水70gを加え75℃に窒素雰囲気下で
加熱攪拌した。AIBNo、7gを加え約5時間加熱攪
拌することで安定な白色エマルジョンを得た。粒子径は
約2〜5μmの安定な粒子であった。 [0029] 実施例4 実施例1と同様にアクリルアミド60g、メタクリル酸
5g、クロロメチルスチレン5gおよびポリビニルピロ
リドン、6gをイソプロパツール180gに溶解し、7
0℃でAIBNo、6gを添加し重合した。安定な白色
エマルジョンを生成した。粒子径は1μm以下の安定な
粒子であった。 [0030] 実施例5 実施例1において、ポリビニルピロリドンのかわりにポ
リビニルピロリドン−酢酸ビニル共重合体ポリマー(7
:3)を同一重量用いた他は、全く同様の方法で重合を
行ったが、同様に安定な微粒子分散体を得た。粒子径は
10.um以下であった。 [0031] 実施例6 実施例1において、実施例6と同様にポリビニルピロリ
ドンの代わりに部分鹸化ポリ酢酸ビニルを使用して重合
したカミ同様に安定な白色エマルジョンを得た。粒子径
は5μm以下の安定な粒子であった。 [0032] 実施例7 実施例1と同様に、p−スチレンスルホン酸ナトリウム
60gおよびメタクリル酸ビニルエステル6g、ポリビ
ニルピロリドン7gをエタノール170gおよび水80
gに溶解し窒素雰囲気下で75℃でAIBNo、6gを
添加して重合した。生成物は平均粒子径0.2μmの安
定な微粒子であった。 [0033] 実施例8 実施例1と同様に、メタクリル酸50g、ジビニルベン
ゼン0.5gおよびポリビニルピロリドン7gをイソプ
ロパツール200gに溶解し、冷却しつつ10%水酸化
ナトリウム水溶液により中和を行なった。窒素雰囲気下
で75℃でAIBNo、5gを添加し重合を開始し白色
エマルジョンを得た。粒子径は5μm以下の安定な粒子
であった。 [0034] 実施例9 攪拌機、温度計、窒素導入管および還流冷却管を備えた
500m14つロフラスコ内に、アクリルアミド(AM
)50g、ポリビニルピロリドンPVP (分子量約9
万)5gおよびエタノール150g、蒸留水50gを加
え窒素気流下巨O℃で溶解した。溶液温度を65℃に上
昇させ、アゾビスイソブチロニトリル(AIBM)0.
5gを加えることで重合を開始し、約1時間加熱攪拌を
続けた。生成物はコールタ−N4  (コールタ−エレ
クトロニクス社製)を使用し、エタノール中において粒
子径を測定したところ、粒子径1.18μmの単分散性
ポリアクリルアミド粒子であった。このものは水中にお
いてただちに溶解し、GPCによる分子量測定の結果重
量平均分子量15万であった。 [0035] 実施例10 実施例1と同様にして下記衣1のような組成により重合
を行い、いずれの場合にも安定なポリアクリルアミド微
粒子を得ることができた。 [0036]
The present invention will be explained in more detail with reference to Examples below. [0026] Example 1 35 g of acrylamide, 2
-acrylamido-2-methylpropanesulfonic acid 15
g, 2 g of styrene and 1 g of N-methylolacrylamide were added, and further 7 g of polyvinylpyrrolidone and 150 g of ethanol were added, followed by heating and stirring at 70°C. Approximately 30
After purging with nitrogen, 5 g of AIBNo was added to start polymerization. The product was a stable white emulsion consisting of 0.2 μm monodisperse microparticles. [0027] Example 2 When 50 ml of a 10% aqueous sodium hydroxide solution was added dropwise to the emulsion obtained in Example 1 at 40°C, generation of ammonia was observed along with neutralization of sulfonic acid groups, indicating that it was due to hydrolysis of the acrylamide component. Generation of sodium acrylate units was confirmed. At this time, no aggregation of particles was observed, and almost no change in particle diameter was observed. [0028] Example 3 Similarly to Example 1, sodium p-styrene sulfonate 6
150 g of ethanol and 70 g of water were added to 0 g of polyvinylpyrrolidone and 6.5 g of polyvinylpyrrolidone, and the mixture was heated and stirred at 75° C. under a nitrogen atmosphere. A stable white emulsion was obtained by adding 7 g of AIB No. and heating and stirring for about 5 hours. The particles were stable particles with a particle size of about 2 to 5 μm. [0029] Example 4 In the same manner as in Example 1, 60 g of acrylamide, 5 g of methacrylic acid, 5 g of chloromethylstyrene, and 6 g of polyvinylpyrrolidone were dissolved in 180 g of isopropanol, and 7 g of
6 g of AIBNo was added and polymerized at 0°C. A stable white emulsion was produced. The particles were stable and had a particle diameter of 1 μm or less. [0030] Example 5 In Example 1, polyvinylpyrrolidone-vinyl acetate copolymer (7
: Polymerization was carried out in exactly the same manner except that the same weight of 3) was used, and a stable fine particle dispersion was similarly obtained. The particle size is 10. It was below um. [0031] Example 6 In Example 1, in the same manner as in Example 6, partially saponified polyvinyl acetate was used instead of polyvinylpyrrolidone to obtain a white emulsion which was polymerized and was stable like the mold. The particles were stable and had a particle size of 5 μm or less. [0032] Example 7 In the same manner as in Example 1, 60 g of sodium p-styrene sulfonate, 6 g of vinyl methacrylate, and 7 g of polyvinylpyrrolidone were mixed with 170 g of ethanol and 80 g of water.
6 g of AIBNo was added thereto at 75° C. under a nitrogen atmosphere and polymerized. The product was stable fine particles with an average particle size of 0.2 μm. [0033] Example 8 In the same manner as in Example 1, 50 g of methacrylic acid, 0.5 g of divinylbenzene and 7 g of polyvinylpyrrolidone were dissolved in 200 g of isopropanol, and neutralized with a 10% aqueous sodium hydroxide solution while cooling. . 5 g of AIBNo was added at 75° C. under a nitrogen atmosphere to initiate polymerization to obtain a white emulsion. The particles were stable and had a particle size of 5 μm or less. [0034] Example 9 Acrylamide (AM
) 50g, polyvinylpyrrolidone PVP (molecular weight approx. 9
5 g), 150 g of ethanol, and 50 g of distilled water were added and dissolved at 0° C. under a nitrogen stream. The solution temperature was increased to 65° C. and azobisisobutyronitrile (AIBM) 0.
Polymerization was started by adding 5 g, and heating and stirring were continued for about 1 hour. When the particle size of the product was measured in ethanol using Coulter N4 (manufactured by Coulter Electronics), it was found to be monodisperse polyacrylamide particles with a particle size of 1.18 μm. This product immediately dissolved in water, and as a result of molecular weight measurement by GPC, the weight average molecular weight was 150,000. [0035] Example 10 Polymerization was carried out in the same manner as in Example 1 using the composition shown in Clothing 1 below, and stable polyacrylamide fine particles could be obtained in each case. [0036]

【表1】 No、IAMI  PVP  1EtOHIWater
 1粒子径(g)  l   (g)   l  (g
)   l   (g)   l  (μm)1  5
0   1.25   1502 50   2.50
   150 3  50   5.00   1504 50  1
0.00   150 5 10   5.00   125 6  25   5.00   1257  50  
 5.00   1258 75   5.00   
125 9 25   5.00   200 10 25   5.00   17550   1.
31 50   1.20 50   1.18 50   1.03 75   0.88 75   1.06 75   1.22 75   2.40 0   0.34 25   0.55 [0037] 実施例11 実施例1と同様に、アクリルアミド20g、N、N−メ
チレンビスアクリルアミド(MBAM)5.0gおよび
ポリビニルピロリドン5.0gをエタノール125gお
よび蒸留水75gに溶解し、65℃でAIBNo、2g
を添加することで重合を開始し、1時間70℃で加熱攪
拌を続けた。生成物は粒子径1.10μmのほぼ単分散
の微粒子で、水中においても膨潤することはなかった。 [0038] 実施例12 実施例1と同様にして、アクリルアミド24g、MBA
MlgおよびPVP 50gをエタノール125gおよ
び蒸留水75gに溶解し、65℃でAIBN02gを添
加することで重合を開始し、70℃で1時間加熱攪拌を
続けた。エタノール中での粒子径は1.03μmであっ
たが、水中においては約2.1μmと粒子径が約2倍に
なり、水を吸収して膨潤していることが確認された。 [0039] 実施例13 実施例1と同様にして、アクリル酸50gをエタノール
150gおよび蒸留水50gに溶解し、室温において冷
却しながら25%アンモニウム水を滴下して中和を行な
った。その後、PVPl、5gを加え40℃で溶解した
後、AIBNO5gを添加し、70℃で1.5時間重合
を行なった。生成物はエタノール中において粒子径1.
0μmの安定な微粒子であり、これを水中に希釈するこ
とで分子量10万のポリアクリル酸アンモニウム水溶液
を得た。 [0040] 実施例14 実施例1と同様にして、アクリル酸48gを含むエタノ
ール150g、蒸留水50g混合溶媒をアンモニウム水
で中和した後、ジビニルベンゼン2gおよヒPVP2.
5gを加え、40℃で均一に溶解した。65℃でAIB
No、5gを添加し、この温度で約2時間加熱攪拌を行
い、架橋ポリアクリル酸微粒子を得た。 [0041] 実施例15 実施例1と同様にして、ポリビニルピロリドン(K−9
0)5gおよびアクリルアミド49g1メチレンビスア
クリルアミド1gをメチルエチルケトン75gエタノー
ル50gおよび蒸留水75gに溶解し、70℃でAIB
No、5を添加することにより重合を開始した。約1時
間後、室温まで冷却し、遠心沈降により粒子を分離し乾
燥させた。粒子径が約1μmの粉体として得られた。 [0042]
[Table 1] No, IAMI PVP 1EtOHIWater
1 particle diameter (g) l (g) l (g
) l (g) l (μm)1 5
0 1.25 1502 50 2.50
150 3 50 5.00 1504 50 1
0.00 150 5 10 5.00 125 6 25 5.00 1257 50
5.00 1258 75 5.00
125 9 25 5.00 200 10 25 5.00 17550 1.
31 50 1.20 50 1.18 50 1.03 75 0.88 75 1.06 75 1.22 75 2.40 0 0.34 25 0.55 [0037] Example 11 Same as Example 1, 20 g of acrylamide, 5.0 g of N,N-methylenebisacrylamide (MBAM) and 5.0 g of polyvinylpyrrolidone were dissolved in 125 g of ethanol and 75 g of distilled water, and 2 g of AIBNo.
Polymerization was started by adding , and heating and stirring was continued at 70° C. for 1 hour. The product was almost monodisperse fine particles with a particle size of 1.10 μm, and did not swell even in water. [0038] Example 12 In the same manner as in Example 1, 24 g of acrylamide, MBA
Polymerization was started by dissolving 50 g of Mlg and PVP in 125 g of ethanol and 75 g of distilled water, and adding 02 g of AIBN at 65°C, followed by heating and stirring at 70°C for 1 hour. The particle size in ethanol was 1.03 μm, but in water the particle size doubled to about 2.1 μm, indicating that the particles absorbed water and swelled. [0039] Example 13 In the same manner as in Example 1, 50 g of acrylic acid was dissolved in 150 g of ethanol and 50 g of distilled water, and 25% ammonium water was added dropwise to the solution while cooling at room temperature for neutralization. Thereafter, 5 g of PVPl was added and dissolved at 40°C, and then 5 g of AIBNO was added and polymerization was carried out at 70°C for 1.5 hours. The product has a particle size of 1.
The particles were stable fine particles with a diameter of 0 μm, and by diluting them in water, an aqueous ammonium polyacrylate solution with a molecular weight of 100,000 was obtained. [0040] Example 14 In the same manner as in Example 1, a mixed solvent of 150 g of ethanol and 50 g of distilled water containing 48 g of acrylic acid was neutralized with ammonium water, and then 2 g of divinylbenzene and 2.
5 g was added and uniformly dissolved at 40°C. AIB at 65℃
5 g of No. No. was added, and the mixture was heated and stirred at this temperature for about 2 hours to obtain crosslinked polyacrylic acid fine particles. [0041] Example 15 In the same manner as in Example 1, polyvinylpyrrolidone (K-9
0) 5 g and 49 g of acrylamide 1 g of methylene bisacrylamide were dissolved in 75 g of methyl ethyl ketone, 50 g of ethanol, and 75 g of distilled water, and AIB was prepared at 70°C.
Polymerization was started by adding No. 5. After about 1 hour, the mixture was cooled to room temperature, and the particles were separated by centrifugal sedimentation and dried. A powder having a particle size of about 1 μm was obtained. [0042]

【発明の効果】【Effect of the invention】

本発明で得られる微粒子は架橋構造を有する高分子電解
質であり、乾燥時の吸水性あるいは成膜後での吸水性、
帯電防止性等を得ることができる。
The fine particles obtained in the present invention are polymer electrolytes with a crosslinked structure, and have water absorption properties during drying or after film formation.
Antistatic properties etc. can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水混和性有機溶媒中又は水混和性有機溶媒/水の混和溶
媒中において、これらの溶媒に可溶の樹脂の存在下、こ
れらの溶媒に可溶な下記(a)〜(c)から選ばれるモ
ノマーの単独重合または下記(a)〜(d)から選ばれ
るモノマーの共重合を行うことを特徴とする親水性微粒
子の製造方法。 (a)アクリルアミドおよびその誘導体、 (b)p−スチレンスルホン酸およびその塩、 (c)(メタ)アクリル酸及びその塩、 (d)前記(a)〜(c)のモノマーと共重合可能のビ
ニル化合物、
Claim 1: In a water-miscible organic solvent or a water-miscible organic solvent/water mixture, in the presence of a resin soluble in these solvents, the following (a) to ( A method for producing hydrophilic fine particles, characterized by carrying out homopolymerization of a monomer selected from c) or copolymerization of a monomer selected from the following (a) to (d). (a) acrylamide and its derivatives, (b) p-styrenesulfonic acid and its salts, (c) (meth)acrylic acid and its salts, (d) copolymerizable with the monomers (a) to (c) above. vinyl compound,
【請求項2】 水混和性有機溶媒又は水混和性有機溶媒/水の混和溶媒
に可溶の樹脂がポリビニルピロリドン、ポリ酢酸ビニル
、部分鹸化ポリ酢酸ビニル、ポリビニルアルコールまた
はポリメタクリル酸である請求項1記載の親水性微粒子
の製造方法。
2. A claim in which the resin soluble in a water-miscible organic solvent or a water-miscible organic solvent/water mixture is polyvinylpyrrolidone, polyvinyl acetate, partially saponified polyvinyl acetate, polyvinyl alcohol, or polymethacrylic acid. 1. The method for producing hydrophilic fine particles according to 1.
【請求項3】 (a)〜(d)から選ばれるモノマーとともに分子内に
少なくとも2個以上の重合性二重結合を有する架橋性モ
ノマーを含有させる請求項1記載の親水性微粒子の製造
方法。
3. The method for producing hydrophilic fine particles according to claim 1, wherein a crosslinking monomer having at least two or more polymerizable double bonds in the molecule is contained together with the monomer selected from (a) to (d).
【請求項4】 (d)のモノマーがスチレンおよびその誘導体、(メタ
)アクリル酸エステル(メタ)アクリロニトリル、マレ
イン酸およびその誘導体から選ばれる請求項1記載の親
水性微粒子の製造方法。
4. The method for producing hydrophilic fine particles according to claim 1, wherein the monomer (d) is selected from styrene and its derivatives, (meth)acrylate (meth)acrylonitrile, maleic acid and its derivatives.
【請求項5】 水混和性有機溶媒がアルコール、ケトン、ジオキサン及
びテトラヒドロフランから選ばれる請求項1記載の親水
性微粒子の製造方法。
5. The method for producing hydrophilic fine particles according to claim 1, wherein the water-miscible organic solvent is selected from alcohol, ketone, dioxane, and tetrahydrofuran.
JP02415899A 1990-01-05 1990-12-28 Method for producing water-soluble polymer fine particles Expired - Fee Related JP3054447B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-284 1990-01-05
JP28490 1990-01-05

Publications (2)

Publication Number Publication Date
JPH04132705A true JPH04132705A (en) 1992-05-07
JP3054447B2 JP3054447B2 (en) 2000-06-19

Family

ID=11469609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02415899A Expired - Fee Related JP3054447B2 (en) 1990-01-05 1990-12-28 Method for producing water-soluble polymer fine particles

Country Status (1)

Country Link
JP (1) JP3054447B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709409A1 (en) 1994-10-24 1996-05-01 Kansai Paint Co., Ltd. Hydrophilic crosslinked polymer fine particles and process for production thereof
EP0955315A4 (en) * 1997-01-10 2000-06-28 Sumitomo Seika Chemicals Process for the production of acrylamide polymer dispersion
WO2002018494A1 (en) * 2000-08-29 2002-03-07 Daido Chemical Corporation Resin composition
JP2002201238A (en) * 2000-12-01 2002-07-19 Clariant Gmbh Graft comb copolymer based on acryloyldimethyltauric acid
JP2008120916A (en) * 2006-11-13 2008-05-29 San-Dia Polymer Ltd Water-absorbing resin and method for producing water-absorbing resin
WO2011043299A2 (en) 2009-10-09 2011-04-14 サンノプコ株式会社 Defoaming agent
US8187581B2 (en) 2000-12-01 2012-05-29 Clariant Produkte (Deutschland) Gmbh Surfactant-containing cosmetic, dermatological and pharmaceutical agents
JP2013007014A (en) * 2011-06-27 2013-01-10 Hitachi Chemical Co Ltd Method for producing polymer microparticle having sodium sulfonate group
JP2013007013A (en) * 2011-06-27 2013-01-10 Hitachi Chemical Co Ltd Polymer microparticle having sodium sulfonate group and method for producing the same
WO2020202938A1 (en) 2019-03-29 2020-10-08 株式会社日本触媒 Resin particle and production method therefor, and hydrophilicity imparting agent containing said resin particle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709409A1 (en) 1994-10-24 1996-05-01 Kansai Paint Co., Ltd. Hydrophilic crosslinked polymer fine particles and process for production thereof
EP0955315A4 (en) * 1997-01-10 2000-06-28 Sumitomo Seika Chemicals Process for the production of acrylamide polymer dispersion
US6235828B1 (en) * 1997-01-10 2001-05-22 Sumitomo Seika Chemicals Co., Ltd. Aqueous polymerization of acrylamide in the presence of polyvinylpyrrolidone
WO2002018494A1 (en) * 2000-08-29 2002-03-07 Daido Chemical Corporation Resin composition
JP2002201238A (en) * 2000-12-01 2002-07-19 Clariant Gmbh Graft comb copolymer based on acryloyldimethyltauric acid
US8187581B2 (en) 2000-12-01 2012-05-29 Clariant Produkte (Deutschland) Gmbh Surfactant-containing cosmetic, dermatological and pharmaceutical agents
JP4613155B2 (en) * 2006-11-13 2011-01-12 サンダイヤポリマー株式会社 Water absorbent resin and method for producing water absorbent resin
JP2008120916A (en) * 2006-11-13 2008-05-29 San-Dia Polymer Ltd Water-absorbing resin and method for producing water-absorbing resin
WO2011043299A2 (en) 2009-10-09 2011-04-14 サンノプコ株式会社 Defoaming agent
JP2013007014A (en) * 2011-06-27 2013-01-10 Hitachi Chemical Co Ltd Method for producing polymer microparticle having sodium sulfonate group
JP2013007013A (en) * 2011-06-27 2013-01-10 Hitachi Chemical Co Ltd Polymer microparticle having sodium sulfonate group and method for producing the same
WO2020202938A1 (en) 2019-03-29 2020-10-08 株式会社日本触媒 Resin particle and production method therefor, and hydrophilicity imparting agent containing said resin particle
KR20210133268A (en) 2019-03-29 2021-11-05 가부시기가이샤 닛뽕쇼꾸바이 Resin particles, a method for producing the same, and a hydrophilicity imparting agent comprising the resin particles

Also Published As

Publication number Publication date
JP3054447B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
EP2009033B1 (en) Hollow polymer particles and colored hollow polymer particles
Macková et al. Effects of the reaction parameters on the properties of thermosensitive poly (N‐isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization
JPH0198606A (en) Polymer particle and preparation thereof
US20100256298A1 (en) Preparation of Micro Gel Particle Dispersions and Dry Powders Suitable For Use As Fluid Loss Control Agents
JPH04132705A (en) Production of hydrophilic fine grain
Musiał et al. Thermosensitive microgels of poly-N-isopropylacrylamide for drug carriers—Practical approach to synthesis
JPH05262882A (en) Thermally reversible hydrogel material
JPS61215604A (en) Production of polymer particle
WO2001019885A1 (en) Single stage seed polymerisation for the production of large polymer particles with a narrow size distribution
JP4009752B2 (en) Self-activated polymer particles having a narrow particle size distribution and method for producing the same
CN110950989B (en) Method for producing monodisperse particles
Cao et al. Preparation and properties of a dually responsive hydrogels based on polyampholyte for oral delivery of drugs
EP0308864B1 (en) Process for preparing uniformly sized, fine particles of polymer
JP2725031B2 (en) Method for producing crosslinked polymer fine particles
JPH04279604A (en) Production of hydrophilic polymer particle
JPH028602B2 (en)
JPH0572923B2 (en)
JPH04279605A (en) Production of hydrophilic polymer particle
US3249571A (en) Process for producing aqueous polymer dispersions with polymeric nu-vinyl acetamide dispersant
JPS6372713A (en) Production of solvent-resistant fine particle of uniform particle diameter
JPS60245608A (en) Production of vinyl polymer
JPH01314962A (en) Filler for liquid chromatography
JPS5856366B2 (en) Method for manufacturing microemulsion
JPS6372712A (en) Production of solvent-resistant fine particle of uniform-particle diameter
JP2001019938A (en) Heat-sensitive gel micro-bead and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees