JPH04132693A - Heat treatment of neutron-irradiated silicon single crystal - Google Patents

Heat treatment of neutron-irradiated silicon single crystal

Info

Publication number
JPH04132693A
JPH04132693A JP25320790A JP25320790A JPH04132693A JP H04132693 A JPH04132693 A JP H04132693A JP 25320790 A JP25320790 A JP 25320790A JP 25320790 A JP25320790 A JP 25320790A JP H04132693 A JPH04132693 A JP H04132693A
Authority
JP
Japan
Prior art keywords
heat treatment
neutron
silicon single
single crystal
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25320790A
Other languages
Japanese (ja)
Inventor
Masato Toda
真人 戸田
Takuo Takenaka
卓夫 竹中
Yutaka Kitagawara
北川原 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP25320790A priority Critical patent/JPH04132693A/en
Publication of JPH04132693A publication Critical patent/JPH04132693A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate crystal defect generated by neutron irradiation and recover resistance by heat-treating a silicon single crystal subjected to neutron irradiation doping under a fixed condition. CONSTITUTION:A silicon single crystal subjected to neutron irradiation doping is heat treated at a temperature of 950-1200 deg.C for a fixed time (e.g. at a temperature of 1200 deg.C for >=20min or at a temperature of 1000 deg.C for >=120min). Thereby, crystal defect generated in the silicon single crystal by neutron irradiation is eliminated and stable practical resistance is recovered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、中性子照射ドープを行なったシリコン単結晶
に生起する結晶欠陥を除去し、抵抗率を修復するように
した中性子照射シリコン単結晶の熱処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a neutron-irradiated silicon single crystal that is capable of removing crystal defects occurring in the neutron-irradiated silicon single crystal and restoring its resistivity. It relates to a heat treatment method.

〔従来の技術〕[Conventional technology]

中性子照射による不純物ドープは半導体シリコン単結晶
内に均一な不純物分布、即ち抵抗率分布を得るために利
用されている。しかし、同時にシリコン単結晶において
は中性子照射による結晶欠陥が発生しており中性子を照
射したままでは本来のシリコン単結晶の性質(電気的特
性その他の物理的特性)を示さない。特に軽水炉を用い
た場合には、高速中性子が多くなるためにシリコン単結
晶の結晶欠陥が増大するものである。
Impurity doping by neutron irradiation is used to obtain a uniform impurity distribution, that is, a resistivity distribution, within a semiconductor silicon single crystal. However, at the same time, crystal defects occur in the silicon single crystal due to neutron irradiation, and the silicon single crystal does not exhibit its original properties (electrical properties and other physical properties) as long as it remains irradiated with neutrons. In particular, when a light water reactor is used, the number of fast neutrons increases, which increases the number of crystal defects in silicon single crystals.

中性子照射ドープ後に熱処理を行なう技術は知られてい
る(特公昭53−28741号、特開昭5110596
5号、特公昭5B−/1812号等)が、効果的な熱処
理によってシリコン単結晶に生じた結晶欠陥を除去し、
抵抗率を回復する技術はいまだ知られていない。
The technique of heat treatment after neutron irradiation doping is known (Japanese Patent Publication No. 53-28741, Japanese Patent Application Laid-open No. 5110596).
No. 5, Special Publication No. 5B-/1812, etc.) removed crystal defects that occurred in silicon single crystals by effective heat treatment,
A technique for restoring resistivity is not yet known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記した従来技術に鑑みて発明されたもので、
シリコン単結晶に発生した中性子照射による結晶欠陥を
除去し、抵抗率を回復するようにした方法を提供するこ
とを目的とする。
The present invention was invented in view of the above-mentioned prior art,
An object of the present invention is to provide a method for removing crystal defects caused by neutron irradiation in a silicon single crystal and restoring resistivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の中性子照射シリコ
ン単結晶の熱処理方法においては、中性子照射ドープを
行なったシリコンリを結晶を、950〜I 200 ’
Cの温度範囲で所定時間熱処理するようにしたものであ
る。
In order to solve the above problems, in the heat treatment method of neutron irradiated silicon single crystal of the present invention, a silicon crystal doped with neutron irradiation is heated to a temperature of 950 to I 200'.
The heat treatment is performed at a temperature range of C for a predetermined period of time.

」二足の温度範囲であれば、所定時間の熱処理によって
結晶内部の結晶欠陥が除去され、抵抗率が回復するもの
であり、実際の操業に当たっては、熱処理温度に対応す
る処理時間(抵抗率が回復し結晶欠陥が修復するまでの
時間)を予め設定しておけばよい。
If the temperature range is within the same range as that of ``20'', crystal defects inside the crystal will be removed by heat treatment for a predetermined time and resistivity will be restored.In actual operation, the treatment time corresponding to the heat treatment temperature (resistivity The time required for recovery and crystal defects to be repaired may be set in advance.

処理温度が950℃未満では、結晶欠陥が除去できず抵
抗率の回復が不可能である。1200℃を越えた熱処理
はシリコンウェーハに悪影gを及ぼすので好ましくない
If the treatment temperature is less than 950° C., crystal defects cannot be removed and resistivity cannot be restored. Heat treatment at a temperature exceeding 1200° C. is not preferable because it has a negative effect on the silicon wafer.

この所定時間を例示すれば、1200 ’Cに対しては
20分以上、1000 ’Cに対しては120分以上、
950 ’Cに対しては360分以上である。
For example, the predetermined time is 20 minutes or more for 1200'C, 120 minutes or more for 1000'C,
For 950'C it is more than 360 minutes.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を説明する。 The present invention will be explained below with reference to Examples.

中性子照射 次の条件でシリコン単結晶(250mm長のブロック)
に対して軽水炉及び重水炉において中性子照射を行なっ
た。
Neutron irradiation Silicon single crystal (250 mm long block) under the following conditions:
neutron irradiation was carried out in light water reactors and heavy water reactors.

使用した結晶 ■成長方法:浮遊(IF融液法(FZ法)■結晶直径:
60mmφ ■成長方位:<Ill> ■導伝型:n 照射条件(軽水炉) ■目標抵抗値:30〜40Ω・cm ■熱中性子束(平均値): 2X10”n/c+fl/
s■高速中性子束(平均値) : 2 、 5 X l O”n /cta/ s■照
射時間:2時間15分 照射条件(重水炉) ■目標抵抗値:30〜40Ω・cm ■熱中性子束(平均値)  : 2 X 10 ”n 
/cf/ s■高速中性子束(平均値) :5X10  貫’ (1/ ctR/ s■照射時間
=2時間15分 熱処理実験1 上記したごとく、重水炉及び軽水炉で中性子照射したシ
リコン単結晶ブロックからそれぞれウェーハを切出した
。軽水炉中性子照射シリコンウェーハ及び重水炉中性子
照射シリコンウェーハのそれぞれに対して熱処理実験を
行なった。これらのウェーハに対して処理温度を750
’C,1000’C,1200℃の3条件、各温度につ
いて処理時間を30分、60分、120分、240分、
360分の5条件として熱処理を行なった。この熱処理
を行なったシリコンウェーハの抵抗率を四探針法によっ
て測定し、その結果を第1図及び第2図に示した。
Crystal used ■Growth method: Floating (IF melt method (FZ method) ■Crystal diameter:
60mmφ ■Growth direction: <Ill> ■Conduction type: n Irradiation conditions (light water reactor) ■Target resistance value: 30-40Ω・cm ■Thermal neutron flux (average value): 2X10”n/c+fl/
s ■ Fast neutron flux (average value): 2, 5 X l O”n /cta/ s ■ Irradiation time: 2 hours 15 minutes Irradiation conditions (heavy water reactor) ■ Target resistance value: 30 to 40 Ω・cm ■ Thermal neutron flux (Average value): 2 x 10”n
/cf/s ■Fast neutron flux (average value): 5 x 10 x 1/ctR/s ■Irradiation time = 2 hours 15 minutes Heat treatment experiment 1 As described above, from a silicon single crystal block irradiated with neutrons in a heavy water reactor and a light water reactor. Each wafer was cut out. Heat treatment experiments were conducted on each of the light water reactor neutron irradiated silicon wafer and the heavy water reactor neutron irradiated silicon wafer.
Three conditions: 'C, 1000'C, 1200℃, processing time for each temperature: 30 minutes, 60 minutes, 120 minutes, 240 minutes.
Heat treatment was performed under conditions of 5/360. The resistivity of the silicon wafer subjected to this heat treatment was measured by the four-point probe method, and the results are shown in FIGS. 1 and 2.

熱処理実験2 熱処理実験Jの結果を確認するためさらに2段熱処理を
行なった。
Heat Treatment Experiment 2 In order to confirm the results of heat treatment experiment J, two more stages of heat treatment were performed.

一段目熱処理は750℃及び1200℃で所定時間行い
、二段目熱処理は1000 ’Cで8分行なった。この
熱処理を行なったシリコンウェーハの抵抗率を四探針法
によって測定し、その結果を第3図及び第4図に示した
。また、軽水炉中性子照射シリコンウェーハ及び重水炉
中性子照射シリコンウェーハのそれぞれに対して中性子
照射によるダメージの度合及び種類をDLTS (DE
EPLEVEL  TRANSIENT  5PECT
RO3COPY)法によって調べ、その結果を第5図、
第6図及び第7図に示した。
The first heat treatment was carried out at 750°C and 1200°C for predetermined times, and the second heat treatment was carried out at 1000'C for 8 minutes. The resistivity of the silicon wafer subjected to this heat treatment was measured by the four-point probe method, and the results are shown in FIGS. 3 and 4. In addition, the degree and type of damage caused by neutron irradiation for light water reactor neutron irradiated silicon wafers and heavy water reactor neutron irradiated silicon wafers was calculated using DLTS (DE
EPLEVEL TRANSIENT 5PECT
The results are shown in Figure 5.
It is shown in FIGS. 6 and 7.

上記した実験1及び2の結果から次のことを確認した。From the results of Experiments 1 and 2 described above, the following was confirmed.

1)軽水炉中性子照射ウェーハの抵抗率は1200℃の
熱処理温度では処理時間(30〜360分)の変化に対
して一定であり、結晶欠陥が修復され安定な実用的抵抗
率が得られたと判断される(第1図)。第5図における
100K付近のDLTS波形ピークはシリコン単結晶固
有のもので、その高温側の隣接ピークは熱処理によって
消滅する中性子照射起因の結晶欠陥に対応するものとみ
ることができる。また、二段熱処理を行なった場合にも
、同様に抵抗率は安定しており、結晶欠陥は除去された
と判断される(第4図)。
1) The resistivity of light water reactor neutron irradiated wafers remained constant with respect to changes in treatment time (30 to 360 minutes) at a heat treatment temperature of 1200°C, indicating that crystal defects were repaired and a stable practical resistivity was obtained. (Figure 1). The DLTS waveform peak near 100K in FIG. 5 is unique to a silicon single crystal, and the adjacent peak on the high temperature side can be considered to correspond to crystal defects caused by neutron irradiation that are eliminated by heat treatment. Further, even when the two-stage heat treatment was performed, the resistivity was similarly stable, and it was judged that the crystal defects were removed (FIG. 4).

1000℃の場合には、120分未満の熱処理では抵抗
率は回復しζいないと判断される(第1図)。
In the case of 1000° C., it is determined that resistivity does not recover with heat treatment for less than 120 minutes (FIG. 1).

750℃の熱処理温度の場合にも、1200℃の場合と
同様に、抵抗率は処理時間の変化に対してほぼ一定であ
り、結晶欠陥も回復しているように見える(第1図)が
、さらに1000℃8分の2段目熱処理を行なうと、抵
抗率は大きく変動低下してしまい、結晶内部には欠陥が
残留していることが分かった(第3図)。
Even at a heat treatment temperature of 750°C, as in the case of 1200°C, the resistivity remains almost constant with respect to changes in treatment time, and crystal defects also appear to be recovered (Fig. 1). When a second heat treatment was further performed at 1000° C. for 8 minutes, the resistivity significantly decreased and it was found that defects remained inside the crystal (FIG. 3).

1000℃8分の熱処理は半導体素子の製造工程の熱処
理を模擬したものである。
The heat treatment at 1000° C. for 8 minutes simulates the heat treatment in the manufacturing process of semiconductor elements.

2)二段熱処理における軽水炉中性子照射ウェーハの挙
動をさらに正確に知るために行なったDLTS法による
測定結果は第5図に示されている。
2) The results of measurement using the DLTS method, which was carried out to more accurately understand the behavior of the light water reactor neutron irradiated wafer during the two-stage heat treatment, are shown in FIG.

第4図に示した抵抗率の変化と同様に、1段目に120
0℃の熱処理のみを行なった場合及びさらに2段目に1
000℃の熱処理を行なった場合のいずれの場合にもD
 L TSの信号波形は安定しており、結晶欠陥は除去
されていると考えられる。
Similar to the change in resistivity shown in Figure 4, 120
When heat treatment is performed only at 0°C, and in addition, 1
D in any case when heat treatment was performed at 000℃
The LTS signal waveform is stable, and it is considered that crystal defects have been removed.

また、一方1段目に750℃の熱処理のみを行なった場
合及びさらに2段目に1000℃の熱処理を行なった場
合のいずれの場合にもD L T Sの信号波形には異
常ピークが見られ、結晶内部には欠陥が在留しているこ
とが窺える。
In addition, abnormal peaks were observed in the signal waveform of D L T S both when heat treatment was performed at 750°C on the first stage and when heat treatment at 1000°C was further performed on the second stage. , it can be seen that defects reside inside the crystal.

3)重水炉中性子照射ウェーハの熱処理はいずれの熱処
理温度(750°c、1ooo℃,1200”C)であ
っても処理時間(30〜360分)の変化に対して一定
であり、−見すると全ての熱処理の場合に結晶欠陥が除
去されているように見える(第2図)。更に、二段熱処
理を行なったものでも、すべて抵抗率は安定しており、
結晶欠陥は回復しているように見える(第3図及び第4
図)。
3) The heat treatment of heavy water reactor neutron irradiated wafers is constant regardless of the change in treatment time (30 to 360 minutes) regardless of the heat treatment temperature (750°C, 1ooo°C, 1200"C). Crystal defects appear to have been removed in all cases of heat treatment (Figure 2).Furthermore, even in the case of two-step heat treatment, the resistivity remains stable in all cases.
The crystal defects appear to have recovered (Figures 3 and 4).
figure).

4)二段熱処理における重水炉中性子照射ウェーへの結
晶欠陥の挙動をさらに正確に知るために行なったDLT
S法による測定結果は第6図に示されている。
4) DLT performed to more accurately understand the behavior of crystal defects on the wafer irradiated with heavy water reactor neutrons during two-stage heat treatment
The measurement results by the S method are shown in FIG.

第4図に示した抵抗率の変化と同様に、1段目に120
0℃の熱処理のみを行なった場合及びさらに2段目に1
000℃の熱処理を行なった場合のいずれの場合にもI
) L T Sのスペクトルは安定しており、結晶の欠
陥は除去されていると考えられる。
Similar to the change in resistivity shown in Figure 4, 120
When heat treatment is performed only at 0°C, and in addition, 1
In all cases when heat treatment is performed at 000℃, I
) The spectrum of LTS is stable, and it is considered that crystal defects have been removed.

また、1段目に750 ’Cの熱処理のみを行なった場
合及びさらに2段目に1000℃の熱処理を行なった場
合のいずれの場合にもDLTSの信号波形には異常ピー
クが存在し、結晶内部には欠陥が残留していることが窺
える。
Furthermore, abnormal peaks exist in the DLTS signal waveform both when heat treatment is performed at 750'C in the first stage and when heat treatment is further performed at 1000°C in the second stage. It can be seen that some defects remain.

5)軽水炉中性子照射ウェーハ及び重水炉中性子照射ウ
ェーハに対する1000℃8分の熱処理条件におけるD
 L T’ S信号波形を第7図に示した。
5) D under heat treatment conditions of 1000°C for 8 minutes for light water reactor neutron irradiated wafers and heavy water reactor neutron irradiated wafers
The L T'S signal waveform is shown in FIG.

軽水炉中性子照射ウェーハにおいて100〜150にの
間に異常ピークが存在し、結晶内部に欠陥が残留してい
ることが窺える。また、重水炉中性子照射ウェーハの#
2において、100〜150にの間に小さな異常ピーク
が観測されている。これは軽水炉中性子照射ウェーハに
おいて観測された異常ピークと同等なものと考えられる
。従って、重水炉中性子照射ウェーハの1000 ’C
8分の熱処理品においても結晶内部に欠陥が残留してい
ることが窺える。
In the light water reactor neutron irradiated wafer, an abnormal peak exists between 100 and 150, indicating that defects remain inside the crystal. In addition, # of heavy water reactor neutron irradiated wafers
2, a small abnormal peak is observed between 100 and 150. This is considered to be equivalent to the abnormal peak observed in light water reactor neutron irradiated wafers. Therefore, 100'C of heavy water reactor neutron irradiated wafer
It can be seen that defects remain inside the crystal even in the product heat-treated for 8 minutes.

上記した実験の結果を総合すれば以下の結論が得られる
By integrating the results of the experiments described above, the following conclusions can be drawn.

重水炉中性子照射ウェーハ及び軽水炉中性子照射ウェー
ハのいずれに対しても、結晶内部の欠陥を除去し、安定
な実用的抵抗率を回復するための熱処理条件としては、
950〜1200℃の温度範囲で所定時間熱処理を行な
うことが必要である。
For both heavy water reactor neutron irradiated wafers and light water reactor neutron irradiated wafers, the heat treatment conditions for removing defects inside the crystal and restoring stable practical resistivity are as follows:
It is necessary to perform the heat treatment at a temperature range of 950 to 1200°C for a predetermined time.

ここでいう所定時間とは1200℃に対しては20分以
上、1000℃では120分以上、950℃では360
分以上となるものである。いずれにし°ζも、上記の温
度範囲であれば、所定時間の熱処理によって結晶内部の
欠陥が除去されるものであり、実際の操業に当たっては
、熱処理温度に対応する処理時間(抵抗率が回復し結晶
欠陥が修復するまでの時間)を予め設定しておけばよい
ものである。
The predetermined time here means 20 minutes or more for 1200℃, 120 minutes or more for 1000℃, and 360 minutes or more for 950℃.
It will be more than 1 minute. In any case, within the above temperature range, defects inside the crystal will be removed by heat treatment for a predetermined period of time.In actual operation, the treatment time corresponding to the heat treatment temperature (until the resistivity recovers) will be removed. It is sufficient to set the time required for crystal defects to be repaired in advance.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく、本発明によれば、所定条件の熱処理
を行なうことによって、シリコン単結晶に発生した中性
子照射による結晶欠陥を除去し、安定な実用的抵抗率を
回復することができるという大きな効果を奏する。
As described above, according to the present invention, by performing heat treatment under predetermined conditions, crystal defects generated in a silicon single crystal due to neutron irradiation can be removed and stable practical resistivity can be restored, which is a great effect. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軽水炉中性子照射ウェーハに対する各種熱処理
条件にお4Jる抵抗率の変化を示すグラフ、第2図は重
水炉中性子照射ウェーハに対する各種熱処理条件におけ
る抵抗率の変化を示すグラフ、第3図は軽水炉中性子照
射ウェーハに対する二段熱処理条件にお&Jる抵抗率の
変化を示すグラフ、第4図は重水炉中性子照射ウェーハ
に対する一段熱処理条件におりる抵抗率の変化を示すグ
ラフ、第5図は軽水炉中性子照射ウェーハに対する各種
熱処理条件におけるDLTS信号波形を示すグラフ、第
6図は重水炉中性子照射ウェーハに対する各種熱処理条
件におけるDLTS信号波形を示すグラフ及び第7図は
軽水炉中性子照射ウェーハ及び重水炉中性子照射ウェー
ハに対する1000’C8分の熱処理条件におけるD 
L ”「S信号波形を示すグラフである。
Figure 1 is a graph showing changes in resistivity under various heat treatment conditions for light water reactor neutron irradiated wafers, Figure 2 is a graph showing resistivity changes under various heat treatment conditions for heavy water reactor neutron irradiated wafers, and Figure 3 is a graph showing resistivity changes under various heat treatment conditions for heavy water reactor neutron irradiated wafers. A graph showing the change in resistivity under two-stage heat treatment conditions for light water reactor neutron irradiated wafers, Figure 4 is a graph showing the change in resistivity under single stage heat treatment conditions for heavy water reactor neutron irradiated wafers, and Figure 5 is a graph showing changes in resistivity for light water reactor neutron irradiated wafers under one stage heat treatment conditions Graphs showing DLTS signal waveforms under various heat treatment conditions for neutron irradiated wafers, Figure 6 is a graph showing DLTS signal waveforms under various heat treatment conditions for heavy water reactor neutron irradiated wafers, and Figure 7 shows DLTS signal waveforms for light water reactor neutron irradiated wafers and heavy water reactor neutron irradiated wafers. D under heat treatment conditions of 1000'C8 minutes for
This is a graph showing the waveform of the L and S signals.

Claims (1)

【特許請求の範囲】[Claims] (1)中性子照射ドープを行なったシリコン単結晶を、
950〜1200℃の温度範囲で所定時間熱処理するこ
とによって中性子照射シリコン単結晶の抵抗率の回復及
び結晶欠陥の修復を行なうようにしたことを特徴とする
中性子照射シリコン単結晶の熱処理方法。
(1) Silicon single crystal doped with neutron irradiation,
A method for heat treating a neutron-irradiated silicon single crystal, characterized in that the resistivity of the neutron-irradiated silicon single crystal is restored and crystal defects are repaired by heat-treating the neutron-irradiated silicon single crystal for a predetermined period of time in a temperature range of 950 to 1200°C.
JP25320790A 1990-09-21 1990-09-21 Heat treatment of neutron-irradiated silicon single crystal Pending JPH04132693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25320790A JPH04132693A (en) 1990-09-21 1990-09-21 Heat treatment of neutron-irradiated silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25320790A JPH04132693A (en) 1990-09-21 1990-09-21 Heat treatment of neutron-irradiated silicon single crystal

Publications (1)

Publication Number Publication Date
JPH04132693A true JPH04132693A (en) 1992-05-06

Family

ID=17248047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25320790A Pending JPH04132693A (en) 1990-09-21 1990-09-21 Heat treatment of neutron-irradiated silicon single crystal

Country Status (1)

Country Link
JP (1) JPH04132693A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633768A (en) * 1993-10-27 1997-05-27 Teac Corporation Sheet metal frame construction for a disk apparatus
KR20010070619A (en) * 2001-05-28 2001-07-27 류근걸 Annealing technology to stabilize resistivity for neutron transmutation doping
JP2007535800A (en) * 2003-10-16 2007-12-06 クリー インコーポレイテッド Method for forming a power semiconductor device using a boule-grown silicon carbide drift layer and power semiconductor device formed thereby
JP2015037194A (en) * 2013-08-14 2015-02-23 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Rear doping method of semiconductor disk
US9154894B2 (en) 2012-12-26 2015-10-06 Onkyo Corporation Frequency characteristics determination device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357968A (en) * 1976-11-05 1978-05-25 Siemens Ag Method of recovering defects of silicon crystal irradiated by neutron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357968A (en) * 1976-11-05 1978-05-25 Siemens Ag Method of recovering defects of silicon crystal irradiated by neutron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633768A (en) * 1993-10-27 1997-05-27 Teac Corporation Sheet metal frame construction for a disk apparatus
KR20010070619A (en) * 2001-05-28 2001-07-27 류근걸 Annealing technology to stabilize resistivity for neutron transmutation doping
JP2007535800A (en) * 2003-10-16 2007-12-06 クリー インコーポレイテッド Method for forming a power semiconductor device using a boule-grown silicon carbide drift layer and power semiconductor device formed thereby
US9154894B2 (en) 2012-12-26 2015-10-06 Onkyo Corporation Frequency characteristics determination device
JP2015037194A (en) * 2013-08-14 2015-02-23 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Rear doping method of semiconductor disk
US9245811B2 (en) 2013-08-14 2016-01-26 Infineon Technologies Ag Method for postdoping a semiconductor wafer
US9559020B2 (en) 2013-08-14 2017-01-31 Infineon Technologies Ag Method for postdoping a semiconductor wafer

Similar Documents

Publication Publication Date Title
JPS583375B2 (en) Manufacturing method of silicon single crystal wafer
JP2652110B2 (en) Irradiation defect removal method for neutron irradiated FZ silicon single crystal
JPH04132693A (en) Heat treatment of neutron-irradiated silicon single crystal
JP5099024B2 (en) Epitaxial wafer manufacturing method and semiconductor device manufacturing method
JP3410828B2 (en) Silicon wafer manufacturing method
JP2582491B2 (en) Heat treatment method for semiconductor crystal
JPH0523494B2 (en)
EP0506020B1 (en) Process for producing a neutron transmutation doped Czochralski-grown silicon single crystal
JPS58137218A (en) Treatment of silicon single crystal substrate
JPH04298042A (en) Method of heat-treating semiconductor
CN113272481A (en) Method for blackening wafer, blackened wafer, and surface acoustic wave filter
JPH039078B2 (en)
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPS6151930A (en) Manufacture of semiconductor device
JPS6116760B2 (en)
JPS58151020A (en) Manufacture of semiconductor device
RTTEDA et al. Charge of Dislocations in Pure and y-Irradiated LiF
JPH0318330B2 (en)
JPS62257723A (en) Manufacture of silicon wafer
JPS59218726A (en) Method for processing semiconductor
JPH02164040A (en) Treatment of silicon semiconductor substrate
KR100500712B1 (en) A method for measuring concentration of metal contamintion of silicon wafer
JPH07201872A (en) Gettering method for semiconductor wafer
JPS63108728A (en) Method of straining rear face of semiconductor substrate
JPH04721A (en) Manufacture of semiconductor device