JPH04279604A - Production of hydrophilic polymer particle - Google Patents

Production of hydrophilic polymer particle

Info

Publication number
JPH04279604A
JPH04279604A JP6555291A JP6555291A JPH04279604A JP H04279604 A JPH04279604 A JP H04279604A JP 6555291 A JP6555291 A JP 6555291A JP 6555291 A JP6555291 A JP 6555291A JP H04279604 A JPH04279604 A JP H04279604A
Authority
JP
Japan
Prior art keywords
water
fine particles
acrylamide
acrylic acid
polyvinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6555291A
Other languages
Japanese (ja)
Inventor
Akira Furukawa
彰 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP6555291A priority Critical patent/JPH04279604A/en
Publication of JPH04279604A publication Critical patent/JPH04279604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title monodisperse particles for, e.g. the packing materials for liquid chromatography by polymerizing acrylamide-and/or an acrylic acid/neutralized product in the presence of polyvinylpyrrolidone in a solvent of a water-miscible organic solvent mixed with water. CONSTITUTION:A polymerization of acrylamide and/or an acrylic acid neutralized product is performed in a solvent of a water-miscible organic solvent (e.g. ethanol) mixed with water in the presence of (A) polyvinylpyrrolidone or (B) a copolymer of (1) N-vinyl-2-pyrrolidone and (2) a monomer of the formula (R<1> is H or methyl; R<2> is H, methyl or phenyl; (n) is integer, 1-40) having in the molecule at least one ethyleneoxy group (e.g. oligoethylene glycol methacrylate), each >=10000 in weight-average molecular weight, thus obtaining the objective monodisperse hydrophilic polymer particles <=10mum in average diameter and <=30% in the variation coefficient which is the ratio of the standard deviation for particle diameter distribution to the average particle diameter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はポリアクリル酸やポリア
クリルアミドのような水溶性ポリマーを微粒子の形状で
製造する方法に係わるもので、従来の水溶性ポリマー溶
液に比較して微粒子状に分散した状態であることから、
分散液の粘度を大幅に低下させることで、水溶性ポリマ
ーを高濃度の状態で流動性を維持したままで製造し、か
つ使用に供することを可能にするものである。さらに高
濃度で分散した水溶性ポリマーを水中にて水溶液にする
際にも、単に分散液を希釈するだけでよく、従来の粉末
状ポリマーを溶解させる工程が不用になるものである。 また、単分散性の微粒子状に得られる水溶性ポリマーに
架橋構造をもたせることで、水中においても微粒子の形
態を保持することから、マット剤、液体クロマトグラフ
ィー用充填剤、高吸水性樹脂その他への応用が可能であ
る。
[Industrial Application Field] The present invention relates to a method for producing water-soluble polymers such as polyacrylic acid and polyacrylamide in the form of fine particles. Since it is a state,
By significantly reducing the viscosity of the dispersion, it is possible to produce and use a water-soluble polymer in a highly concentrated state while maintaining fluidity. Furthermore, when a water-soluble polymer dispersed at a high concentration is made into an aqueous solution in water, it is sufficient to simply dilute the dispersion, and the conventional step of dissolving a powdered polymer is unnecessary. In addition, by providing a crosslinked structure to the water-soluble polymer obtained in the form of monodisperse fine particles, it retains its fine particle form even in water, so it can be used as matting agents, fillers for liquid chromatography, super absorbent resins, etc. can be applied.

【0002】0002

【従来の技術】水溶性ポリマーは水溶液の形で広範囲に
使用されているが、供給される形態としては(i)水溶
液、(ii)乾燥粉体、あるいは(iii)炭化水素媒
体中にエマルジョン状に分散した状態のいずれかの形状
をとるのが通常である。
BACKGROUND OF THE INVENTION Water-soluble polymers are widely used in the form of aqueous solutions, but may be supplied in the form of (i) an aqueous solution, (ii) a dry powder, or (iii) an emulsion in a hydrocarbon medium. Usually, it takes the form of one of the dispersed states.

【0003】0003

【本発明が解決しようとする課題】水溶性ポリマーを(
i)水溶液の状態で製造もしくは輸送する場合、固形分
濃度が高い場合には溶液粘度が著しく上昇するため攪拌
、送液が困難であることから、流動性を失わない範囲で
水により希釈した状態で製造もしくは輸送せざるを得ず
、生産効率、輸送費用の点でしばしば問題となっていた
。また、水溶性ポリマーを(ii)乾燥粉体で供給する
場合には、水溶液からの乾燥工程が一般に必要であり、
乾燥に多大の熱エネルギーを要する問題と、さらに供給
された乾燥粉体を水に再溶解する際にも多大の熱エネル
ギーと時間を要するのが常であった。さらに、(iii
)炭化水素媒体中に分散した状態で水溶性ポリマーを製
造する場合には、高濃度の水溶性ポリマーを低粘度で製
造、輸送できるメリットを有するものの、水に希釈して
水溶液の状態で使用する場合には水と混和しない炭化水
素媒体を除去する必要があり問題であった。
[Problem to be solved by the present invention] Water-soluble polymer (
i) When manufacturing or transporting the solution in the form of an aqueous solution, if the solid content concentration is high, the viscosity of the solution increases significantly, making stirring and transporting difficult. Therefore, it is diluted with water to the extent that fluidity is not lost. This often led to problems in terms of production efficiency and transportation costs. In addition, (ii) when supplying a water-soluble polymer as a dry powder, a drying process from an aqueous solution is generally necessary;
There has always been a problem that a large amount of thermal energy is required for drying, and furthermore, it also requires a large amount of thermal energy and time to redissolve the supplied dry powder in water. Furthermore, (iii
) When producing water-soluble polymers in a dispersed state in a hydrocarbon medium, it has the advantage of being able to produce and transport highly concentrated water-soluble polymers with low viscosity; In some cases, it was necessary to remove the hydrocarbon medium which is immiscible with water, which was a problem.

【0004】本発明は水と水混和性有機溶媒の混合溶媒
中で、水溶性ポリマーを微粒子の状態で製造する方法を
与えるものであり、高分子量の水溶性ポリマーを高濃度
でかつ低粘度で製造できることから生産および輸送の効
率性を高め、さらに水溶性ポリマーの水溶液を得る場合
にも単に分散液を水中に希釈するだけでよく、この場合
水と相溶しない有機溶媒を含まないことから、微粒子状
のポリマーを水に希釈して使用する際にも有機溶媒の除
去を不用にするものである。さらに本発明で得られる微
粒子分散液は、微粒子の大きさが高々10μm以下であ
ることから、塗工用液として数10−100μm程度も
しくはそれ以下の塗膜を形成する目的で使用する際にも
優れた塗布特性とともに均質な塗膜を得るのに適した方
法を与えるものである。さらに粒子径が10ミクロン以
下の単分散性に優れた微粒子を簡便に製造する方法を与
えるものである。
The present invention provides a method for producing a water-soluble polymer in the form of fine particles in a mixed solvent of water and a water-miscible organic solvent. Since it can be manufactured, it increases the efficiency of production and transportation, and when obtaining an aqueous solution of a water-soluble polymer, it is sufficient to simply dilute the dispersion in water, and in this case, it does not contain an organic solvent that is incompatible with water. This eliminates the need to remove organic solvents even when using finely divided polymers diluted with water. Furthermore, since the particle size of the fine particle dispersion obtained in the present invention is at most 10 μm or less, it can also be used as a coating liquid for the purpose of forming a coating film of several tens to 100 μm or less. It provides a suitable method for obtaining homogeneous coatings with excellent application properties. Furthermore, the present invention provides a method for easily producing fine particles having a particle size of 10 microns or less and excellent monodispersity.

【0005】[0005]

【課題を解決するための手段】本発明は水と水混和性有
機溶媒の混合溶媒中でアクリルアミドもしくはアクリル
酸中和物の各々単独もしくは混合物の重合を、重量平均
分子量1万以上のポリビニルピロリドンもしくはポリビ
ニルピロリドン共重合体の存在下で行うことにより、平
均粒子径が10ミクロン以下であり、粒子径分布に関す
る標準偏差を平均粒子径で除した変動係数が30%以下
である単分散性の親水性ポリマー微粒子を製造するもの
である。
[Means for Solving the Problems] The present invention involves the polymerization of acrylamide or neutralized acrylic acid, each alone or as a mixture, in a mixed solvent of water and a water-miscible organic solvent. Monodisperse hydrophilicity with an average particle diameter of 10 microns or less and a coefficient of variation obtained by dividing the standard deviation of the particle size distribution by the average particle diameter of 30% or less by performing in the presence of a polyvinylpyrrolidone copolymer. This is to produce polymer fine particles.

【0006】この際、水とともに用いる水混和性有機溶
剤としては、生成するポリマーの非溶媒であることが通
常であり、水とこうした有機溶媒の混合比は、モノマー
を完全に溶解し、かつ生成するポリマーを析出させるよ
うな割合を選択することが望ましい。このような混合溶
媒中で単にアクリルアミドやアクリル酸中和物の重合を
行うと、重合の進行に伴って、生成するポリマーが媒体
に不溶となって析出沈澱するのが通常であるが、重合の
際にあらかじめ媒体に可溶な平均分子量1万以上のポリ
ビニルピロリドンもしくはポリビニルピロリドン共重合
体(以降単に分散安定剤ポリマーともいう)を存在させ
ておくことで、生成物を微粒子状に形成することを可能
にするものである。このような重合法は一般に分散重合
法と呼ばれる重合方法に属するものであり、モノマーの
状態では媒体に可溶であるが、重合によりポリマーを生
成すると媒体に不溶となるようなモノマー/媒体の組合
せで重合を行う際に、系内にあらかじめ適当な分散安定
剤ポリマーを添加しておくことで析出するポリマーを微
粒子状に安定に分散した状態で生成する方法である。こ
の際、分散安定剤としてのポリマーの存在は極めて重要
であり、こうしたポリマーの存在しない場合には通常ポ
リマーは沈澱物として回収され、本発明で言うような微
粒子を得られないのが普通である。
[0006] At this time, the water-miscible organic solvent used together with water is usually a non-solvent for the produced polymer, and the mixing ratio of water and such organic solvent is such that it completely dissolves the monomer and It is desirable to select a proportion that will precipitate the desired polymer. When acrylamide or a neutralized acrylic acid is simply polymerized in such a mixed solvent, the resulting polymer usually becomes insoluble in the medium and precipitates as the polymerization progresses. By pre-existing polyvinylpyrrolidone or polyvinylpyrrolidone copolymer (hereinafter simply referred to as a dispersion stabilizer polymer) with an average molecular weight of 10,000 or more that is soluble in the medium, it is possible to form the product into fine particles. It is what makes it possible. This type of polymerization method generally belongs to a polymerization method called dispersion polymerization method, and it uses a monomer/vehicle combination that is soluble in the medium in the monomer state, but becomes insoluble in the medium when the polymer is produced by polymerization. In this method, when performing polymerization, a suitable dispersion stabilizer polymer is added to the system in advance to produce the precipitated polymer in a stable dispersed state in the form of fine particles. In this case, the presence of a polymer as a dispersion stabilizer is extremely important, and if such a polymer is not present, the polymer is usually recovered as a precipitate, and it is usually not possible to obtain fine particles as referred to in the present invention. .

【0007】本発明で使用するモノマーとしては、アク
リルアミドもしくはアクリル酸中和物であり、アクリル
酸を中和する塩基としては水酸化ナトリウム、水酸化カ
リウム、アンモニア、有機アミン類等が使用でき、これ
らの水溶液にさらに水混和性有機溶媒をこれらのモノマ
ーの溶解性を損なわない範囲でさらに添加して重合を行
うものである。このような水混和性有機溶媒の例として
は、メタノール、エタノール、(イソ)プロパノール、
ブタノール、セロソルブ等のアルコール類やアセトン、
メチルエチルケトンのようなケトン系溶媒、あるいはジ
メチルホルムアミド、テトラヒドロフラン、1,4−ジ
オキサン等の多種の有機溶媒が一般に使用可能であり、
目的に応じてこうした有機溶媒を単独もしくは混合した
状態で使用することができる。
The monomer used in the present invention is acrylamide or a neutralized product of acrylic acid, and the base for neutralizing acrylic acid can be sodium hydroxide, potassium hydroxide, ammonia, organic amines, etc. Polymerization is carried out by further adding a water-miscible organic solvent to the aqueous solution within a range that does not impair the solubility of these monomers. Examples of such water-miscible organic solvents are methanol, ethanol, (iso)propanol,
Alcohols such as butanol and cellosolve, acetone,
Ketone solvents such as methyl ethyl ketone, or various organic solvents such as dimethylformamide, tetrahydrofuran, and 1,4-dioxane can generally be used.
Depending on the purpose, these organic solvents can be used alone or in a mixed state.

【0008】上記モノマーとともに重合の際にあらかじ
め溶解した状態で添加しておく分散安定剤ポリマーとし
ては重量平均分子量1万以上のポリビニルピロリドンも
しくはこれの共重合体が用いられ、こうしたポリマーを
添加することで上記モノマーの重合で生成するポリマー
を安定な微粒子状に形成することが可能となる。重量平
均分子量1万を下回る分子量のポリビニルピロリドン等
を使用した場合には、粒子に対する分散安定化能が十分
でなく、しばしば凝集物の発生を見たり、粒子が生成す
る場合でも粒子径分布が幅広く、本発明の言うような単
分散性の微粒子が得られない。ポリビニルピロリドン共
重合体としては、モノマーの状態でN−ビニル−2−ピ
ロリドンと、これと共重合しうるモノマーとの共重合体
であればよく、該モノマーとして任意のモノマーが使用
可能であるが、これらの内でとくに分子内にエチレンオ
キシ基を少なくとも1個以上含むような重合性二重結合
を有するモノマーとの共重合体が好ましく、こうしたモ
ノマーの共重合体を使用することにより生成するポリマ
ー微粒子の粒子径分布をさらに単分散性に優れたものに
する効果を有する。このようなモノマーの例としては化
1で示されるものが特に好ましい。
Polyvinylpyrrolidone or a copolymer thereof having a weight average molecular weight of 10,000 or more is used as a dispersion stabilizer polymer which is added in advance in a dissolved state during polymerization together with the above monomers. This makes it possible to form the polymer produced by polymerization of the monomers into stable fine particles. When polyvinylpyrrolidone, etc. with a weight average molecular weight of less than 10,000 is used, the ability to stabilize the dispersion of particles is insufficient, and aggregates often occur, and even when particles are formed, the particle size distribution is wide. However, monodisperse fine particles as described in the present invention cannot be obtained. The polyvinylpyrrolidone copolymer may be a copolymer of N-vinyl-2-pyrrolidone in the monomer state and a monomer that can be copolymerized with this, and any monomer can be used as the monomer. Among these, copolymers with monomers having a polymerizable double bond and containing at least one ethyleneoxy group in the molecule are particularly preferred, and polymers produced by using copolymers of such monomers. It has the effect of making the particle size distribution of fine particles even more excellent in monodispersity. As examples of such monomers, those shown in Chemical Formula 1 are particularly preferred.

【0009】化1中、R1は水素、メチル基、R2は水
素、メチル基、フェニル基、nは1から40までの整数
を表わす。
In Formula 1, R1 represents hydrogen or a methyl group, R2 represents hydrogen, a methyl group, or a phenyl group, and n represents an integer from 1 to 40.

【0010】化1の具体的な例としては、例えば次のよ
うなものが挙げられる。
[0010] Specific examples of chemical formula 1 include the following.

【0011】[0011]

【化2】[Case 2]

【0012】0012

【化3】[Chemical formula 3]

【0013】[0013]

【化4】[C4]

【0014】[0014]

【化5】[C5]

【0015】[0015]

【化6】[C6]

【0016】[0016]

【化7】[C7]

【0017】[0017]

【化8】[Chemical formula 8]

【0018】[0018]

【化9】[Chemical formula 9]

【0019】[0019]

【化10】[Chemical formula 10]

【0020】[0020]

【化11】[Chemical formula 11]

【0021】上記共重合モノマーの比率としては、生成
する共重合体の溶解を損なわない範囲で使用することが
可能であるが、通常はN−ビニル−2−ピロリドン対し
て1から50重量%の範囲で使用することが好ましく、
このような場合において単分散性微粒子が合成され易い
と言う特徴を有する。さらに化1で示されるようなモノ
マー以外に第3成分として種々のモノマーを導入するこ
とも可能であり、こうした第3あるいは第4の共重合成
分の導入により、生成する微粒子ポリマーへの吸着等に
よる分散安定化能力を適度にコントロールし、さらに粒
子の単分散性や安定性を高めることも可能である。この
ような他の成分のモノマーとしては例えば、スチレン、
スチレン誘導体、(メタ)アクリル酸エステル、(メタ
)アクリルアミド、(メタ)アクリルアミド誘導体、そ
の他多種多様なモノマーが使用可能である。化1で示さ
れる以外のあるいは、いわゆるマクロモノマーの利用等
による各種グラフト共重合体も分散安定性を高める上で
好ましい場合がある。
The proportion of the above copolymerizable monomer can be within a range that does not impair the solubility of the resulting copolymer, but it is usually 1 to 50% by weight based on N-vinyl-2-pyrrolidone. It is preferable to use within the range,
In such a case, monodisperse fine particles are easily synthesized. Furthermore, it is also possible to introduce various monomers as a third component in addition to the monomer shown in Chemical Formula 1, and by introducing such a third or fourth copolymer component, a It is also possible to appropriately control the dispersion stabilizing ability and further enhance the monodispersity and stability of particles. Examples of such other component monomers include styrene,
Styrene derivatives, (meth)acrylic acid esters, (meth)acrylamide, (meth)acrylamide derivatives, and a wide variety of other monomers can be used. Various graft copolymers other than those shown in Chemical Formula 1 or by using so-called macromonomers may also be preferable in order to improve dispersion stability.

【0022】上記のような分散安定剤ポリマーの粒子形
成モノマーに対する比率は重量比で0.1%から200
%程度の範囲で使用することが出来るが、通常は10−
30%程度の範囲で使用することが好ましく、こうした
場合に粒子の安定性が高く粗大粒子の副成を防止するこ
とが出来る。
The ratio of the above-mentioned dispersion stabilizer polymer to the particle-forming monomer is from 0.1% to 200% by weight.
It can be used in the range of about 10%, but usually 10-
It is preferable to use it in a range of about 30%, and in such a case, the stability of the particles is high and the by-formation of coarse particles can be prevented.

【0023】上記のような種々の分散安定剤ポリマーの
存在下で、アクリルアミド、アクリル酸中和物等の重合
を行う際に、これらの粒子形成モノマーとともにこれら
のモノマーと共重合しうる他のモノマーを共重合させる
ことも種々の目的で可能であり、例えばスチレンや(メ
タ)アクリル酸エステル類のような疎水性モノマーの共
重合により粒子の親水性もしくは疎水性をコントロール
することも可能であり、あるいはスルホン酸基、リン酸
基、もしくはカルボン酸基を有するモノマーとの共重合
によりさらに粒子の親水性を高めることも可能である。 さらに、共重合モノマーとして分子内に重合性二重結合
を2個以上有するようなモノマーを使用することで、粒
子内に適度の架橋構造を与えることが出来る。このよう
なモノマーの例としては、例えばジビニルベンゼン、メ
チレンビスアクリルアミド、エチレングリコールジ(メ
タ)アクリレート、ビニル酢酸、ビニル(メタ)アクリ
レート、アリル(メタ)アクリレート等の多官能性モノ
マーや、あるいはN−メチロール(メタ)アクリルアミ
ドのような自己硬化性モノマーあるいはクロロメチルス
チレンのような反応性モノマーの導入による粒子内架橋
が可能であり、さらには多官能性エポキシ化合物やグリ
オキザール等の公知の架橋剤の使用による架橋も可能で
ある。このような架橋構造の導入により、粒子を水中に
おいても全く膨潤しない状態から高吸水性を示す状態ま
で任意にコントロールすることが可能である。
[0023] When polymerizing acrylamide, neutralized acrylic acid, etc. in the presence of the various dispersion stabilizer polymers as described above, other monomers that can be copolymerized with these monomers together with these particle-forming monomers are used. It is also possible to copolymerize particles for various purposes, for example, it is also possible to control the hydrophilicity or hydrophobicity of particles by copolymerizing hydrophobic monomers such as styrene and (meth)acrylic acid esters. Alternatively, the hydrophilicity of the particles can be further increased by copolymerization with a monomer having a sulfonic acid group, a phosphoric acid group, or a carboxylic acid group. Furthermore, by using a monomer having two or more polymerizable double bonds in the molecule as a copolymerizable monomer, it is possible to provide an appropriate crosslinked structure within the particles. Examples of such monomers include polyfunctional monomers such as divinylbenzene, methylenebisacrylamide, ethylene glycol di(meth)acrylate, vinyl acetic acid, vinyl(meth)acrylate, allyl(meth)acrylate, or N- Intraparticle crosslinking is possible by the introduction of self-curing monomers such as methylol(meth)acrylamide or reactive monomers such as chloromethylstyrene, as well as the use of known crosslinking agents such as polyfunctional epoxy compounds and glyoxal. Crosslinking is also possible. By introducing such a crosslinked structure, it is possible to arbitrarily control the particles from a state in which they do not swell at all even in water to a state in which they exhibit high water absorption.

【0024】上記のような種々のモノマーの重合により
得られる微粒子は分散した状態で使用することもできる
が、微粒子を単離して粉体として使用することも出来る
。微粒子を単離するためには、遠心沈降を利用する方法
や、分散安定剤ポリマーに対する非溶剤を添加すること
で粒子を凝集沈澱させる方法等が好ましい。粒子を乾燥
させる目的では、重合の際に使用する有機溶媒としてア
ルコール等の低沸点溶媒を使用することが好ましい。
Fine particles obtained by polymerizing various monomers as described above can be used in a dispersed state, but the fine particles can also be isolated and used as a powder. In order to isolate the fine particles, a method using centrifugal sedimentation, a method in which the particles are coagulated and precipitated by adding a non-solvent for the dispersion stabilizer polymer, etc. are preferred. For the purpose of drying the particles, it is preferable to use a low boiling point solvent such as alcohol as the organic solvent used during polymerization.

【0025】重合の際に添加する水の影響は重要であり
、有機溶媒に対する水の混合比により生成する微粒子の
粒子径を制御することが可能であるとともに、水を全く
含まない系で重合を行った場合には粒子が凝集する場合
が時として見られた。少量の水分の存在で粒子の分散安
定性が向上することから、こうした水の混合比としては
、通常有機溶媒に対して重量比で1%以上150%以下
が好ましく、これ以上の水の混合比では生成するポリマ
ーが溶解してしまうのが通常である。このような水分量
の範囲では、生成するポリマー微粒子の粒子径は水分量
の増加とともに増大する傾向が見られ、所望の粒子径の
微粒子を得る目的で水分量を調製することが出来る。
The influence of water added during polymerization is important; the particle size of the fine particles produced can be controlled by changing the mixing ratio of water to the organic solvent, and it is also possible to carry out polymerization in a system that does not contain any water. When this was done, particles sometimes aggregated. Since the dispersion stability of particles is improved by the presence of a small amount of water, the mixing ratio of such water is usually preferably 1% or more and 150% or less by weight relative to the organic solvent; Normally, the resulting polymer dissolves. In such a water content range, the particle size of the produced polymer fine particles tends to increase as the water content increases, and the water content can be adjusted in order to obtain fine particles with a desired particle size.

【0026】粒子径を制御する他の方法としては分散安
定剤ポリマー濃度やアクリルアミド等のモノマー濃度の
制御による方法が挙げられる。一般的には、分散安定剤
ポリマー濃度が高いほど生成する微粒子の粒子径は減少
し、前記モノマー濃度が高いほど粒子径は増大する傾向
にある。また、生成するポリマーの溶解性をコントロー
ルする目的で種々のモノマーを共重合することでも粒子
径の制御が可能である。この際粒子の媒体に対する溶解
性を低下するほど粒子径は減少する傾向にある。また重
合媒体としても粒子の溶解性を制御する目的で種々の有
機溶媒を水とともに使用もしくは併用することが可能で
あり、本発明のような場合には例えばメチルエチルケト
ンのような溶剤を併用することで粒子径を減少させる方
向で効果が認められる場合がある。
Other methods for controlling the particle size include controlling the concentration of the dispersion stabilizer polymer and the concentration of monomers such as acrylamide. Generally, the higher the concentration of the dispersion stabilizer polymer, the smaller the particle size of the fine particles produced, and the higher the monomer concentration, the larger the particle size tends to be. The particle size can also be controlled by copolymerizing various monomers for the purpose of controlling the solubility of the resulting polymer. At this time, the particle size tends to decrease as the solubility of the particles in the medium decreases. In addition, various organic solvents can be used together with water as a polymerization medium for the purpose of controlling the solubility of particles, and in cases such as the present invention, for example, by using a solvent such as methyl ethyl ketone in combination Effects may be observed in the direction of decreasing particle size.

【0027】本発明で得られるポリマー微粒子は架橋し
ない場合には水により希釈して水溶液を得ることが可能
であり、重合の際に添加される有機溶媒は水と混和する
ため特に除去を必要としない場合が多い。有害性等の観
点からはエタノール等のアルコール類が有機溶媒として
好ましい。
[0027] When the polymer fine particles obtained in the present invention are not crosslinked, they can be diluted with water to obtain an aqueous solution, and the organic solvent added during polymerization does not need to be particularly removed because it is miscible with water. Often not. From the viewpoint of toxicity, alcohols such as ethanol are preferred as the organic solvent.

【0028】本発明で得られるポリマー微粒子は重合で
得られた分散液をそのままの状態もしくはこれに何等か
の添加剤を加えた状態で使用することも可能であり、例
えば塗工液として紙、フィルム、金属等の支持体に塗布
して使用することも可能であり、ポリマーが微粒子状に
分散した状態で存在することから、塗液として好ましい
チクソトロピー性を付与することが可能である。さらに
この場合ポリマー微粒子は単分散性の高々10ミクロン
以下の大きさであることから、均質な皮膜を得る上で極
めて好ましいものである。
[0028] The polymer fine particles obtained in the present invention can be used in the form of a dispersion obtained by polymerization as it is or in a state in which some additives are added to the dispersion. It is also possible to use it by coating it on a support such as a film or metal, and since the polymer exists in a finely dispersed state, it is possible to impart desirable thixotropic properties as a coating liquid. Furthermore, in this case, the polymer fine particles are monodisperse and have a size of at most 10 microns or less, which is extremely preferable for obtaining a homogeneous film.

【0029】[0029]

【実施例】以下で実施例を用い、更に詳細に本発明を説
明する。合成例1〜4は本発明に係わる分散安定剤ポリ
マーの合成例である。
EXAMPLES The present invention will be explained in more detail below using examples. Synthesis Examples 1 to 4 are examples of synthesizing dispersion stabilizer polymers according to the present invention.

【0030】合成例1 攪拌機、温度計、窒素導入管、還流冷却管を備えた50
0mlフラスコ内に、N−ビニル−2−ピロリドン(N
VP)80gおよびオリゴエチレングリコールメタクリ
レート(EGMA)(化11)20gをとり、エタノー
ル300gを加え、70℃でAIBN1gを加え約4時
間加熱攪拌を行い固形分濃度25%、重量平均分子量約
5万の分散安定剤ポリマー溶液を得た。
Synthesis Example 1 A 50-liter refrigerator equipped with a stirrer, a thermometer, a nitrogen inlet tube, and a reflux condenser tube
In a 0 ml flask, add N-vinyl-2-pyrrolidone (N
Take 80 g of VP) and 20 g of oligoethylene glycol methacrylate (EGMA) (chemical formula 11), add 300 g of ethanol, add 1 g of AIBN at 70°C, and heat and stir for about 4 hours to obtain a mixture with a solid content concentration of 25% and a weight average molecular weight of about 50,000. A dispersion stabilizer polymer solution was obtained.

【0031】合成例2 合成例1と同様にして、NVP85gおよびEGMA(
化9)10gおよびアクリルアミド5gをエタノール3
00gに溶解し、70℃で同様に重合を行い、固形分濃
度25%、重量平均分子量約5万の分散安定剤ポリマー
溶液を得た。
Synthesis Example 2 In the same manner as in Synthesis Example 1, 85 g of NVP and EGMA (
Chemical formula 9) 10g and 5g of acrylamide were mixed with 3 parts of ethanol.
00g and polymerization was carried out in the same manner at 70°C to obtain a dispersion stabilizer polymer solution having a solid content concentration of 25% and a weight average molecular weight of approximately 50,000.

【0032】合成例3 合成例1と同様にNVP80g、2−ヒドロキシエチル
アクリレート10gおよびメタクリル酸n−ドデシル1
0gをエタノール300gに溶解し、70℃で同様に重
合を行い、固形分濃度25%、重量平均分子量約6万の
分散安定剤ポリマー溶液を得た。
Synthesis Example 3 As in Synthesis Example 1, 80 g of NVP, 10 g of 2-hydroxyethyl acrylate and 1 n-dodecyl methacrylate were added.
0g was dissolved in 300g of ethanol and polymerized in the same manner at 70°C to obtain a dispersion stabilizer polymer solution with a solid content concentration of 25% and a weight average molecular weight of about 60,000.

【0033】合成例4 合成例1と同様にして、NVP75g、スチレン10g
およびアクリル酸メチル15gをエタノール300gに
溶解し、70℃で同様に重合を行い、固形分濃度25%
、重量平均分子量約7万の分散安定剤ポリマー溶液を得
た。
Synthesis Example 4 In the same manner as in Synthesis Example 1, 75 g of NVP and 10 g of styrene were added.
and 15 g of methyl acrylate were dissolved in 300 g of ethanol and polymerized in the same manner at 70°C to give a solid concentration of 25%.
A dispersion stabilizer polymer solution having a weight average molecular weight of about 70,000 was obtained.

【0034】実施例1 攪拌機、温度計、窒素導入管、還流冷却管を備えた50
0mlフラスコ内にポリビニルピロリドン(重量平均分
子量9万)5g、アクリルアミド50gをとり、これに
エタノール225g、蒸留水75gを加え、65℃で溶
解した。これにさらにAIBN0.5gを加えることで
重合を開始し、約1時間70℃で加熱攪拌し安定な微粒
子分散液を得た。生成物を走査型電子顕微鏡およびコー
ルターN4粒子径測定装置(コールターエレクトロニク
ス社製)で測定した結果、平均粒子径1220nm、標
準偏差180nm、変動係数14.8%の単分散性微粒
子であった。
Example 1 A 50-liter refrigerator equipped with a stirrer, a thermometer, a nitrogen inlet tube, and a reflux condenser tube
5 g of polyvinylpyrrolidone (weight average molecular weight: 90,000) and 50 g of acrylamide were placed in a 0 ml flask, and 225 g of ethanol and 75 g of distilled water were added thereto and dissolved at 65°C. Polymerization was started by further adding 0.5 g of AIBN, and the mixture was heated and stirred at 70° C. for about 1 hour to obtain a stable fine particle dispersion. The product was measured using a scanning electron microscope and a Coulter N4 particle size measuring device (manufactured by Coulter Electronics), and as a result, it was found to be monodisperse fine particles with an average particle diameter of 1220 nm, a standard deviation of 180 nm, and a coefficient of variation of 14.8%.

【0035】比較例 実施例1と同様に重量平均分子量9500のポリビニル
ピロリドンを使用した以外は全く同様にして重合を行っ
たが、安定な微粒子は形成されず凝集塊を生成した。
Comparative Example Polymerization was carried out in exactly the same manner as in Example 1 except that polyvinylpyrrolidone having a weight average molecular weight of 9,500 was used, but stable fine particles were not formed but aggregates were formed.

【0036】実施例2−5 実施例1と同様に、合成例1−4で得た分散安定剤ポリ
マー溶液各々20gにアクリルアミド50g、エタノー
ル200g、蒸留水75gを加え70℃でAIBN0.
5gを加え約1時間加熱攪拌を行った。生成物はいずれ
の場合にも安定な微粒子であった。生成微粒子の平均粒
子径および変動係数を表1に示した。
Example 2-5 In the same manner as in Example 1, 50 g of acrylamide, 200 g of ethanol, and 75 g of distilled water were added to 20 g of each of the dispersion stabilizer polymer solutions obtained in Synthesis Example 1-4, and the mixture was heated at 70° C. to produce AIBN0.
5 g was added and heated and stirred for about 1 hour. The products were stable microparticles in each case. Table 1 shows the average particle diameter and coefficient of variation of the fine particles produced.

【0037】[0037]

【表1】[Table 1]

【0038】実施例6 合成例1で得た分散安定剤ポリマー溶液25gにアクリ
ルアミド30gおよびアクリル酸20gを加え、さらに
エタノール200g、蒸留水50gを加えて室温で攪拌
を行った。これに、25%アンモニア水を冷却しつつ滴
下し、混合物のpHを7.0に調節した。引続き混合物
の内温を70℃に上昇させ、AIBN0.5gを添加し
て約1時間加熱攪拌を行い、平均粒子径800nm、変
動係数21%の微粒子分散液を得た。
Example 6 30 g of acrylamide and 20 g of acrylic acid were added to 25 g of the dispersion stabilizer polymer solution obtained in Synthesis Example 1, followed by 200 g of ethanol and 50 g of distilled water, followed by stirring at room temperature. To this, 25% aqueous ammonia was added dropwise while cooling, and the pH of the mixture was adjusted to 7.0. Subsequently, the internal temperature of the mixture was raised to 70° C., 0.5 g of AIBN was added, and the mixture was heated and stirred for about 1 hour to obtain a fine particle dispersion having an average particle diameter of 800 nm and a coefficient of variation of 21%.

【0039】実施例7 合成例2で得た分散安定剤ポリマー溶液20gにアクリ
ル酸50gを加え、エタノール200gおよび蒸留水5
0gを加えた後、50%水酸化ナトリウム水溶液を徐々
に滴下して中和を行った。その後混合物を70℃に加熱
し、AIBN0.5gを加え約1時間加熱攪拌を行い、
平均粒子径900nm、変動係数12%の安定な微粒子
分散液を得た。
Example 7 50 g of acrylic acid was added to 20 g of the dispersion stabilizer polymer solution obtained in Synthesis Example 2, and 200 g of ethanol and 55 g of distilled water were added.
After adding 0 g, a 50% aqueous sodium hydroxide solution was gradually added dropwise for neutralization. Thereafter, the mixture was heated to 70°C, 0.5 g of AIBN was added, and the mixture was heated and stirred for about 1 hour.
A stable fine particle dispersion with an average particle diameter of 900 nm and a coefficient of variation of 12% was obtained.

【0040】実施例8 合成例3で得た分散安定剤ポリマー溶液50gにアクリ
ルアミド45g、メチレンビスアクリルアミド0.3g
およびスチレン5gを加え、エタノール200g、蒸留
水50gを加えて70℃でAIBN0.5gを加えた後
、約5時間加熱攪拌を行った。生成物は平均粒子径12
00nm、変動係数11%の安定な微粒子分散液であっ
た。
Example 8 45 g of acrylamide and 0.3 g of methylenebisacrylamide were added to 50 g of the dispersion stabilizer polymer solution obtained in Synthesis Example 3.
After adding 5 g of styrene, 200 g of ethanol, and 50 g of distilled water, and adding 0.5 g of AIBN at 70° C., the mixture was heated and stirred for about 5 hours. The product has an average particle size of 12
It was a stable fine particle dispersion with a particle size of 0.00 nm and a coefficient of variation of 11%.

【0041】実施例9 重量平均分子量約9万のポリビニルピロリドン5gおよ
びアクリル酸45g、メタクリル酸メチル4.5g、ジ
ビニルベンゼン0.5gをエタノール100g、メチル
エチルケトン80g、蒸留水70gに溶解し、さらに冷
却しながらアンモニア水を滴下して中和を行った。これ
にさらにAIBN0.5gを添加し、70℃で約3時間
加熱攪拌を行い、平均粒子径700nm、変動係数10
%の安定な微粒子分散液を得た。
Example 9 5 g of polyvinylpyrrolidone having a weight average molecular weight of about 90,000, 45 g of acrylic acid, 4.5 g of methyl methacrylate, and 0.5 g of divinylbenzene were dissolved in 100 g of ethanol, 80 g of methyl ethyl ketone, and 70 g of distilled water, and the mixture was further cooled. While doing so, aqueous ammonia was added dropwise to effect neutralization. Further, 0.5 g of AIBN was added to this, heated and stirred at 70°C for about 3 hours, and the average particle size was 700 nm and the coefficient of variation was 10.
% stable microparticle dispersion was obtained.

【0042】[0042]

【発明の効果】本発明を実施することにより親水性ポリ
マーを高濃度かつ低粘度の状態で製造することが可能と
なるとともに、親水性ポリマーを水溶液の状態にする場
合にも単に希釈するのみで良く、有機溶媒の除去を本質
的に不用とするものである。さらに、単分散性の親水性
ポリマーを微粒子化することで、スペーサー、液体クロ
マトグラフィー用充填剤等の用途に供することを可能と
するものである。
[Effects of the Invention] By carrying out the present invention, it is possible to produce a hydrophilic polymer in a state of high concentration and low viscosity, and when the hydrophilic polymer is to be made into an aqueous solution, it is possible to make it into an aqueous solution by simply diluting it. Better yet, it essentially eliminates the need for removal of organic solvents. Furthermore, by making the monodisperse hydrophilic polymer into fine particles, it becomes possible to use it for uses such as spacers and fillers for liquid chromatography.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  水と水混和性有機溶媒の混合溶媒中で
、アクリルアミドもしくはアクリル酸中和物の各々単独
もしくは混合物の重合を、重量平均分子量1万以上のポ
リビニルピロリドンもしくはポリビニルピロリドン共重
合体の存在下で行うことにより、平均粒子径が10μm
以下であり、かつ粒子径分布に関する標準偏差を平均粒
子径で除した変動係数が30%以下である単分散性ポリ
アクリルアミド微粒子、ポリアクリル酸中和物微粒子も
しくはアクリルアミド−アクリル酸中和物共重合体微粒
子の製造方法。
Claim 1: Polymerization of acrylamide or neutralized acrylic acid, each singly or as a mixture, in a mixed solvent of water and a water-miscible organic solvent, to form a polyvinylpyrrolidone or polyvinylpyrrolidone copolymer having a weight average molecular weight of 10,000 or more. By conducting the experiment in the presence of
Monodisperse polyacrylamide fine particles, polyacrylic acid neutralized fine particles, or acrylamide-acrylic acid neutralized copolymer particles having the following properties and a coefficient of variation obtained by dividing the standard deviation of the particle size distribution by the average particle size: Method for producing coalesced fine particles.
【請求項2】  請求項1における水混和性有機溶媒と
してアルコールを使用する微粒子の製造方法。
2. A method for producing fine particles according to claim 1, using alcohol as the water-miscible organic solvent.
【請求項3】  請求項1において、アクリルアミド及
び/又はアクリル酸中和物とともにさらに重合性2重結
合を分子内に1個以上有する他のモノマーを共重合させ
る微粒子の製造方法。
3. The method for producing fine particles according to claim 1, comprising copolymerizing acrylamide and/or a neutralized acrylic acid with another monomer having one or more polymerizable double bonds in the molecule.
【請求項4】  請求項1における重量平均分子量1万
以上のポリビニルピロリドン共重合体が、化1に示す分
子内にエチレンオキシ基を1個以上有する置換基を有す
るモノマーを少なくとも含むN−ビニル−2−ピロリド
ンとの混合モノマーの重合により得られた共重合体であ
る微粒子の製造方法。 【化1】 (R1は水素、メチル基、R2は水素、メチル基、フェ
ニル基、nは1から40までの整数を表わす。)
4. The polyvinylpyrrolidone copolymer having a weight average molecular weight of 10,000 or more in claim 1 is an N-vinylpyrrolidone copolymer containing at least a monomer having a substituent having one or more ethyleneoxy groups in the molecule shown in Chemical formula A method for producing fine particles which are copolymers obtained by polymerizing a mixed monomer with 2-pyrrolidone. [Chemical formula 1] (R1 represents hydrogen or a methyl group, R2 represents hydrogen, a methyl group, or a phenyl group, and n represents an integer from 1 to 40.)
JP6555291A 1991-03-06 1991-03-06 Production of hydrophilic polymer particle Pending JPH04279604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6555291A JPH04279604A (en) 1991-03-06 1991-03-06 Production of hydrophilic polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6555291A JPH04279604A (en) 1991-03-06 1991-03-06 Production of hydrophilic polymer particle

Publications (1)

Publication Number Publication Date
JPH04279604A true JPH04279604A (en) 1992-10-05

Family

ID=13290288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6555291A Pending JPH04279604A (en) 1991-03-06 1991-03-06 Production of hydrophilic polymer particle

Country Status (1)

Country Link
JP (1) JPH04279604A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635574A (en) * 1993-12-22 1997-06-03 Fujimoro Kogyo Co., Ltd. Microsphere and method for production thereof
US6235828B1 (en) * 1997-01-10 2001-05-22 Sumitomo Seika Chemicals Co., Ltd. Aqueous polymerization of acrylamide in the presence of polyvinylpyrrolidone
US7045398B2 (en) 2002-03-28 2006-05-16 Seiko Epson Corporation Manufacturing method for electro-optical device, electro-optical device, manufacturing method for semiconductor device, semiconductor device, projection-type display apparatus, and electronic apparatus
JP2020002250A (en) * 2018-06-27 2020-01-09 学校法人東京理科大学 Dispersion and method for producing the same
US11208508B2 (en) 2016-12-26 2021-12-28 Toagosei Co. Ltd. Polymer fine particles manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635574A (en) * 1993-12-22 1997-06-03 Fujimoro Kogyo Co., Ltd. Microsphere and method for production thereof
US6235828B1 (en) * 1997-01-10 2001-05-22 Sumitomo Seika Chemicals Co., Ltd. Aqueous polymerization of acrylamide in the presence of polyvinylpyrrolidone
US7045398B2 (en) 2002-03-28 2006-05-16 Seiko Epson Corporation Manufacturing method for electro-optical device, electro-optical device, manufacturing method for semiconductor device, semiconductor device, projection-type display apparatus, and electronic apparatus
US11208508B2 (en) 2016-12-26 2021-12-28 Toagosei Co. Ltd. Polymer fine particles manufacturing method
JP2020002250A (en) * 2018-06-27 2020-01-09 学校法人東京理科大学 Dispersion and method for producing the same

Similar Documents

Publication Publication Date Title
US5373052A (en) Organic polymer microparticle and process for producing the same
Macková et al. Effects of the reaction parameters on the properties of thermosensitive poly (N‐isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization
JPS6310611A (en) Graft copolymer having action of stabilizing dispersion, its production and emulsion polymerization using same as dispersion stabilizer
JPH09512578A (en) Production of aqueous polymer composition
JPH0786122B2 (en) Three-dimensionally crosslinked fine resin particles and method for producing the same
US4530946A (en) Resinous emulsion comprising microparticles for coating use and preparation thereof
WO2014050795A1 (en) Polyvinyl acetal microparticles for water-based dispersion
JP2006257139A (en) Core-shell type polymer particulate and method for producing the same
Musiał et al. Thermosensitive microgels of poly-N-isopropylacrylamide for drug carriers—Practical approach to synthesis
JPS62149761A (en) Paint composition
US5491192A (en) Non-aqueous dispersion for alkyd formulation
JPH04279604A (en) Production of hydrophilic polymer particle
JP3054447B2 (en) Method for producing water-soluble polymer fine particles
JPH04279605A (en) Production of hydrophilic polymer particle
WO2020127857A1 (en) Polymodal and alkali soluble resin supported emulsion polymers
US6346592B1 (en) Self-activated polymer particles with a narrow size distribution and procedure for production thereof
JPS62119271A (en) Basic composite resin particle, production thereof and resin composition for coating material
JP2002500699A (en) Water-in-water stable emulsion with small particle size, its synthesis method and use as thickener
CN110950989B (en) Method for producing monodisperse particles
US5536771A (en) Aqueous crosslinked polymer particles and their production
KR20010095368A (en) Production of monodisperse micron-sized polymer particles
JP4273658B2 (en) Method for producing aqueous dispersion and aqueous dispersion thereof
JPS58129069A (en) Coating material composition
JP2959796B2 (en) Water dispersible resin composition and method for producing the same
Eren et al. Effect of 2-hydroxyethyl methacrylate content on the emulsion polymerization process of styrene–butyl acrylate–acrylic acid: Chemical, thermal and film properties of polymer latex